1
|
Villa S, Magoga G, Montagna M, Pierce S. Elevational shifts in reproductive ecology indicate the climate response of a model chasmophyte, Rainer's bellflower (Campanula raineri). ANNALS OF BOTANY 2024:mcae164. [PMID: 39349404 DOI: 10.1093/aob/mcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND AND AIMS Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation. METHODS We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification. KEY RESULTS Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported). CONCLUSIONS Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.
Collapse
Affiliation(s)
- Sara Villa
- Institute for Sustainable Plant Protection, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| | - Giulia Magoga
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
- BAT Center ‑ Interuniversity Center for Studies on Bioinspired Agro‑Environmental Technology, University of Napoli 'Federico II', via Università 100, 80055, Portici, Italy
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
2
|
Arnold PA, Wang S, Notarnicola RF, Nicotra AB, Kruuk LEB. Testing the evolutionary potential of an alpine plant: phenotypic plasticity in response to growth temperature outweighs parental environmental effects and other genetic causes of variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5971-5988. [PMID: 38946283 PMCID: PMC11427842 DOI: 10.1093/jxb/erae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilizing its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, and produced more reproductive stems compared with cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype×environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.
Collapse
Affiliation(s)
- Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Shuo Wang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Rocco F Notarnicola
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adrienne B Nicotra
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
3
|
Laurans M, Munoz F, Charles-Dominique T, Heuret P, Fortunel C, Isnard S, Sabatier SA, Caraglio Y, Violle C. Why incorporate plant architecture into trait-based ecology? Trends Ecol Evol 2024; 39:524-536. [PMID: 38212187 DOI: 10.1016/j.tree.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
Collapse
Affiliation(s)
- Marilyne Laurans
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, CNRS, Grenoble, France
| | - Tristan Charles-Dominique
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; CNRS UMR7618, Institute of Ecology and Environmental Sciences, Paris, Sorbonne University, Paris, France
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sandrine Isnard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sylvie-Annabel Sabatier
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Yves Caraglio
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
White FJ, Mondoni A, Corli A, Shrestha BB, Rossi G, Orsenigo S. An investigation into the potential for upward range expansion in high-montane species on the roof of the world. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:390-397. [PMID: 38433356 DOI: 10.1111/plb.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Climate warming is occurring in high-mountain areas at a faster rate than the global average. To escape the increasing temperatures, alpine species may shift in distribution upwards, threatening cold-adapted nival plant specialists. However, little is known about the success of seedling emergence and establishment at high altitudes outside the current range, particularly in the highest mountain areas of the Himalayas. We selected four native alpine species occurring around 4000 m a.s.l. and sowed seeds at the natural growing site (GS), at a high elevation site (HS; 5000 m a.s.l.) and at high elevation with soil from the growing site (HS-S) in the Khumbu Valley, north-eastern Nepal. We monitored seedling emergence and establishment for two consecutive years. Seedling emergence and establishment varied between species. Emergence was similar between GS and HS and improved at HS-S. Establishment was low at high elevations with all but one species having high mortality after winter. Seedling emergence of low elevation plants is possible at high elevations in the Everest region, indicating species may be able to shift their distribution range upwards. However, successful establishment may be limited by the soil and high winter mortality at high elevations, although not in all species. Climate warming will potentially lead to upward migration of some Himalayan plant species, leading to altered community composition in high-mountain areas.
Collapse
Affiliation(s)
- F J White
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - A Corli
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - B B Shrestha
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - G Rossi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - S Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
5
|
Liu X, Lie Z, Reich PB, Zhou G, Yan J, Huang W, Wang Y, Peñuelas J, Tissue DT, Zhao M, Wu T, Wu D, Xu W, Li Y, Tang X, Zhou S, Meng Z, Liu S, Chu G, Zhang D, Zhang Q, He X, Liu J. Long-term warming increased carbon sequestration capacity in a humid subtropical forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17072. [PMID: 38273547 DOI: 10.1111/gcb.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.
Collapse
Affiliation(s)
- Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peter B Reich
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjuan Huang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yingping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Barcelona, Catalonia, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mengdi Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Donghai Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qianmei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, California, USA
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Sofi II, Shah MA, Ganie AH. Integrating human footprint with ensemble modelling identifies priority habitats for conservation: a case study in the distributional range of Arnebia euchroma, a vulnerable species. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:914. [PMID: 37395941 DOI: 10.1007/s10661-023-11528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Climate change-driven rapid alteration of ecosystems globally is further complicated by growing anthropogenic pressures, especially in the ecologically sensitive mountainous regions. However, these two major drivers of change have largely been considered separately in species distribution models, thus compromising their reliability. Here, we integrated ensemble modelling with the human pressure index for predicting distribution and mapping priority regions across a whole range of occurrences for vulnerable species, Arnebia euchroma. Our results identified 3.08% of the study area as 'highly suitable', 2.45% as 'moderately suitable', and 94.45% as 'not suitable' or 'least suitable'. Compared to current climatic conditions, future RCP scenarios of 2050 and 2070 showed a significant loss in habitat suitability and a slight shift in the distribution pattern of the target species. By excluding the high-pressure areas of the human footprint from the predicted suitable habitats, we were able to identify the unique areas (70% of the predicted suitable area) that need special attention for conservation and restoration. Such models, if well implemented, may play a pivotal role in achieving the effective targets under the aegis of the current UN decade on ecological restoration (2021-2030) in accordance with SDG 15.4.
Collapse
Affiliation(s)
- Irfan Iqbal Sofi
- University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Manzoor A Shah
- University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Aijaz H Ganie
- University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
8
|
Sammarco I, Münzbergová Z, Latzel V. Response of Fragaria vesca to projected change in temperature, water availability and concentration of CO 2 in the atmosphere. Sci Rep 2023; 13:10678. [PMID: 37393360 PMCID: PMC10314927 DOI: 10.1038/s41598-023-37901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
The high rate of climate change may soon expose plants to conditions beyond their adaptation limits. Clonal plants might be particularly affected due to limited genotypic diversity of their populations, potentially decreasing their adaptability. We therefore tested the ability of a widely distributed predominantly clonally reproducing herb (Fragaria vesca) to cope with periods of drought and flooding in climatic conditions predicted to occur at the end of the twenty-first century, i.e. on average 4 °C warmer and with twice the concentration of CO2 in the air (800 ppm) than the current state. We found that F. vesca can phenotypically adjust to future climatic conditions, although its drought resistance may be reduced. Increased temperature and CO2 levels in the air had a far greater effect on growth, phenology, reproduction, and gene expression than the temperature increase itself, and promoted resistance of F. vesca to repeated flooding periods. Higher temperature promoted clonal over sexual reproduction, and increased temperature and CO2 concentration in the air triggered change in expression of genes controlling the level of self-pollination. We conclude that F. vesca can acclimatise to predicted climate change, but the increased ratio of clonal to sexual reproduction and the alteration of genes involved in the self-(in)compatibility system may be associated with reduced genotypic diversity of its populations, which may negatively impact its ability to genetically adapt to novel climate in the long-term.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia.
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
| |
Collapse
|
9
|
Piccinelli S, Francon L, Corona C, Stoffel M, Slamova L, Cannone N. Vessels in a Rhododendron ferrugineum (L.) population do not trace temperature anymore at the alpine shrubline. FRONTIERS IN PLANT SCIENCE 2023; 13:1023384. [PMID: 36714740 PMCID: PMC9879627 DOI: 10.3389/fpls.2022.1023384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Mean xylem vessel or tracheid area have been demonstrated to represent powerful proxies to better understand the response of woody plants to changing climatic conditions. Yet, to date, this approach has rarely been applied to shrubs. METHODS Here, we developed a multidecadal, annually-resolved chronology of vessel sizes for Rhododendron ferrugineum shrubs sampled at the upper shrubline (2,550 m asl) on a north-facing, inactive rock glacier in the Italian Alps. RESULTS AND DISCUSSION Over the 1960-1989 period, the vessel size chronology shares 64% of common variability with summer temperatures, thus confirming the potential of wood anatomical analyses on shrubs to track past climate variability in alpine environments above treeline. The strong winter precipitation signal recorded in the chronology also confirms the negative effect of long-lasting snow cover on shrub growth. By contrast, the loss of a climate-growth relation signal since the 1990s for both temperature and precipitation, significantly stronger than the one found in radial growth, contrasts with findings in other QWA studies according to which stable correlations between series of anatomical features and climatic parameters have been reported. In a context of global warming, we hypothesize that this signal loss might be induced by winter droughts, late frost, or complex relations between increasing air temperatures, permafrost degradation, and its impacts on shrub growth. We recommend future studies to validate these hypotheses on monitored rock glaciers.
Collapse
Affiliation(s)
- Silvia Piccinelli
- Department Science and High Technology, Insubria University, Como, Italy
| | - Loïc Francon
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Christophe Corona
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
- Geolab, Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Clermont-Ferrand, France
| | - Markus Stoffel
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
- Dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Forel for Environmental and Aquatic Sciences (F.A.), University of Geneva, Geneva, Switzerland
| | - Lenka Slamova
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Nicoletta Cannone
- Department Science and High Technology, Insubria University, Como, Italy
- Climate Change Research Centre, Insubria University, Como, Italy
| |
Collapse
|
10
|
Block S, Maechler M, Levine JI, Alexander JM, Pellissier L, Levine JM. Ecological lags govern the pace and outcome of plant community responses to 21st-century climate change. Ecol Lett 2022; 25:2156-2166. [PMID: 36028464 PMCID: PMC9804264 DOI: 10.1111/ele.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023]
Abstract
Forecasting the trajectories of species assemblages in response to ongoing climate change requires quantifying the time lags in the demographic and ecological processes through which climate impacts species' abundances. Since experimental climate manipulations are typically abrupt, the observed species responses may not match their responses to gradual climate change. We addressed this problem by transplanting alpine grassland turfs to lower elevations, recording species' demographic responses to climate and competition, and using these data to parameterise community dynamics models forced by scenarios of gradual climate change. We found that shifts in community structure following an abrupt climate manipulation were not simply accelerated versions of shifts expected under gradual warming, as the former missed the transient rise of species benefiting from moderate warming. Time lags in demography and species interactions controlled the pace and trajectory of changing species' abundances under simulated 21st-century climate change, and thereby prevented immediate diversity loss.
Collapse
Affiliation(s)
- Sebastián Block
- Institute of Integrative BiologyETH ZurichZurichSwitzerland,Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Jacob I. Levine
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Loïc Pellissier
- Department of Environmental System ScienceInstitute of Terrestrial EcosystemsETH ZurichZurichSwitzerland,Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Jonathan M. Levine
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
11
|
Shi N, Naudiyal N, Wang J, Gaire NP, Wu Y, Wei Y, He J, Wang C. Assessing the Impact of Climate Change on Potential Distribution of Meconopsis punicea and Its Influence on Ecosystem Services Supply in the Southeastern Margin of Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 12:830119. [PMID: 35095992 PMCID: PMC8792861 DOI: 10.3389/fpls.2021.830119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 05/07/2023]
Abstract
Meconopsis punicea is an iconic ornamental and medicinal plant whose natural habitat has degraded under global climate change, posing a serious threat to the future survival of the species. Therefore, it is critical to analyze the influence of climate change on possible distribution of M. punicea for conservation and sustainable utilization of this species. In this study, we used MaxEnt ecological niche modeling to predict the potential distribution of M. punicea under current and future climate scenarios in the southeastern margin region of Qinghai-Tibet Plateau. Model projections under current climate show that 16.8% of the study area is suitable habitat for Meconopsis. However, future projections indicate a sharp decline in potential habitat for 2050 and 2070 climate change scenarios. Soil type was the most important environmental variable in determining the habitat suitability of M. punicea, with 27.75% contribution to model output. Temperature seasonality (16.41%), precipitation of warmest quarter (14.01%), and precipitation of wettest month (13.02%), precipitation seasonality (9.41%) and annual temperature range (9.24%) also made significant contributions to model output. The mean elevation of suitable habitat for distribution of M. punicea is also likely to shift upward in most future climate change scenarios. This study provides vital information for the protection and sustainable use of medicinal species like M. punicea in the context of global environmental change. Our findings can aid in developing rational, broad-scale adaptation strategies for conservation and management for ecosystem services, in light of future climate changes.
Collapse
Affiliation(s)
- Ning Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Niyati Naudiyal
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinniu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Chengdu, China
| | - Narayan Prasad Gaire
- Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences, Mengla, China
- Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yanqiang Wei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jiali He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chunya Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Abstract
The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally.
Collapse
|