1
|
Fang S, Zhao J, Lei F, Yu J, Hu Q, Zeng T, Gu L, Wang H, Du X, Cai M, Li Z, Zhu B. Development and characterization of a complete set of monosomic alien addition lines from Raphanus sativus in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:27. [PMID: 39797977 DOI: 10.1007/s00122-024-04804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18). Subsequently, this Raphanobrassica was repeatedly backcrossed with radish to generate an aneuploid population. The identification of a complete set of MAALs (RR + 1C1-9, 2n = 19) was achieved using PCR with C chromosome-specific markers and fluorescence in situ hybridization, revealing extensive morphological variations, particularly in the shape and size of the fleshy root. A complete set of MAALs was achieved with only one chromosome from 1 to 9 linkage groups of the C genome. Compared with parental radish, most of the MAALs showed a noticeable delay in root swelling, particularly the RR-C6 that did not exhibit obvious root swelling throughout its entire growth stage. Cytological analysis indicated that the MAAL lines containing chromosome C8 exhibited the highest frequency of intergenomic chromosome pairings. Additionally, some introgressive radish lines derived from MAALs displayed a preference toward the donor B. oleracea or over-parent heterosis for some certain nutritional components. Overall, these MAALs serve as valuable germplasm for the genetic enhancement of radish and provide insights into the interactions between the R genome and C chromosomes.
Collapse
Affiliation(s)
- Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Qi Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Bird KA, Brock JR, Grabowski PP, Harder AM, Healy AL, Shu S, Barry K, Boston L, Daum C, Guo J, Lipzen A, Walstead R, Grimwood J, Schmutz J, Lu C, Comai L, McKay JK, Pires JC, Edger PP, Lovell JT, Kliebenstein DJ. Allopolyploidy expanded gene content but not pangenomic variation in the hexaploid oilseed Camelina sativa. Genetics 2025; 229:1-44. [PMID: 39545504 DOI: 10.1093/genetics/iyae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Ancient whole-genome duplications are believed to facilitate novelty and adaptation by providing the raw fuel for new genes. However, it is unclear how recent whole-genome duplications may contribute to evolvability within recent polyploids. Hybridization accompanying some whole-genome duplications may combine divergent gene content among diploid species. Some theory and evidence suggest that polyploids have a greater accumulation and tolerance of gene presence-absence and genomic structural variation, but it is unclear to what extent either is true. To test how recent polyploidy may influence pangenomic variation, we sequenced, assembled, and annotated 12 complete, chromosome-scale genomes of Camelina sativa, an allohexaploid biofuel crop with 3 distinct subgenomes. Using pangenomic comparative analyses, we characterized gene presence-absence and genomic structural variation both within and between the subgenomes. We found over 75% of ortholog gene clusters are core in C. sativa and <10% of sequence space was affected by genomic structural rearrangements. In contrast, 19% of gene clusters were unique to one subgenome, and the majority of these were Camelina specific (no ortholog in Arabidopsis). We identified an inversion that may contribute to vernalization requirements in winter-type Camelina and an enrichment of Camelina-specific genes with enzymatic processes related to seed oil quality and Camelina's unique glucosinolate profile. Genes related to these traits exhibited little presence-absence variation. Our results reveal minimal pangenomic variation in this species and instead show how hybridization accompanied by whole-genome duplication may benefit polyploids by merging diverged gene content of different species.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Avril M Harder
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Adam L Healy
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - LoriBeth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jie Guo
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Rachel Walstead
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, University of Montana, Bozeman, MT 59715, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - John K McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | |
Collapse
|
3
|
Cao Y, Xu J, Wang M, Gao J, Zhao Z, Li K, Yang L, Zhao K, Sun M, Dong J, Chao G, Zhang H, Niu Y, Yan C, Gong X, Wu L, Xiong Z. Unambiguous chromosome identification reveals the factors impacting irregular chromosome behaviors in allotriploid AAC Brassica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:245. [PMID: 39365356 DOI: 10.1007/s00122-024-04734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/31/2024] [Indexed: 10/05/2024]
Abstract
KEY MESSAGE The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.
Collapse
Affiliation(s)
- Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, Shanxi, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Minhang Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jing Gao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Zhen Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kexin Li
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Lu Yang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Meiping Sun
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jing Dong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Getu Chao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Hong Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yaqingqing Niu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Chunxia Yan
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xiufeng Gong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
4
|
Segawa T, Kumazawa R, Tamiru-Oli M, Hanano T, Hara M, Nishikawa M, Saiga S, Takata M, Ito M, Imamura T, Takagi H. An NGS approach for the identification of precise homoeologous recombination sites between A and C genomes in Brassica genus. BREEDING SCIENCE 2024; 74:324-336. [PMID: 39872320 PMCID: PMC11769586 DOI: 10.1270/jsbbs.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/25/2024] [Indexed: 01/30/2025]
Abstract
The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from Brassica napus (AACC) into the diploid B. rapa (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs. Here, we developed an indicator named 'Dosage-score' from the coverage depth of next-generation sequencing reads. Then, Dosage-score analysis applied to both in BC1F1 individuals obtained by backcrossing B. rapa to F1 progeny (B. rapa × B. napus) and in the parental lines, and successfully identified the precise HR sites resulting from F1 meiosis as well as those that were native in the parental B. napus genome. Additionally, we introgressed the C6 segment from HR identified by Dosage-score analysis into B. rapa genome background, revealing gene expression on the added segment without noticeable phenotypic change. The identification of HR by Dosage-score analysis will contribute to the expansion of the gene pool for breeding by introgression of heterologous genomes in Brassica crops.
Collapse
Affiliation(s)
- Tenta Segawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Riki Kumazawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, La Trobe University, 5 Ring Road, Bundoora, VIC 3086, Australia
| | - Tetsuyuki Hanano
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Makishi Hara
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Minami Nishikawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Sorachi Saiga
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Marina Takata
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masaki Ito
- Kanazawa University, School of Biological Science and Technology, College of Science and Engineering, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
5
|
Wang T, van Dijk ADJ, Zhao R, Bonnema G, Wang X. Contribution of homoeologous exchange to domestication of polyploid Brassica. Genome Biol 2024; 25:231. [PMID: 39192349 DOI: 10.1186/s13059-024-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Polyploidy is widely recognized as a significant evolutionary force in the plant kingdom, contributing to the diversification of plants. One of the notable features of allopolyploidy is the occurrence of homoeologous exchange (HE) events between the subgenomes, causing changes in genomic composition, gene expression, and phenotypic variations. However, the role of HE in plant adaptation and domestication remains unclear. RESULTS Here we analyze the whole-genome resequencing data from Brassica napus accessions representing the different morphotypes and ecotypes, to investigate the role of HE in domestication. Our findings demonstrate frequent occurrence of HEs in Brassica napus, with substantial HE patterns shared across populations, indicating their potential role in promoting crop domestication. HE events are asymmetric, with the A genome more frequently replacing C genome segments. These events show a preference for specific genomic regions and vary among populations. We also identify candidate genes in HE regions specific to certain populations, which likely contribute to flowering-time diversification across diverse morphotypes and ecotypes. In addition, we assemble a new genome of a swede accession, confirming the HE signals on the genome and their potential involvement in root tuber development. By analyzing HE in another allopolyploid species, Brassica juncea, we characterize a potential broader role of HE in allopolyploid crop domestication. CONCLUSIONS Our results provide novel insights into the domestication of polyploid Brassica species and highlight homoeologous exchange as a crucial mechanism for generating variations that are selected for crop improvement in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Paritosh K, Rajarammohan S, Yadava SK, Sharma S, Verma R, Mathur S, Mukhopadhyay A, Gupta V, Pradhan AK, Kaur J, Pental D. A chromosome-scale assembly of Brassica carinata (BBCC) accession HC20 containing resistance to multiple pathogens and an early generation assessment of introgressions into B. juncea (AABB). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:762-782. [PMID: 38722594 DOI: 10.1111/tpj.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 07/16/2024]
Abstract
Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.
Collapse
Affiliation(s)
- Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | | | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Sarita Sharma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Rashmi Verma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Shikha Mathur
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Akshay K Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Jagreet Kaur
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
7
|
Chéron F, Petiot V, Lambing C, White C, Serra H. Incorrect recombination partner associations contribute to meiotic instability of neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 241:2025-2038. [PMID: 38158491 DOI: 10.1111/nph.19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Combining two or more related homoeologous genomes in a single nucleus, newly formed allopolyploids must rapidly adapt meiosis to restore balanced chromosome segregation, production of euploid gametes and fertility. The poor fertility of such neo-allopolyploids thus strongly selects for the limitation or avoidance of genetic crossover formation between homoeologous chromosomes. In this study, we have reproduced the interspecific hybridization between Arabidopsis thaliana and Arabidopsis arenosa leading to the allotetraploid Arabidopsis suecica and have characterized the first allopolyploid meioses. First-generation neo-allopolyploid siblings vary considerably in fertility, meiotic behavior and levels of homoeologous recombination. We show that centromere dynamics at early meiosis is altered in synthetic neo-allopolyploids compared with evolved A. suecica, with a significant increase in homoeologous centromere interactions at zygotene. At metaphase I, the presence of multivalents involving homoeologous chromosomes confirms that homoeologous recombination occurs in the first-generation synthetic allopolyploid plants and this is associated with a significant reduction in homologous recombination, compared to evolved A. suecica. Together, these data strongly suggest that the fidelity of recombination partner choice, likely during the DNA invasion step, is strongly impaired during the first meiosis of neo-allopolyploids and requires subsequent adaptation.
Collapse
Affiliation(s)
- Floriane Chéron
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valentine Petiot
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Charles White
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Heïdi Serra
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
8
|
Mu W, Li K, Yang Y, Breiman A, Yang J, Wu Y, Zhu M, Wang S, Catalan P, Nevo E, Liu J. Subgenomic Stability of Progenitor Genomes During Repeated Allotetraploid Origins of the Same Grass Brachypodium hybridum. Mol Biol Evol 2023; 40:msad259. [PMID: 38000891 PMCID: PMC10708906 DOI: 10.1093/molbev/msad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kexin Li
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Adina Breiman
- Department of Evolutionary and Environmental Biology, University of Tel-Aviv, Tel-Aviv 6997801, Israel
| | - Jiao Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Wu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pilar Catalan
- Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca 22071, Spain
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics 2023; 225:iyad114. [PMID: 37338008 PMCID: PMC10471226 DOI: 10.1093/genetics/iyad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
11
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
12
|
Yu J, Lei S, Fang S, Tai N, Yu W, Yang Z, Gu L, Wang H, Du X, Zhu B, Cai M. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091875. [PMID: 37176933 PMCID: PMC10181067 DOI: 10.3390/plants12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Interspecific hybridization and accompanying backcross between crops and relatives have been recognized as a powerful method to broaden genetic diversity and transfer desirable adaptive traits. Crosses between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18), which formed allotetraploid Raphanobrassica (RRCC, 2n = 36), initiated the construction of resynthetic allopolyploids. However, these progenies from the backcrosses between Raphanobrassica and the two diploid parents have not been well deciphered. Herein, thousands of backcrosses using both Raphanobrassica and the two diploid parents as pollen donors were employed. Several hybrids with expected (2n = 27) and unexpected chromosome numbers (2n = 26 and 2n = 36) were obtained. Fluorescence in situ hybridization (FISH) analysis with R-genome-specific sequences as probes demonstrated that the genome structures of the two expected hybrids were RRC and CCR, and the genome structures of the three unexpected hybrids were RRRC, CCCR, and RRC' (harbouring an incomplete C genome). The unexpected hybrids with extra R or C genomes showed similar phenotypic characteristics to their expected hybrids. FISH analysis with C-genome-specific sequences as probes demonstrated that the unexpected allotetraploid hybrids exhibited significantly more intergenomic chromosome pairings than the expected hybrids. The expected and unexpected hybrids provide not only novel germplasm resources for the breeding of radish and B. oleracea but also very important genetic material for genome dosage analysis.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Shaolin Lei
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Niufang Tai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ziwei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
13
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
14
|
Whole-Genome Comparison Reveals Structural Variations behind Heading Leaf Trait in Brassica oleracea. Int J Mol Sci 2023; 24:ijms24044063. [PMID: 36835496 PMCID: PMC9965001 DOI: 10.3390/ijms24044063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Brassica oleracea displays remarkable morphological variations. It intrigued researchers to study the underlying cause of the enormous diversification of this organism. However, genomic variations in complex heading traits are less known in B. oleracea. Herein, we performed a comparative population genomics analysis to explore structural variations (SVs) responsible for heading trait formation in B. oleracea. Synteny analysis showed that chromosomes C1 and C2 of B. oleracea (CC) shared strong collinearity with A01 and A02 of B. rapa (AA), respectively. Two historical events, whole genome triplication (WGT) of Brassica species and differentiation time between AA and CC genomes, were observed clearly by phylogenetic and Ks analysis. By comparing heading and non-heading populations of B. oleracea genomes, we found extensive SVs during the diversification of the B. oleracea genome. We identified 1205 SVs that have an impact on 545 genes and might be associated with the heading trait of cabbage. Overlapping the genes affected by SVs and the differentially expressed genes identified by RNA-seq analysis, we identified six vital candidate genes that may be related to heading trait formation in cabbage. Further, qRT-PCR experiments also verified that six genes were differentially expressed between heading leaves and non-heading leaves, respectively. Collectively, we used available genomes to conduct a comparison population genome analysis and identify candidate genes for the heading trait of cabbage, which provides insight into the underlying reason for heading trait formation in B. oleracea.
Collapse
|
15
|
Borhan MH, Van de Wouw AP, Larkan NJ. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:237-257. [PMID: 35576591 DOI: 10.1146/annurev-phyto-021621-120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.
Collapse
Affiliation(s)
- M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| | | | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
16
|
Wu J, Liang J, Lin R, Cai X, Zhang L, Guo X, Wang T, Chen H, Wang X. Investigation of Brassica and its relative genomes in the post-genomics era. HORTICULTURE RESEARCH 2022; 9:uhac182. [PMID: 36338847 PMCID: PMC9627752 DOI: 10.1093/hr/uhac182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The Brassicaceae family includes many economically important crop species, as well as cosmopolitan agricultural weed species. In addition, Arabidopsis thaliana, a member of this family, is used as a molecular model plant species. The genus Brassica is mesopolyploid, and the genus comprises comparatively recently originated tetrapolyploid species. With these characteristics, Brassicas have achieved the commonly accepted status of model organisms for genomic studies. This paper reviews the rapid research progress in the Brassicaceae family from diverse omics studies, including genomics, transcriptomics, epigenomics, and three-dimensional (3D) genomics, with a focus on cultivated crops. The morphological plasticity of Brassicaceae crops is largely due to their highly variable genomes. The origin of several important Brassicaceae crops has been established. Genes or loci domesticated or contributing to important traits are summarized. Epigenetic alterations and 3D structures have been found to play roles in subgenome dominance, either in tetraploid Brassica species or their diploid ancestors. Based on this progress, we propose future directions and prospects for the genomic investigation of Brassicaceae crops.
Collapse
Affiliation(s)
| | | | | | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Tianpeng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | |
Collapse
|
17
|
Petereit J, Bayer PE, Thomas WJW, Tay Fernandez CG, Amas J, Zhang Y, Batley J, Edwards D. Pangenomics and Crop Genome Adaptation in a Changing Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:1949. [PMID: 35956427 PMCID: PMC9370458 DOI: 10.3390/plants11151949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022]
Abstract
During crop domestication and breeding, wild plant species have been shaped into modern high-yield crops and adapted to the main agro-ecological regions. However, climate change will impact crop productivity in these regions, and agriculture needs to adapt to support future food production. On a global scale, crop wild relatives grow in more diverse environments than crop species, and so may host genes that could support the adaptation of crops to new and variable environments. Through identification of individuals with increased climate resilience we may gain a greater understanding of the genomic basis for this resilience and transfer this to crops. Pangenome analysis can help to identify the genes underlying stress responses in individuals harbouring untapped genomic diversity in crop wild relatives. The information gained from the analysis of these pangenomes can then be applied towards breeding climate resilience into existing crops or to re-domesticating crops, combining environmental adaptation traits with crop productivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia; (J.P.); (P.E.B.); (W.J.W.T.); (C.G.T.F.); (J.A.); (Y.Z.); (J.B.)
| |
Collapse
|
18
|
Raman H, Raman R, Pirathiban R, McVittie B, Sharma N, Liu S, Qiu Y, Zhu A, Kilian A, Cullis B, Farquhar GD, Stuart‐Williams H, White R, Tabah D, Easton A, Zhang Y. Multienvironment QTL analysis delineates a major locus associated with homoeologous exchanges for water-use efficiency and seed yield in canola. PLANT, CELL & ENVIRONMENT 2022; 45:2019-2036. [PMID: 35445756 PMCID: PMC9325393 DOI: 10.1111/pce.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/06/2022] [Indexed: 05/29/2023]
Abstract
Canola varieties exhibit variation in drought avoidance and drought escape traits, reflecting adaptation to water-deficit environments. Our understanding of underlying genes and their interaction across environments in improving crop productivity is limited. A doubled haploid population was analysed to identify quantitative trait loci (QTL) associated with water-use efficiency (WUE) related traits. High WUE in the vegetative phase was associated with low seed yield. Based on the resequenced parental genome data, we developed sequence-capture-based markers and validated their linkage with carbon isotope discrimination (Δ13 C) in an F2 population. RNA sequencing was performed to determine the expression of candidate genes underlying Δ13 C QTL. QTL contributing to main and QTL × environment interaction effects for Δ13 C and yield were identified. One multiple-trait QTL for Δ13 C, days to flower, plant height, and seed yield was identified on chromosome A09. Interestingly, this QTL region overlapped with a homoeologous exchange (HE) event, suggesting its association with the multiple traits. Transcriptome analysis revealed 121 significantly differentially expressed genes underlying Δ13 C QTL on A09 and C09, including in HE regions. Sorting out the negative relationship between vegetative WUE and seed yield is a priority. Genetic and genomic resources and knowledge so developed could improve canola WUE and yield.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Rosy Raman
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Ramethaa Pirathiban
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research AustraliaUniversity of WollongongWollongongNew South WalesAustralia
| | - Brett McVittie
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Niharika Sharma
- NSW Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRCOil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhanHubeiChina
| | - Yu Qiu
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Anyu Zhu
- Diversity Arrays Technology P/LUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Andrzej Kilian
- Diversity Arrays Technology P/LUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Brian Cullis
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research AustraliaUniversity of WollongongWollongongNew South WalesAustralia
| | - Graham D. Farquhar
- Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Hilary Stuart‐Williams
- Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - David Tabah
- Advanta Seeds Pty LtdToowoombaQueenslandAustralia
| | | | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRCOil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhanHubeiChina
| |
Collapse
|
19
|
Bolaños-Villegas P, Chen FC. Advances and Perspectives for Polyploidy Breeding in Orchids. PLANTS (BASEL, SWITZERLAND) 2022; 11:1421. [PMID: 35684197 PMCID: PMC9183072 DOI: 10.3390/plants11111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
The orchid market is a dynamic horticultural business in which novelty and beauty command high prices. The two main interests are the development of flowers, from the miniature to the large and showy, and their fragrance. Overall organ size might be modified by doubling the chromosome number, which can be accomplished by careful study of meiotic chromosome disjunction in hybrids or species. Meiosis is the process in which diploid (2n) pollen mother cells recombine their DNA sequences and then undergo two rounds of division to give rise to four haploid (n) cells. Thus, by interfering in chromosome segregation, one can induce the development of diploid recombinant cells, called unreduced gametes. These unreduced gametes may be used for breeding polyploid progenies with enhanced fertility and large flower size. This review provides an overview of developments in orchid polyploidy breeding placed in the large context of meiotic chromosome segregation in the model plants Arabidopsis thaliana and Brassica napus to facilitate molecular translational research and horticultural innovation.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, La Garita District, Alajuela 20101, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Dulce Nombre District, Cartago 30109, Costa Rica
- Faculty of Food and Agricultural Sciences, Rodrigo Facio Campus, School of Agronomy, University of Costa Rica, Montes de Oca County, San Jose 11503, Costa Rica
| | - Fure-Chyi Chen
- General Research Service Center, National Pingtung University of Science and Technology, #1 Shuefu Road, Neipu township, Pingtung 91201, Taiwan;
| |
Collapse
|
20
|
All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes in Nascent Polyploid Plants. Genes (Basel) 2022; 13:genes13010147. [PMID: 35052487 PMCID: PMC8775444 DOI: 10.3390/genes13010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.
Collapse
|
21
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
22
|
Martín AC, Alabdullah AK, Moore G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci Rep 2021; 11:21811. [PMID: 34750469 PMCID: PMC8575954 DOI: 10.1038/s41598-021-01379-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Many species, including most flowering plants, are polyploid, possessing multiple genomes. During polyploidisation, fertility is preserved via the evolution of mechanisms to control the behaviour of these multiple genomes during meiosis. On the polyploidisation of wheat, the major meiotic gene ZIP4 duplicated and diverged, with the resulting new gene TaZIP4-B2 being inserted into chromosome 5B. Previous studies showed that this TaZIP4-B2 promotes pairing and synapsis between wheat homologous chromosomes, whilst suppressing crossover between related (homoeologous) chromosomes. Moreover, in wheat, the presence of TaZIP4-B2 preserves up to 50% of grain number. The present study exploits a 'separation-of-function' wheat Tazip4-B2 mutant named zip4-ph1d, in which the Tazip4-B2 copy still promotes correct pairing and synapsis between homologues (resulting in the same pollen profile and fertility normally found in wild type wheat), but which also allows crossover between the related chromosomes in wheat haploids of this mutant. This suggests an improved utility for the new zip4-ph1d mutant line during wheat breeding, compared to the previously described CRISPR Tazip4-B2 and ph1 mutant lines. The results also reveal that loss of suppression of homoeologous crossover between wheat chromosomes does not in itself reduce wheat fertility when promotion of homologous pairing and synapsis by TaZIP4-B2 is preserved.
Collapse
Affiliation(s)
- Azahara C Martín
- Crop Genetics Department, John Innes Centre, Colney, Norwich, NR4 7UH, UK.
| | | | - Graham Moore
- Crop Genetics Department, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
23
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
24
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
25
|
Zhang K, Mason AS, Farooq MA, Islam F, Quezada-Martinez D, Hu D, Yang S, Zou J, Zhou W. Challenges and prospects for a potential allohexaploid Brassica crop. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2711-2726. [PMID: 34089067 DOI: 10.1007/s00122-021-03845-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 05/28/2023]
Abstract
The production of a new allohexaploid Brassica crop (2n = AABBCC) is increasingly attracting international interest: a new allohexaploid crop could benefit from several major advantages over the existing Brassica diploid and allotetraploid species, combining genetic diversity and traits from all six crop species with additional allelic heterosis from the extra genome. Although early attempts to produce allohexaploids showed mixed results, recent technological and conceptual advances have provided promising leads to follow. However, there are still major challenges which exist before this new crop type can be realized: (1) incorporation of sufficient genetic diversity to form a basis for breeding and improvement of this potential crop species; (2) restoration of regular meiosis, as most allohexaploids are genetically unstable after formation; and (3) improvement of agronomic traits to the level of "elite" breeding material in the diploid and allotetraploid crop species. In this review, we outline these major prospects and challenges and propose possible plans to produce a stable, diverse and agronomically viable allohexaploid Brassica crop.
Collapse
Affiliation(s)
- Kangni Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Ferreira de Carvalho J, Stoeckel S, Eber F, Lodé-Taburel M, Gilet MM, Trotoux G, Morice J, Falentin C, Chèvre AM, Rousseau-Gueutin M. Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. THE NEW PHYTOLOGIST 2021; 230:2072-2084. [PMID: 33638877 DOI: 10.1111/nph.17308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 05/28/2023]
Abstract
Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.
Collapse
Affiliation(s)
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | | | | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | |
Collapse
|
27
|
Zhou C, Pan W, Peng Q, Chen Y, Zhou T, Wu C, Hartley W, Li J, Xu M, Liu C, Li P, Rao L, Wang Q. Characteristics of Metabolites by Seed-Specific Inhibition of FAD2 in Brassica napus L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5452-5462. [PMID: 33969684 DOI: 10.1021/acs.jafc.0c06867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acid desaturase-2 (FAD2) is a key enzyme in the production of polyunsaturated fatty acids in plants. RNAi technology can reduce the expression of FAD2 genes in Brassica napus seeds and acquire transgenic B. napus plants with a high oleic acid content, but the effect of seed-specific inhibition of FAD2 expression on B. napus seed metabolites is not clear. Here we use widely targeted metabolomics to investigate the metabolites of normal-oleic-acid rapeseed (OA) and high-oleic-acid rapeseed (HOA) seeds, resulting in a total of 726 metabolites being detected. Among them, 24 differential metabolites were significantly downregulated and 88 differential metabolites were significantly upregulated in HOA rapeseed. In further lipid profile experiments, more lipids in B. napus seeds were accurately quantified. The contents of glycolipids and phospholipids that contain C18:1 increased significantly and C18:2 decreased because FAD2 expression was inhibited. The changes in the expression of key genes in related pathways were also consistent with the changes in metabolites. The insertion site of the ihpRNA plant expression vector was reconfirmed through genomewide resequencing, and the transgenic event did not change the sequence of FAD2 genes. There was no significant difference in the germination rate and germination potential between OA and HOA rapeseed seeds because the seed-specific ihpRNA plant expression vector did not affect other stages of plant growth. This work provides a theoretical and practical guidance for subsequent molecular breeding of high OA B. napus.
Collapse
Affiliation(s)
- Chi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - William Hartley
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, Shropshire, United Kingdom
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Chuwei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
28
|
Alabdullah AK, Moore G, Martín AC. A Duplicated Copy of the Meiotic Gene ZIP4 Preserves up to 50% Pollen Viability and Grain Number in Polyploid Wheat. BIOLOGY 2021; 10:290. [PMID: 33918149 PMCID: PMC8065865 DOI: 10.3390/biology10040290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.
Collapse
Affiliation(s)
| | - Graham Moore
- Crop Genetics Department, John Innes Centre, Colney, Norwich NR4 7UH, UK; (A.K.A.); (A.C.M.)
| | | |
Collapse
|
29
|
Sourdille P, Jenczewski E. Homoeologous exchanges in allopolyploids: how Brassica napus established self-control! THE NEW PHYTOLOGIST 2021; 229:3041-3043. [PMID: 33616960 DOI: 10.1111/nph.17222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Pierre Sourdille
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|