1
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
3
|
Münzbergová Z, Šurinová M, Biscarini F, Níčová E. Genetic response of a perennial grass to warm and wet environments interacts and is associated with trait means as well as plasticity. J Evol Biol 2024; 37:704-716. [PMID: 38761114 DOI: 10.1093/jeb/voae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Maria Šurinová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Milan, Italy
| | - Eva Níčová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| |
Collapse
|
4
|
Ahrens CW, Murray K, Mazanec RA, Ferguson S, Jones A, Tissue DT, Byrne M, Borevitz JO, Rymer PD. Genomic determinants, architecture, and constraints in drought-related traits in Corymbia calophylla. BMC Genomics 2024; 25:640. [PMID: 38937661 PMCID: PMC11209971 DOI: 10.1186/s12864-024-10531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla. RESULTS We found 273 genomic variants determining traits with moderate heritability (h2SNP = 0.26-0.64). Significant variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chromosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions. CONCLUSIONS Our results on the genetic basis for drought traits in Corymbia calophylla have several implications for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait predictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex genomic architecture potentially limiting trees response to climate change.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
- Cesar Australia, Brunswick, VIC, 3058, Australia.
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Richard A Mazanec
- Biodiversity and Conservation Science, Western Australian Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Western Australian Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
5
|
Minadakis N, Kaderli L, Horvath R, Bourgeois Y, Xu W, Thieme M, Woods DP, Roulin AC. Polygenic architecture of flowering time and its relationship with local environments in the grass Brachypodium distachyon. Genetics 2024; 227:iyae042. [PMID: 38504651 PMCID: PMC11075549 DOI: 10.1093/genetics/iyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.
Collapse
Affiliation(s)
- Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Lars Kaderli
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Robert Horvath
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34 000 Montpellier, France
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Daniel P Woods
- Department of Plant Sciences, University of California-Davis, 104 Robbins Hall, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| |
Collapse
|
6
|
Zhao H, Huang X, Yang Z, Li F, Ge X. Synergistic optimization of crops by combining early maturation with other agronomic traits. TRENDS IN PLANT SCIENCE 2023; 28:1178-1191. [PMID: 37208203 DOI: 10.1016/j.tplants.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Many newly created early maturing varieties exhibit poor stress resistance and low yield, whereas stress-resistant varieties are typically late maturing. For this reason, the polymerization of early maturity and other desired agronomic qualities requires overcoming the negative connection between early maturity, multi-resistance, and yield, which presents a formidable challenge in current breeding techniques. We review the most salient constraints of early maturity breeding in current crop planting practices and the molecular mechanisms of different maturation timeframes in diverse crops from their origin center to production areas. We explore current breeding tactics and the future direction of crop breeding and the issues that must be resolved to accomplish the polymerization of desirable traits in light of the current obstacles and limitations.
Collapse
Affiliation(s)
- Hang Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| | - Xiaoyang Ge
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| |
Collapse
|
7
|
Yan W, Wang Z, Zhou B. Population evolution of seagrasses returning to the ocean. Heliyon 2023; 9:e20231. [PMID: 37809433 PMCID: PMC10559988 DOI: 10.1016/j.heliyon.2023.e20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/05/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Seagrasses are higher flowering plants that live entirely in marine environments, with the greatest habitat variation occurring from land to sea. Genetic structure or population differentiation history is a hot topic in evolutionary biology, which is of great significance for understanding speciation. Genetic information is obtained from geographically distributed subpopulations, different subspecies, or strains of the same species using next-generation sequencing techniques. Genetic variation is identified by comparison with reference genomes. Genetic diversity is explored using population structure, principal component analysis (PCA), and phylogenetic relationships. Patterns of population genetic differentiation are elucidated by combining the isolation by distance (IBD) model, linkage disequilibrium levels, and genetic statistical analysis. Demographic history is simulated using effective population size, divergence time, and site frequency spectrum (SFS). Through various population genetic analyses, the genetic structure and historical population dynamics of seagrass can be clarified, and their evolutionary processes can be further explored at the molecular level to understand how evolutionary processes contributed to the formation of early ecological species and provide data support for seagrass conservation.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
9
|
Sinclair-Waters M, Nome T, Wang J, Lien S, Kent MP, Sægrov H, Florø-Larsen B, Bolstad GH, Primmer CR, Barson NJ. Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods. Heredity (Edinb) 2022; 129:356-365. [PMID: 36357776 PMCID: PMC9709158 DOI: 10.1038/s41437-022-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.
Collapse
Affiliation(s)
- Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jing Wang
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Key laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nicola J Barson
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
10
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
11
|
Li Y, Zhu J, Feng Y, Li Z, Ren Z, Liu N, Liu C, Hao J, Han Y. LsARF3 mediates thermally induced bolting through promoting the expression of LsCO in lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:958833. [PMID: 36160965 PMCID: PMC9498183 DOI: 10.3389/fpls.2022.958833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Lettuce (Lactuca sativa L.) is a leafy vegetable whose edible organs usually are leaf or stems, and thus high-temperature induced bolting followed by flower initiation is an undesirable trait in lettuce production. However, the molecular mechanism that controls lettuce bolting and flowering upon thermal treatments is largely unknown. Here, we identified a Lettuce auxin response factor 3 (LsARF3), the expression of which was enhanced by heat and auxin treatments. Interestingly, LsARF3 is preferentially expressed in stem apex, suggesting it might be associated with lettuce bolting. Transgenic lettuce overexpressing LsARF3 displayed early bolting and flowering, whereas knockout of LsARF3 dramatically delayed bolting and flowering in lettuce under normal or high temperature conditions. Furthermore, Exogenous application of IAA failed to rescue the late-bolting and -flowering phenotype of lsarf3 mutants. Several floral integrator genes including LsCO, LsFT, and LsLFY were co-expressed with LsARF3 in the overexpression and knockout lettuce plants. Yeast one-hybrid (Y1H) experiments suggested that LsARF3 could physically interact with the LsCO promoter, which was further confirmed by a dual luciferase assay in tobacco leaves. The results indicated that LsARF3 might directly modulate the expression of LsCO in lettuce. Therefore, these results demonstrate that LsARF3 could promote lettuce bolting in response to the high temperature by directly or indirectly activating the expression of floral genes such as LsCO, which provides new insights into lettuce bolting in the context of ARFs signaling and heat response.
Collapse
Affiliation(s)
- Yunfeng Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiaqi Zhu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yixuan Feng
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhenfeng Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zheng Ren
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ning Liu
- National Engineering Research Center for Vegetables, Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chaojie Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinghong Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yingyan Han
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
12
|
Prapas D, Scalone R, Lee J, Nurkowski KA, Bou‐assi S, Rieseberg L, Battlay P, Hodgins KA. Quantitative trait loci mapping reveals an oligogenic architecture of a rapidly adapting trait during the European invasion of common ragweed. Evol Appl 2022; 15:1249-1263. [PMID: 36051461 PMCID: PMC9423086 DOI: 10.1111/eva.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/09/2023] Open
Abstract
Biological invasions offer a unique opportunity to investigate evolution over contemporary timescales. Rapid adaptation to local climates during range expansion can be a major determinant of invasion success, yet fundamental questions remain about its genetic basis. This study sought to investigate the genetic basis of climate adaptation in invasive common ragweed (Ambrosia artemisiifolia). Flowering time adaptation is key to this annual species' invasion success, so much so that it has evolved repeated latitudinal clines in size and phenology across its native and introduced ranges despite high gene flow among populations. Here, we produced a high-density linkage map (4493 SNPs) and paired this with phenotypic data from an F2 mapping population (n = 336) to identify one major and two minor quantitative trait loci (QTL) underlying flowering time and height differentiation in this species. Within each QTL interval, several candidate flowering time genes were also identified. Notably, the major flowering time QTL detected in this study was found to overlap with a previously identified haploblock (putative inversion). Multiple genetic maps of this region identified evidence of suppressed recombination in specific genotypes, consistent with inversions. These discoveries support the expectation that a concentrated genetic architecture with fewer, larger, and more tightly linked alleles should underlie rapid local adaptation during invasion, particularly when divergently adapting populations experience high levels of gene flow.
Collapse
Affiliation(s)
- Diana Prapas
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Romain Scalone
- Department of Crop Production Ecology, Uppsala Ecology CenterSwedish University of Agricultural SciencesUppsalaSweden
- Department of Grapevine BreedingHochschule Geisenheim UniversityGeisenheimGermany
| | - Jacqueline Lee
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Kristin A. Nurkowski
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaVancouverCanada
| | - Sarah Bou‐assi
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Loren Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaVancouverCanada
| | - Paul Battlay
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
13
|
Prakash A, DeYoung S, Lachmuth S, Adams JL, Johnsen K, Butnor JR, Nelson DM, Fitzpatrick MC, Keller SR. Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce ( Picea rubens Sarg.). Philos Trans R Soc Lond B Biol Sci 2022; 377:20210008. [PMID: 35184589 PMCID: PMC8859516 DOI: 10.1098/rstb.2021.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce (Picea rubens), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Anoob Prakash
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| | - Sonia DeYoung
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| | - Susanne Lachmuth
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA
| | - Jacquelyne L. Adams
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, NC 28806, USA
| | - Kurt Johnsen
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, NC 28806, USA
| | - John R. Butnor
- USDA Forest Service, Southern Research Station, University of Vermont, Burlington, VT 05405, USA
| | - David M. Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA
| | - Matthew C. Fitzpatrick
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA
| | - Stephen R. Keller
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|