1
|
Lee JY, Kamel J, Yadav CJ, Yadav U, Afrin S, Son YM, Won SY, Han SS, Park KM. Production of Plant-Based, Film-Type Scaffolds Using Alginate and Corn Starch for the Culture of Bovine Myoblasts. Foods 2024; 13:1358. [PMID: 38731729 PMCID: PMC11083433 DOI: 10.3390/foods13091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Jihad Kamel
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Chandra-Jit Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Usha Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Sadia Afrin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Yu-Mi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| |
Collapse
|
2
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Aspinwall MJ, Blackman CJ, Maier C, Tjoelker MG, Rymer PD, Creek D, Chieppa J, Griffin-Nolan RJ, Tissue DT. Aridity drives clinal patterns in leaf traits and responsiveness to precipitation in a broadly distributed Australian tree species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:70-85. [PMID: 37288162 PMCID: PMC10243541 DOI: 10.1002/pei3.10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/09/2023]
Abstract
Aridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of Eucalyptus camaldulensis subsp. camaldulensis sourced from an aridity gradient together in the field for ~650 days under low and high precipitation treatments. Eucalyptus camaldulesis is considered a phreatophyte (deep-rooted species that utilizes groundwater), so we hypothesized that genotypes from more arid environments would show lower aboveground productivity, higher leaf gas-exchange rates, and greater tolerance/avoidance of dry surface soils (indicated by lower responsiveness) than genotypes from less arid environments. Aridity predicted genotype responses to precipitation, with more arid genotypes showing lower responsiveness to reduced precipitation and dry surface conditions than less arid genotypes. Under low precipitation, genotype net photosynthesis and stomatal conductance increased with home-climate aridity. Across treatments, genotype intrinsic water-use efficiency and osmotic potential declined with increasing aridity while photosynthetic capacity (Rubisco carboxylation and RuBP regeneration) increased with aridity. The observed clinal patterns indicate that E. camaldulensis genotypes from extremely arid environments possess a unique strategy defined by lower responsiveness to dry surface soils, low water-use efficiency, and high photosynthetic capacity. This strategy could be underpinned by deep rooting and could be adaptive under arid conditions where heat avoidance is critical and water demand is high.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
- Formation Environmental LLC Sacramento California USA
| | - Chris J Blackman
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture School of Natural Sciences, University of Tasmania Hobart Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences (NMBU) Ås Norway
| | - Jeff Chieppa
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
| | | | - David T Tissue
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Global Centre for Land Based Innovation Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
4
|
Li S, Moller CA, Mitchell NG, Martin DG, Sacks EJ, Saikia S, Labonte NR, Baldwin BS, Morrison JI, Ferguson JN, Leakey ADB, Ainsworth EA. The leaf economics spectrum of triploid and tetraploid C 4 grass Miscanthus x giganteus. PLANT, CELL & ENVIRONMENT 2022; 45:3462-3475. [PMID: 36098093 PMCID: PMC9825850 DOI: 10.1111/pce.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.
Collapse
Affiliation(s)
- Shuai Li
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Institute for Sustainability, Energy, and EnvironmentUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Christopher A. Moller
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Global Change and Photosynthesis Research Unit, USDA ARSUrbanaIllinoisUSA
| | - Noah G. Mitchell
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Global Change and Photosynthesis Research Unit, USDA ARSUrbanaIllinoisUSA
| | - Duncan G. Martin
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Erik J. Sacks
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sampurna Saikia
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Nicholas R. Labonte
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Brian S. Baldwin
- Department of Plant and Soil SciencesMississippi State UniversityStarkvilleMississippiUSA
| | - Jesse I. Morrison
- Department of Plant and Soil SciencesMississippi State UniversityStarkvilleMississippiUSA
| | - John N. Ferguson
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Andrew D. B. Leakey
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Elizabeth A. Ainsworth
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Global Change and Photosynthesis Research Unit, USDA ARSUrbanaIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Liu H, Ye Q, Simpson KJ, Cui E, Xia J. Can evolutionary history predict plant plastic responses to climate change? THE NEW PHYTOLOGIST 2022; 235:1260-1271. [PMID: 35488493 DOI: 10.1111/nph.18194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Plant plastic responses are critical to the adaptation and survival of species under climate change, but whether they are constrained by evolutionary history (phylogeny) is largely unclear. Plant leaf traits are key in determining plants' performance in different environments, and if these traits and their variation are phylogenetically dependent, predictions could be made to identify species vulnerable to climate change. We compiled data on three leaf traits (photosynthetic rate, specific leaf area, and leaf nitrogen content) and their variation under four environmental change scenarios (warming, drought, elevated CO2 , or nitrogen addition) for 434 species, from 210 manipulation experiments. We found phylogenetic signal in the three traits but not in their variation under the four scenarios. This indicates that closely related species show similar traits but that their plastic responses could not be predicted from species relatedness under environmental change. Meanwhile, phylogeny weakened the slopes but did not change the directions of conventional pairwise trait relationships, suggesting that co-evolved leaf trait pairs have consistent responses under contrasting environmental conditions. Phylogeny can identify lineages rich in species showing similar traits and predict their relationships under climate change, but the degree of plant phenotypic variation does not vary consistently across evolutionary clades.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), no. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China
| | - Kimberley J Simpson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Erqian Cui
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Research Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, 200241, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Research Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. PLANTS 2022; 11:plants11141846. [PMID: 35890479 PMCID: PMC9320154 DOI: 10.3390/plants11141846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate–trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate–trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.
Collapse
|
7
|
Li X, Cai K, Zhao Q, Li H, Wang X, Tigabu M, Sederoff R, Ma W, Zhao X. Morphological and Comparative Transcriptome Analysis of Three Species of Five-Needle Pines: Insights Into Phenotypic Evolution and Phylogeny. FRONTIERS IN PLANT SCIENCE 2022; 13:795631. [PMID: 35222462 PMCID: PMC8866173 DOI: 10.3389/fpls.2022.795631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xuelai Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Coast O, Posch BC, Bramley H, Gaju O, Richards RA, Lu M, Ruan YL, Trethowan R, Atkin OK. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. PLANT, CELL & ENVIRONMENT 2021; 44:2331-2346. [PMID: 33283881 DOI: 10.1111/pce.13971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e., acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as (a) decreased rates of net photosynthesis at 25°C (A25 ) coupled with lower maximum carboxylation capacity (Vcmax25 ), (b) reduced leaf dark respiration at 25°C (both in terms of O2 consumption Rdark _O225 and CO2 efflux Rdark _CO225 ) and (c) lower Rdark _CO225 to Vcmax25 ratio. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 -based traits (A25 , Rdark _CO225 and Vcmax25 ) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_ O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes and for predictions of crop performance in a future warmer world.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
- Agriculture, Health and Environment Department, Natural Resources Institute, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
- College of Science, Lincoln Institute of Agri-Food Technology, University of Lincoln, Lincolnshire, UK
| | | | - Meiqin Lu
- Australian Grain Technologies, Narrabri, New South Wales, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
10
|
Zhu L, Bloomfield KJ, Asao S, Tjoelker MG, Egerton JJG, Hayes L, Weerasinghe LK, Creek D, Griffin KL, Hurry V, Liddell M, Meir P, Turnbull MH, Atkin OK. Acclimation of leaf respiration temperature responses across thermally contrasting biomes. THE NEW PHYTOLOGIST 2021; 229:1312-1325. [PMID: 32931621 DOI: 10.1111/nph.16929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Short-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolution R-T (10-70°C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20°C : 15°C, 25°C : 20°C and 30°C : 25°C, day : night. In the field, across all sites/seasons, variations in R25 (measured at 25°C) and the leaf T where R reached its maximum (Tmax ) were explained by growth T (mean air-T of 30-d before measurement), solar irradiance and vapour pressure deficit, with growth T having the strongest influence. R25 decreased and Tmax increased with rising growth T across all sites and seasons with the single exception of winter at the cool-temperate rainforest site where irradiance was low. The glasshouse study confirmed that R25 and Tmax thermally acclimated. Collectively, the results suggest: (1) thermal acclimation of leaf R is common in most biomes; and (2) the high T threshold of respiration dynamically adjusts upward when plants are challenged with warmer and hotter climates.
Collapse
Affiliation(s)
- Lingling Zhu
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Keith J Bloomfield
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Shinichi Asao
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Building 116, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- INRAE Univ. Clermont-Auvergne, PIAF, Clermont-Ferrand, 63000, France
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, 10964, USA
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 84, Sweden
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science (TESS) and College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Patrick Meir
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| |
Collapse
|