1
|
Zukswert JM, Vadeboncoeur MA, Fahey TJ, Yanai RD. Treatment effects of nitrogen and phosphorus addition on foliar traits in six northern hardwood tree species. Oecologia 2025; 207:23. [PMID: 39838106 DOI: 10.1007/s00442-025-05664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling. We compared five traits-foliar N, foliar P, specific leaf area (SLA), leaf dry matter content (LDMC), and leaf carbon isotope ratio (δ13C)-in six northern hardwood tree species (Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula papyrifera, Fagus grandifolia, and Prunus pensylvanica) in a nitrogen (N) and phosphorus (P) fertilization study across 10 mid- and late-successional forest stands in New Hampshire, USA. We also analyzed the response of tree growth to N and P addition. Nutrient addition shifted trait values towards the "acquisitive" side of the spectrum for all traits except δ13C, reflecting a tradeoff between water-use efficiency and nutrient-use efficiency. Treatment responses in relative basal area increment revealed that the Betula species were N-limited, but traits of all species responded to either or both N and P addition in ways that suggest N and P co-limitation. Two species displayed lower foliar P under N addition, and three species displayed lower foliar N under P addition, which also suggests co-limitation. These indications of co-limitation were reflected at the community level. Specific leaf area, LDMC, and δ13C differed with stand age within several species. Examining trait responses of tree species and communities to nutrient availability increases our understanding of biological mechanisms underlying the complex effects of nutrient availability on forests.
Collapse
Affiliation(s)
- Jenna M Zukswert
- Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | | | - Timothy J Fahey
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Ruth D Yanai
- Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA.
| |
Collapse
|
2
|
Wang Z, Zhang W, Hu X, Gao Y. Organophosphate esters inhibit enzymatic proteolysis through non-covalent interactions. ENVIRONMENT INTERNATIONAL 2025; 195:109256. [PMID: 39787779 DOI: 10.1016/j.envint.2025.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/02/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment. Thereby we studied the effect of OPEs on the proteolysis of protein GB1 in aqueous system at neutral pH, and explored the underlying molecular mechanism. Colorimetric ninhydrin methods and SDS-PAGE results revealed that OPEs inhibited the enzymatic hydrolysis of protein GB1. Based on fluorescence quenching experiments, the binding constant (LogKA) were found in order: 6.16 (dibutyl phosphate) > 5.11 (diethyl phosphate) > 1.78 (tributyl phosphate) > 0.876 (triethyl phosphate), proving the interactions between OPEs and protein GB1. Further spectroscopic experiments and molecular docking simulations showed that OPEs could entered the pocket structure of GB1 and induced secondary structural changes and protein folding through non-covalent interactions dominated by hydrogen bonding and van der Waals forces. In addition, organophosphate diesters (di-OPEs) and long-chain OPEs had stronger affinity to GB1, due to the more negative and denser electrostatic surface potential distributions. The deformation of proteins hindered the contact between their active sites and enzymes, leading to the inhibition of GB1 hydrolysis. This study deepened our understanding of the effect of OPEs on protein transformation and degradation, which could further influence the ecological functions and nutrient cycling.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
El Amrani B. Insights into the Biotic Factors Shaping Ectomycorrhizal Associations. BIOLOGY 2024; 13:1044. [PMID: 39765711 PMCID: PMC11673544 DOI: 10.3390/biology13121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Ectomycorrhizal (EM) associations are essential symbiotic relationships that contribute significantly to the health and functioning of forest ecosystems. This review examines the biotic factors that influence EM associations, focusing on plant and fungal diversity, host specificity, and microbial interactions. Firstly, the diversity of host plants and ectomycorrhizal fungi (EMF) is discussed, highlighting how the richness of these organisms affects the formation and success of EM symbioses. Next, host specificity is explored, with a focus on the complex relationships between EMF and their host plants. Microbial interactions are examined in depth, with sections on both positive and negative influences of bacteria and different fungal groups on EM formation. Overall, this review provides a comprehensive overview of the biotic factors that shape EM associations, offering insights into the mechanisms that underpin these critical ecological interactions and their broader implications for ecosystem management and restoration.
Collapse
Affiliation(s)
- Belkacem El Amrani
- Lumbricidae, Improving Soil Productivity and Environment Unit (LAPSE), Higher Normal School (ENS), Mohammed V University in Rabat, Rabat P.O. Box 554, Morocco
| |
Collapse
|
4
|
Xiao J, Chi Z, Huang X, Yu G. Molecular mechanisms of iron nanominerals formation in fungal extracellular polymeric substances (EPS) layers during fungus-mineral interactions. CHEMOSPHERE 2024; 367:143660. [PMID: 39489307 DOI: 10.1016/j.chemosphere.2024.143660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Extracellular polymeric substances (EPS), which envelop on fungal hyphae surface, interact strongly with minerals and play a crucial role in the formation of nanoscale minerals during biomineralization in nature environments. However, it remains poorly understood about the molecular mechanisms of nanominerals (i.e., iron nanominerals) formation in fungal EPS halos during fungus-mineral interactions. This process is vital because fungi typically grow attached to various mineral surfaces in nature. According to the changes of thickness of the fungal cell and EPS layers during the Trichoderma guizhouense NJAU 4742 and hematite cultivation experiments, we found that fungal biomineralization could trigger the formation of EPS layers. Fe-dominated nanominerals, aromatic C (283-286.1 eV), alkyl C (287.6-288.3 eV), and carboxylic C (288.4-289.1 eV) were the dominant chemical groups on the EPS layers, as determined by nanoscale secondary ion mass spectrometry (NanoSIMS), high-resolution transmission electron microscope (HRTEM), and carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Further, evidence from Fe K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) spectra indicated that oxygen vacancy (OV) was formed on the Fe-dominated nanomineral surface during fungus-mineral interactions, which played an important role in catalyzing H2O2 decomposition and HO∗ production. Taken together, the intrinsic peroxidase-like activity by reactive oxygen species (ROS) could modulate the Fe-dominated nanominerals formation in EPS layers to newly form a physical barrier between the cell and the external environments around hyphae, providing novel insights into the effects of ROS-mediated fungal-mineral interactions on fungal nutrient recycling, attenuation of contaminants, and biological control in nature environments.
Collapse
Affiliation(s)
- Jian Xiao
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Key Laboratory of Ecosystem Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - ZhiLai Chi
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, Fujian, China.
| | - XiaoDan Huang
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, Fujian, China
| | - GuangHui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
6
|
Piłsyk S, Perlińska-Lenart U, Janik A, Skalmowska P, Znój A, Gawor J, Grzesiak J, Kruszewska JS. Native and Alien Antarctic Grasses as a Habitat for Fungi. Int J Mol Sci 2024; 25:8475. [PMID: 39126044 PMCID: PMC11313430 DOI: 10.3390/ijms25158475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Biological invasions are now seen as one of the main threats to the Antarctic ecosystem. An example of such an invasion is the recent colonization of the H. Arctowski Polish Antarctic Station area by the non-native grass Poa annua. This site was previously occupied only by native plants like the Antarctic hair grass Deschampsia antarctica. To adapt successfully to new conditions, plants interact with soil microorganisms, including fungi. The aim of this study was to determine how the newly introduced grass P. annua established an interaction with fungi compared to resident grass D. antarctica. We found that fungal diversity in D. antarctica roots was significantly higher compared with P. annua roots. D. antarctica managed a biodiverse microbiome because of its ability to recruit fungal biocontrol agents from the soil, thus maintaining a beneficial nature of the endophyte community. P. annua relied on a set of specific fungal taxa, which likely modulated its cold response, increasing its competitiveness in Antarctic conditions. Cultivated endophytic fungi displayed strong chitinolysis, pointing towards their role as phytopathogenic fungi, nematode, and insect antagonists. This is the first study to compare the root mycobiomes of both grass species by direct culture-independent techniques as well as culture-based methods.
Collapse
Affiliation(s)
- Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Anna Janik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Patrycja Skalmowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Anna Znój
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
- Botanical Garden—Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| |
Collapse
|
7
|
Chen S, Elrys AS, Yang W, Du S, He M, Cai Z, Zhang J, Müller C. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. GLOBAL CHANGE BIOLOGY 2024; 30:e17290. [PMID: 38651789 DOI: 10.1111/gcb.17290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (MNrec) and labile (MNlab) organic N mineralization rates and their consequences on ecosystem N retention are still unclear. By collecting MNrec (299 observations) and MNlab (299 observations) from 57 15N tracing studies, we found that soil pH and total N were the master factors controlling MNrec and MNlab, respectively. This was consistent with the significantly higher rates of MNrec in alkaline soils and of MNlab in natural ecosystems. Interestingly, our analysis revealed that MNrec directly stimulated microbial N immobilization and plant N uptake, while MNlab stimulated the soil gross autotrophic nitrification which discouraged ammonium immobilization and accelerated nitrate production. We also noted that MNrec was more efficient at lower precipitation and higher temperatures due to increased soil pH. In contrast, MNlab was more efficient at higher precipitation and lower temperatures due to increased soil total N. Overall, we suggest that increasing MNrec may lead to a conservative N cycle, improving the ecosystem services and functions, while increasing MNlab may stimulate the potential risk of soil N loss.
Collapse
Affiliation(s)
- Shending Chen
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ahmed S Elrys
- School of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Wenyan Yang
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Siwen Du
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Mengqiu He
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jinbo Zhang
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. GLOBAL CHANGE BIOLOGY 2022; 28:2527-2540. [PMID: 34989058 DOI: 10.1111/gcb.16073] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.
Collapse
Affiliation(s)
- Craig R See
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Adrienne B Keller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter G Kennedy
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| |
Collapse
|
9
|
Bernard L, Basile‐Doelsch I, Derrien D, Fanin N, Fontaine S, Guenet B, Karimi B, Marsden C, Maron P. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Bernard
- IRD UMR Eco&Sols INRAE, CIRAD Institut Agro Univ Montpellier 2 place Viala Bt12 34060 Montpellier France
| | | | | | - Nicolas Fanin
- INRAE UMR 1391 ISPA, Bordeaux Sciences Agro 71 Avenue Edouard Bourlaux, CS 20032 Villenave‐d’Ornon Cedex F33882 France
| | - Sébastien Fontaine
- INRAE Université Clermont Auvergne VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
| | - Bertrand Guenet
- Laboratoire de Géologie Ecole Normale Supérieure/CNRS UMR8538 IPSL PSL Research University Paris France
| | | | - Claire Marsden
- Institut Agro UMR Eco&Sols, IRD, INRAE, CIRAD Univ Montpellier 2 place Viala Bt12 34060
| | - Pierre‐Alain Maron
- INRAE UMR AgroEcologie AgroSup Dijon, BP 87999, CEDEX 21079 Dijon France
| |
Collapse
|
10
|
Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. THE NEW PHYTOLOGIST 2021; 232:2457-2474. [PMID: 34196001 PMCID: PMC9291818 DOI: 10.1111/nph.17591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.
Collapse
Affiliation(s)
- Werner Mayerhofer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
| | - Marlies Dietrich
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Julia Wiesenbauer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Raphael Gabriel
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Peta Clode
- Centre for Microscopy, Characterisation & AnalysisUniversity of Western AustraliaPerthWA6009Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| |
Collapse
|
11
|
Kavitha E, Devaraj Stephen L, Brishti FH, Karthikeyan S. Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Poust AW, Bogar L, Robinson WD, Poole G. A Framework for Investigating Rules of Life Across Disciplines. Integr Comp Biol 2021; 61:2208-2217. [PMID: 34351423 DOI: 10.1093/icb/icab175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clearly and usefully defining the Rules of Life has long been an attractive yet elusive prospect for biologists. Life persists because requirements for existence and successful transmission of hereditary information are met. These requirements are met through mechanisms adopted by organisms, which produce solutions to environmentally imposed constraints on life. Yet, constraints and their suites of potential solutions are typically context-specific, operating at specific levels of organization, or holons, and having cascading effects across multiple levels, or the holarchy. We explore the idea that the interaction of constraints, mechanisms, and requirements within and across levels of organization may produce rules of life that can be productively defined. Although we stop short of listing specific rules, we provide a conceptual framework within which progress toward identifying rules might be made.
Collapse
Affiliation(s)
| | - Laura Bogar
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106
| | - W Douglas Robinson
- Oak Creek Lab of Biology, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Geoffrey Poole
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717-3120
| |
Collapse
|
13
|
Adamczyk B. How do boreal forest soils store carbon? Bioessays 2021; 43:e2100010. [PMID: 33956367 DOI: 10.1002/bies.202100010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
Boreal forests store a globally significant pool of carbon (C), mainly in tree biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms underlying C stabilization are not well understood. Here, recently discovered mechanisms behind SOM stabilization, their level of understanding, interrelations, and future directions in the field are provided. A recently unraveled mechanism behind C stabilization via interaction of root-derived tannins with fungal necromass emphasizing fungal necromass chemistry is brought forth. The long-lasting dogma of the stability of SOM on minerals is challenged and the newest insights from the field of soil fauna and their influence on SOM stabilization are provided. In conclusion, mechanisms unraveled during the last decade are crucial steps forward to draw a holistic view of the main drivers of SOM stabilization.
Collapse
|
14
|
Daly AB, Jilling A, Bowles TM, Buchkowski RW, Frey SD, Kallenbach CM, Keiluweit M, Mooshammer M, Schimel JP, Grandy AS. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. BIOGEOCHEMISTRY 2021; 154:211-229. [PMID: 34759436 PMCID: PMC8570341 DOI: 10.1007/s10533-021-00793-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Soil organic nitrogen (N) is a critical resource for plants and microbes, but the processes that govern its cycle are not well-described. To promote a holistic understanding of soil N dynamics, we need an integrated model that links soil organic matter (SOM) cycling to bioavailable N in both unmanaged and managed landscapes, including agroecosystems. We present a framework that unifies recent conceptual advances in our understanding of three critical steps in bioavailable N cycling: organic N (ON) depolymerization and solubilization; bioavailable N sorption and desorption on mineral surfaces; and microbial ON turnover including assimilation, mineralization, and the recycling of microbial products. Consideration of the balance between these processes provides insight into the sources, sinks, and flux rates of bioavailable N. By accounting for interactions among the biological, physical, and chemical controls over ON and its availability to plants and microbes, our conceptual model unifies complex mechanisms of ON transformation in a concrete conceptual framework that is amenable to experimental testing and translates into ideas for new management practices. This framework will allow researchers and practitioners to use common measurements of particulate organic matter (POM) and mineral-associated organic matter (MAOM) to design strategic organic N-cycle interventions that optimize ecosystem productivity and minimize environmental N loss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10533-021-00793-9.
Collapse
Affiliation(s)
- Amanda B. Daly
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK USA
| | - Timothy M. Bowles
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | | | - Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | | | - Marco Keiluweit
- School of Earth & Sustainability and Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | - Joshua P. Schimel
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA USA
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| |
Collapse
|
15
|
Wang T, Persson P, Tunlid A. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins. Environ Microbiol 2021; 23:5837-5849. [PMID: 33891367 DOI: 10.1111/1462-2920.15539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of nitrogen (N) in forest soils is present in mineral-associated proteinaceous compounds. The strong association between proteins and minerals limits microbial accessibility to this source, which is a relatively stable reservoir of soil N. We have shown that the ectomycorrhizal (ECM) fungus Paxillus involutus can acquire N from iron oxide-associated proteins. Using tightly controlled isotopic, spectroscopic and chromatographic experiments, we demonstrated that the capacity to access N from iron oxide-associated bovine serum albumin (BSA) is shared with the ECM fungi Hebeloma cylindrosporum and Piloderma olivaceum. Despite differences in evolutionary history, growth rates, exploration types and the decomposition mechanisms of organic matter, their N acquisition mechanisms were similar to those described for P. involutus. The fungi released N from mineral-associated BSA by direct action of extracellular aspartic proteases on the mineral-associated BSA, without initial desorption of the protein. Hydrolysis was suppressed by the adsorption of proteases to minerals, but this adverse effect was counteracted by the secretion of compounds that conditioned the mineral surface. These data suggest that the enzymatic exudate-driven mechanism to access N from mineral-associated proteins is found in ECM fungi of multiple lineages and exploration types.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden.,CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, Lund, SE-223 62, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden
| |
Collapse
|
16
|
Li H, Bölscher T, Winnick M, Tfaily MM, Cardon ZG, Keiluweit M. Simple Plant and Microbial Exudates Destabilize Mineral-Associated Organic Matter via Multiple Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3389-3398. [PMID: 33587629 DOI: 10.1021/acs.est.0c04592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most mineral-associated organic matter (MAOM) is protected against microbial attack, thereby contributing to long-term carbon storage in soils. However, the extent to which reactive compounds released by plants and microbes may destabilize MAOM and so enhance microbial access, as well as the underlying mechanisms, remain unclear. Here, we tested the ability of functionally distinct model exudates-ligands, reductants, and simple sugars-to promote microbial utilization of monomeric MAOM, bound via outer-sphere complexes to common iron and aluminum (hydr)oxide minerals. The strong ligand oxalic acid induced rapid MAOM mineralization, coinciding with greater sorption to and dissolution of minerals, suggestive of direct MAOM mobilization mechanisms. In contrast, the simple sugar glucose caused slower MAOM mineralization, but stimulated microbial activity and metabolite production, indicating an indirect microbially-mediated mechanism. Catechol, acting as reductant, promoted both mechanisms. While MAOM on ferrihydrite showed the greatest vulnerability to both direct and indirect mechanisms, MAOM on other (hydr)oxides was more susceptible to direct mechanisms. These findings suggest that MAOM persistence, and thus long-term carbon storage within a given soil, is not just a function of mineral reactivity but also depends on the capacity of plant roots and associated microbes to produce reactive compounds capable of triggering specific destabilization mechanisms.
Collapse
Affiliation(s)
- Hui Li
- Stockbridge School of Agriculture and School of Earth & Sustainability, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tobias Bölscher
- Stockbridge School of Agriculture and School of Earth & Sustainability, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Matthew Winnick
- Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona 85719, United States
| | - Zoe G Cardon
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Marco Keiluweit
- Stockbridge School of Agriculture and School of Earth & Sustainability, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Keiluweit M, Kuyper TW. Proteins unbound - how ectomycorrhizal fungi can tap a vast reservoir of mineral-associated organic nitrogen. THE NEW PHYTOLOGIST 2020; 228:406-408. [PMID: 32735045 DOI: 10.1111/nph.16796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Marco Keiluweit
- School of Earth & Sustainability, University of Massachusetts, Amherst, MA, 01003, USA
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|