1
|
Janacek DP, Kolb M, Schulz L, Mergner J, Kuster B, Glanc M, Friml J, Ten Tusscher K, Schwechheimer C, Hammes UZ. Transport properties of canonical PIN-FORMED proteins from Arabidopsis and the role of the loop domain in auxin transport. Dev Cell 2024; 59:3259-3271.e4. [PMID: 39413780 DOI: 10.1016/j.devcel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
The phytohormone auxin is polarly transported in plants by PIN-FORMED (PIN) transporters and controls virtually all growth and developmental processes. Canonical PINs possess a long, largely disordered cytosolic loop. Auxin transport by canonical PINs is activated by loop phosphorylation by certain kinases. The structure of the PIN transmembrane domains was recently determined, their transport properties remained poorly characterized, and the role of the loop in the transport process was unclear. Here, we determined the quantitative kinetic parameters of auxin transport mediated by Arabidopsis PINs to mathematically model auxin distribution in roots and to test these predictions in vivo. Using chimeras between transmembrane and loop domains of different PINs, we demonstrate a strong correlation between transport parameters and physiological output, indicating that the loop domain is not only required to activate PIN-mediated auxin transport, but it has an additional role in the transport process by a currently unknown mechanism.
Collapse
Affiliation(s)
- Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Julia Mergner
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85954 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85954 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Kirsten Ten Tusscher
- Computational Developmental Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
2
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
3
|
Xiang DL, Li GS. Control of leaf development in the water fern Ceratopteris richardii by the auxin efflux transporter CrPINMa in the CRISPR/Cas9 analysis. BMC PLANT BIOLOGY 2024; 24:322. [PMID: 38654173 PMCID: PMC11040788 DOI: 10.1186/s12870-024-05009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.
Collapse
Affiliation(s)
- De-Liang Xiang
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Gui-Sheng Li
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China.
| |
Collapse
|
4
|
Ibragimova NN, Mokshina NE. Expression of auxin transporter genes in flax (Linum usitatissimum) fibers during gravity response. Vavilovskii Zhurnal Genet Selektsii 2024; 28:33-43. [PMID: 38465245 PMCID: PMC10917669 DOI: 10.18699/vjgb-24-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 03/12/2024] Open
Abstract
Gravitropism is an adaptive reaction of plants associated with the ability of various plant organs to be located and to grow in a certain direction relative to the gravity vector, while usually the asymmetric distribution of the phytohormone auxin is a necessary condition for the gravitropical bending of plant organs. Earlier, we described significant morphological changes in phloem fibers with a thickened cell wall located on different sides of the stem in the area of the gravitropic curvature. The present study is the first work devoted to the identification of genes encoding auxin transporters in cells at different stages of development and during gravity response. In this study, the flax genes encoding the AUX1/LAX, PIN-FORMED, PIN-LIKES, and ABCB auxin transporters were identified. A comparative analysis of the expression of these genes in flax phloem fibers at different stages of development revealed increased expression of some of these genes at the stage of intrusive growth (LusLAX2 (A, B), LuxPIN1-D, LusPILS7 (C, D)), at the early stage of tertiary cell wall formation (LusAUX1 (A, D), LusABCB1 (A, B), LusABCB15-A, LusPIN1 (A, B), LusPIN4-A, and LusPIN5-A), and at the late stage of tertiary cell wall development (LusLAX3 (A, B)). It was shown that in the course of gravitropism, the expression of many genes, including those responsible for the influx of auxin in cells (LusAUX1-D), in the studied families increased. Differential expression of auxin transporter genes was revealed during gravity response in fibers located on different sides of the stem (upper (PUL) and lower (OPP)). The difference was observed due to the expression of genes, the products of which are responsible for auxin intracellular transport (LusPILS3, LusPILS7-A) and its efflux (LusABCB15-B, LusABCB19-B). It was noted that the increased expression of PIN genes and ABCB genes was more typical of fibers on the opposite side. The results obtained allow us to make an assumption about the presence of differential auxin content in the fibers of different sides of gravistimulated flax plants, which may be determined by an uneven outflow of auxin. This study gives an idea of auxin carriers in flax and lays the foundation for further studies of their functions in the development of phloem fiber and in gravity response.
Collapse
Affiliation(s)
- N N Ibragimova
- Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| | - N E Mokshina
- Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
5
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
6
|
Ung KL, Schulz L, Kleine-Vehn J, Pedersen BP, Hammes UZ. Auxin transport at the endoplasmic reticulum: roles and structural similarity of PIN-FORMED and PIN-LIKES. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6893-6903. [PMID: 37279330 DOI: 10.1093/jxb/erad192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum. Despite recent progress in identifying the roles of the endoplasmic reticulum in cellular auxin responses, the transport dynamics of auxin at the endoplasmic reticulum are not well understood. PIN-LIKES are structurally related to PIN-FORMED proteins, and recently published structures of these transporters have provided new insights into PIN-FORMED proteins and PIN-LIKES function. In this review, we summarize current knowledge on PIN-FORMED proteins and PIN-LIKES in intracellular auxin transport. We discuss the physiological properties of the endoplasmic reticulum and the consequences for transport processes across the ER membrane. Finally, we highlight the emerging role of the endoplasmic reticulum in the dynamics of cellular auxin signalling and its impact on plant development.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | | | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
7
|
Huang M, Chen J, Yang X, Zheng Y, Ma Y, Sun K, Han N, Bian H, Qiu T, Wang J. A unique mutation in PIN-FORMED1 and a genetic pathway for reduced sensitivity of Arabidopsis roots to N-1-naphthylphthalamic acid. PHYSIOLOGIA PLANTARUM 2023; 175:e14120. [PMID: 38148206 DOI: 10.1111/ppl.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The small chemical N-1-naphthylphthalamic acid (NPA) has long been used as a polar auxin transport inhibitor. Recent biochemical and structural investigations have revealed that this molecule competes with the auxin IAA (indole-3-acetic acid) inside the PIN-FORMED auxin efflux carriers. However, the existence of any mutations in PIN family proteins capable of uncoupling the docking of IAA from NPA remains unclear. We report that Arabidopsis thaliana seedlings overexpressing SMALL AUXIN UP RNA 41 were hypersensitive to NPA-induced root elongation inhibition. We mutagenized this line to improve the genetic screening efficiency for NPA hyposensitivity mutants. Using bulked segregation analysis and mapping-by-sequencing assessment of these mutants, we identified a core genetic pathway for NPA-induced root elongation inhibition, including genes required for auxin biosynthesis, transportation, and signaling. To evaluate specific changes of auxin signaling activity in mutant roots before and after NPA treatment, the DR5::GFP/DR5::YFP markers were introduced and observed. Most importantly, we discovered a unique mutation in the PIN1 protein, substituting a proline residue with leucine at position 584, leading to a loss of NPA sensitivity while keeping the auxin efflux capacity. Transforming the null mutant pin1-201 with the PIN1::PIN1P584L -GFP fusion construct rescued the PIN1 function and provided NPA hyposensitivity. The proline residue is predicted to be adjacent to a hinge in the middle region of the ninth transmembrane helix of PIN1 and is conserved from moss to higher plants. Our work may bring new insights into the engineering of NPA-resistant PINs for auxin biology studies.
Collapse
Affiliation(s)
- Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zheng
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wang M, Zhang H, Zhao X, Zhou J, Qin G, Liu Y, Kou X, Zhao Z, Wu T, Zhu JK, Feng X, Li L. SYNTAXIN OF PLANTS81 regulates root meristem activity and stem cell niche maintenance via ROS signaling. PLANT PHYSIOLOGY 2023; 191:1365-1382. [PMID: 36427205 PMCID: PMC9922426 DOI: 10.1093/plphys/kiac530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.
Collapse
Affiliation(s)
- Mingjing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yuqi Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Manna M, Rengasamy B, Ambasht NK, Sinha AK. Characterization and expression profiling of PIN auxin efflux transporters reveal their role in developmental and abiotic stress conditions in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059559. [PMID: 36531415 PMCID: PMC9751476 DOI: 10.3389/fpls.2022.1059559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
11
|
Liu J, Shi X, Chang Z, Ding Y, Ding C. Auxin Efflux Transporters OsPIN1c and OsPIN1d Function Redundantly in Regulating Rice (Oryza sativa L.) Panicle Development. PLANT & CELL PHYSIOLOGY 2022; 63:305-316. [PMID: 34888695 DOI: 10.1093/pcp/pcab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
The essential role of auxin in plant growth and development is well known. Pathways related to auxin synthesis, transport and signaling have been extensively studied in recent years, and the PIN-FORMED (PIN) protein family has been identified as being pivotal for polar auxin transport and distribution. However, research focused on the functional characterization of PIN proteins in rice is still lacking. In this study, we investigated the expression and function of OsPIN1c and OsPIN1d in the japonica rice variety (Nipponbare) using gene knockout and high-throughput RNA sequencing analysis. The results showed that OsPIN1c and OsPIN1d were mainly expressed in young panicles and exhibited a redundant function. Furthermore, OsPIN1c or OsPIN1d loss-of-function mutants presented a mild phenotype compared with the wild type. However, in addition to significantly decreased plant height and tiller number, panicle development was severely disrupted in double-mutant lines of OsPIN1c and OsPIN1d. Severe defects included smaller inflorescence meristem and panicle sizes, fewer primary branches, elongated bract leaves, non-degraded hair and no spikelet growth. Interestingly, ospin1cd-3, a double-mutant line with functional retention of OsPIN1d, showed milder defects than those observed in other mutants. Additionally, several critical regulators of reproductive development, such as OsPID, LAX1, OsMADS1 and OsSPL14/IPA1, were differentially expressed in ospin1c-1 ospin1d-1, supporting the hypothesis that OsPIN1c and OsPIN1d are involved in regulating panicle development. Therefore, this study provides novel insights into the auxin pathways that regulate plant reproductive development in monocots.
Collapse
Affiliation(s)
- Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Xi'an Shi
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| |
Collapse
|
12
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
13
|
Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:821563. [PMID: 35283865 PMCID: PMC8908206 DOI: 10.3389/fpls.2022.821563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Phytohormones are small chemicals critical for plant development and adaptation to a changing environment. Strigolactones (SLs), carotenoid-derived small signalling molecules and a class of phytohormones, regulate multiple developmental processes and respond to diverse environmental signals. SLs also coordinate adjustments in the balance of resource distribution by strategic modification of the plant development, allowing plants to adapt to nutrient deficiency. Instead of operating independently, SL interplays with abscisic acid, cytokinin, auxin, ethylene, and some other plant phytohormones, forming elaborate signalling networks. Hormone signalling crosstalk in plant development and environmental response may occur in a fully concerted manner or as a cascade of sequential events. In many cases, the exact underlying mechanism is unclear because of the different effects of phytohormones and the varying backgrounds of their actions. In this review, we systematically summarise the synthesis, signal transduction, and biological functions of SLs and further highlight the significance of crosstalk between SLs and other phytohormones during plant development and resistance to ever-changing environments.
Collapse
|
14
|
Ishfaq M, Zhong Y, Wang Y, Li X. Magnesium Limitation Leads to Transcriptional Down-Tuning of Auxin Synthesis, Transport, and Signaling in the Tomato Root. FRONTIERS IN PLANT SCIENCE 2021; 12:802399. [PMID: 35003191 PMCID: PMC8733655 DOI: 10.3389/fpls.2021.802399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 05/08/2023]
Abstract
Magnesium (Mg) deficiency is becoming a widespread limiting factor for crop production. How crops adapt to Mg limitation remains largely unclear at the molecular level. Using hydroponic-cultured tomato seedlings, we found that total Mg2+ content significantly decreased by ∼80% under Mg limitation while K+ and Ca2+ concentrations increased. Phylogenetic analysis suggested that Mg transporters (MRS2/MGTs) constitute a previously uncharacterized 3-clade tree in planta with two rounds of asymmetric duplications, providing evolutionary evidence for further molecular investigation. In adaptation to internal Mg deficiency, the expression of six representative MGTs (two in the shoot and four in the root) was up-regulated in Mg-deficient plants. Contradictory to the transcriptional elevation of most of MGTs, Mg limitation resulted in the ∼50% smaller root system. Auxin concentrations particularly decreased by ∼23% in the Mg-deficient root, despite the enhanced accumulation of gibberellin, cytokinin, and ABA. In accordance with such auxin reduction was overall transcriptional down-regulation of thirteen genes controlling auxin biosynthesis (TAR/YUCs), transport (LAXs, PINs), and signaling (IAAs, ARFs). Together, systemic down-tuning of gene expression in the auxin signaling pathway under Mg limitation preconditions a smaller tomato root system, expectedly stimulating MGT transcription for Mg uptake or translocation.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- Department of Vegetable Sciences, China Agricultural University, Beijing, China
| | - Yongqi Wang
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Gomes GLB, Scortecci KC. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:894-904. [PMID: 34396657 DOI: 10.1111/plb.13303] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/04/2021] [Indexed: 05/28/2023]
Abstract
Auxins are plant hormones that play a central role in controlling plant growth and development across different environmental conditions. Even at low concentrations, auxins can regulate gene expression through specific transcription factors and proteins that are modulated to environmental responses in the signalling cascade. Auxins are synthesized in tissues with high cell division activity and distributed by specific transmembrane proteins that regulate efflux and influx. This review presents recent advances in understanding the biosynthetic pathways, both dependent and independent of tryptophan, highlighting the intermediate indole compounds (indole-3-acetamide, indole-3-acetaldoxime, indole-3-pyruvic acid and tryptamine) and the key enzymes for auxin biosynthesis, such as YUCs and TAAs. In relation to the signalling cascade, it has been shown that auxins influence gene expression regulation by the connection between synthesis and distribution. Moreover, the molecular action of the auxin response factors and auxin/indole-3-acetic acid transcription factors with the F-box TIR1/AFB auxin receptors regulates gene expression. In addition, the importance of microRNAs in the auxin signalling pathway and their influence on plant plasticity to environmental fluctuations is also demonstrated. Finally, this review describes the chemical and biological processes involving auxins in plants.
Collapse
Affiliation(s)
- G L B Gomes
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - K C Scortecci
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
16
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
17
|
Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int J Mol Sci 2021; 22:ijms22147396. [PMID: 34299014 PMCID: PMC8303626 DOI: 10.3390/ijms22147396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.
Collapse
|
18
|
Abdollahi Sisi N, Růžička K. ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis. PLANTS 2020; 9:plants9111527. [PMID: 33182545 PMCID: PMC7697564 DOI: 10.3390/plants9111527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.
Collapse
Affiliation(s)
- Nayyer Abdollahi Sisi
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-225-106-429
| |
Collapse
|
19
|
Song S, Yan R, Wang C, Wang J, Sun H. Improvement of a Genetic Transformation System and Preliminary Study on the Function of LpABCB21 and LpPILS7 Based on Somatic Embryogenesis in Lilium pumilum DC. Fisch. Int J Mol Sci 2020; 21:E6784. [PMID: 32947885 PMCID: PMC7554901 DOI: 10.3390/ijms21186784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
Auxin transport mediates the asymmetric distribution of auxin that determines the fate of cell development. Agrobacterium-mediated genetic transformation is an important technical means to study gene function. Our previous study showed that the expression levels of LpABCB21 and LpPILS7 are significantly up-regulated in the somatic embryogenesis (SE) of Lilium pumilum DC. Fisch. (L. pumilum), but the functions of both genes remain unclear. Here, the genetic transformation technology previously developed by our team based on the L. pumilum system was improved, and the genetic transformation efficiency increased by 5.7-13.0%. Use of overexpression and CRISPR/Cas9 technology produced three overexpression and seven mutant lines of LpABCB21, and seven overexpression and six mutant lines of LpPILS7. Analysis of the differences in somatic embryo induction of transgenic lines confirmed that LpABCB21 regulates the early formation of the somatic embryo; however, excessive expression level of LpABCB21 inhibits somatic embryo induction efficiency. LpPILS7 mainly regulates somatic embryo induction efficiency. This study provides a more efficient method of genetic transformation of L. pumilum. LpABCB21 and LpPILS7 are confirmed to have important regulatory roles in L. pumilum SE thus laying the foundation for subsequent studies of the molecular mechanism of Lilium SE.
Collapse
Affiliation(s)
- Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Rui Yan
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Jinxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|