1
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
2
|
Yang L, Zhang S, Wu C, Jiang X, Deng M. Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2024; 24:1277. [PMID: 39736525 DOI: 10.1186/s12870-024-05874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus. RESULTS The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny. CONCLUSIONS The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage.
Collapse
Affiliation(s)
- Lifang Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shoujun Zhang
- Center for Horticulture and Conservation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chunya Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaolong Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Min Deng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| |
Collapse
|
3
|
Nie Y, Li Y, Yuan P, Wu C, Wang X, Wang C, Xu X, Shen Z, Hu Z. Arabidopsis Pentatricopeptide Repeat Protein GEND2 Participates in Mitochondrial RNA Editing. PLANT & CELL PHYSIOLOGY 2024; 65:1849-1861. [PMID: 39301683 DOI: 10.1093/pcp/pcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In Arabidopsis, RNA editing alters more than 500 cytidines (C) to uridines (U) in mitochondrial transcripts, a process involving the family of pentatricopeptide repeat (PPR) proteins. Here, we report a previously uncharacterized mitochondrial PLS-type PPR protein, GEND2, which functions in the mitochondrial RNA editing. The T-DNA insertion in the 5'-untranslated region of GEND2, referred to as gend2-1, results in defective root development compared to wild-type (WT) plants. A comprehensive examination of mitochondrial RNA-editing sites revealed a significant reduction in the gend2-1 mutant compared to WT plants, affecting six specific mitochondrial RNA editing sites, notably within the mitochondrial genes CcmFn-1, RPSL2 and ORFX. These genes encode critical components of cytochrome protein maturation pathway, mitochondrial ribosomal subunit and twin arginine translocation subunits, respectively. Further analysis of the transcriptional profile of the gend2-1 mutant and WT revealed a striking induction of expression in a cluster of genes associated with mitochondrial dysfunction and regulated by ANAC017, a key regulator coordinating organelle functions and stress responses. Intriguingly, the gend2-1 mutation activated an ANAC017-dependent signaling aimed at countering cell wall damage induced by cellulose synthase inhibitors, as well as an ANAC017-independent pathway that retarded root growth under normal condition. Collectively, our findings identify a novel mitochondrial PLS-type PPR protein GEND2, which participates in the editing of six specific mitochondrial RNA editing sites. Furthermore, the gend2-1 mutation triggers two distinct pathways in plants: an ANAC017-dependent pathway and ANAC017-independent pathway.
Collapse
Affiliation(s)
- Yaqing Nie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoqing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chunfei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
4
|
Nedo AO, Liang H, Sriram J, Razzak MA, Lee JY, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. CHUP1 restricts chloroplast movement and effector-triggered immunity in epidermal cells. THE NEW PHYTOLOGIST 2024; 244:1864-1881. [PMID: 39415611 PMCID: PMC11583462 DOI: 10.1111/nph.20147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencing CHUP1-induced chloroplast stromules and amplified effector-triggered immunity (ETI); however, the underlying mechanisms remain largely unknown. CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated actin (cp-actin) filaments for blue light-induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencing NbCHUP1 in Nicotiana benthamiana plants increased epidermal chloroplast de-anchoring and basal movement but did not fully disrupt blue light-induced chloroplast movement. Silencing NbCHUP1 auto-activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response. Our results also show that the accumulated chloroplastic H2O2 in NbCHUP1-silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de-anchoring and H2O2 play separate but essential roles during ETI.
Collapse
Affiliation(s)
- Alexander O Nedo
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Huining Liang
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jaya Sriram
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Md Abdur Razzak
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Chandra Kambhamettu
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
5
|
Mao J, Wang H, Li J, Yang J, Zhang Y, Wu H. Comparative transcriptome profiling suggests the role of phytohormones in leaf stalk-stem angle in melon ( Cucumis melo L.). PeerJ 2024; 12:e18467. [PMID: 39575174 PMCID: PMC11580662 DOI: 10.7717/peerj.18467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Leaf stalk-stem angle is an important agronomic trait influencing melon architecture, photosynthetic efficiency, and crop yield. However, the mechanisms governing leaf stalk-stem angle, particularly in melon, are not well understood. In this study, we explored the comparative transcriptome in the expanded architecture line Y164 and the compact plant architecture line Z151 at 30 days after pollination. Phytohormones were measured at the leaf stalk-angle site at the same time in these two lines using liquid chromatography (LC) tandem mass spectrometry (MS) (LC-MS/MS). The phytohormones and transcriptomes were jointly analyzed. Differential hormone profiling revealed that the levels of 1-aminocyclopropane-1-carboxylate (ACC) and 12-oxophytodienoic acid (OPDA) in the large-angled line Y164 were significantly higher than those in the small-angled line Z151. These differences were quantified as 2.1- and 2.8-fold increases, respectively. Conversely, the content of isopentenyl adenosine (IPA) was significantly elevated in Z151, with a 3.8-fold higher concentration relative to Y164. Transcriptome analysis identified a total of 1709 differently expressed genes (DEGs), with a predominant enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to photosynthesis and plant hormone signal transduction. Similarly, photosynthesis and the hormone metabolic process were predominantly enriched in the biological process of Gene Ontology (GO) terms. Further integration of transcriptome and hormone analyses substantiated the close relationship between melon leaf stalk-stem angle and phytohormones, especially ACC, OPDA and IPA. Selected DEGs from phytohormone signal transduction were validated. Detailed analysis of DEGs highlighted the potential role of genes such as GH3s (LOC103490488, LOC103490483), SUARs (LOC107991561, LOC103497281 and LOC103489067), ARFs (LOC103503893, LOC103493078) and five genes in abscisic acid pathway. In summary, our findings strongly suggest a direct correlation between phytohormones and the leaf stalk-stem angles in melon.
Collapse
Affiliation(s)
- Jiancai Mao
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junhua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junyan Yang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
6
|
Wu J, Wang J, Wang P, Su C, Hui W, Gong W. Ethylene-induced improvement in photosynthetic performance of Zanthoxylum armatum under reoxygenation conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:712-723. [PMID: 37491008 DOI: 10.1071/fp23079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023]
Abstract
In this study, we evaluated the photosynthetic performance of Zanthoxylum armatum seedlings to test the tolerance to reoxygenation after waterlogging. The experiment included a control group without waterlogging (NW) and three reoxygenation groups with reoxygenation after 1day (WR1), 2days (WR2) and 3days (WR3). Seedlings were pretreated with concentrations of 0, 200 and 400μmolL-1 of ethylene. The results showed that reoxygenation after waterlogging for 1-3days decreased photosynthetic pigments content, enzymes activity, stomatal conductance (G s ), net photosynthetic rate (P n ), transpiration rate (T r ) and water-use efficiency (WUE). However, pretreatment with ethylene increased photosynthetic pigments content, enzymes activity and gas exchange parameters under both NW and WR3 treatments. The chlorophyll fluorescence results showed that the maximum quantum yield of PSII (F v /F m ) and actual photochemical efficiency of PSII (Φ PSII ) remained no significant changes under the NW and WR1 treatments, while they were significantly reduced with an increase in waterlogging days followed by reoxygenation under WR2 and WR3 treatments. Exogenous ethylene inhibited F v /F m and the non-photochemical quenching coefficient (NPQ), while enhanced Φ PSII and electron transfer efficiency (ETR) under WR2 treatments. Moreover, the accumulation of exogenous ethylene reduced photosynthetic ability. These findings provide insights into the role of ethylene in enhancing the tolerance of Z. armatum to reoxygenation stress, which could help mitigate the impact of continued climate change.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiyun Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengyi Su
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Kupriyanova E, Manakhov A, Ezhova T. PARG1 and EXA1 genes as possible components of the facultative epigenetic control of plant development. PHYSIOLOGIA PLANTARUM 2023; 175:e13959. [PMID: 37350155 DOI: 10.1111/ppl.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Plants are able to adjust their developmental program in response to incremental environmental changes by reprogramming the epigenomes of the cells. This process, known as facultative epigenetic developmental control, underlies plant developmental plasticity and the amazing diversity of morphotypes, which arises from the changes in cell fates. How plants determine when epigenome reprogramming should occur is largely unclear. Here, we show that the Arabidopsis PARG1 and EXA1 genes, encoding poly(ADP-ribose) glycohydrolase and GYF domain protein involved in nonsense-mediated mRNA decay, respectively, act synergistically in maintaining leaf cell identity. Loss of their function in Arabidopsis tae mutant triggers autoimmunity and wounding response, alters transcription of a number of epigenetic regulators, initiates the acquisition of pluripotency by cells of the developed leaf and ectopic outgrowths and buds formation. The dependence of the cell fate on the activity level of PARG1 and EXA1 genes indicates that these interacting genes may function as an important regulator of facultative epigenetic control of plant development.
Collapse
Affiliation(s)
- Evgenia Kupriyanova
- Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Manakhov
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Ezhova
- Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Jeh HE, Sanchez R, Beltrán J, Yang X, Kundariya H, Wamboldt Y, Dopp I, Hafner A, Mackenzie SA. Sensory plastid-associated PsbP DOMAIN-CONTAINING PROTEIN 3 triggers plant growth- and defense-related epigenetic responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:414-433. [PMID: 37036138 PMCID: PMC10525003 DOI: 10.1111/tpj.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Sensory plastids are important in plant responses to environmental changes. Previous studies show that MutS HOMOLOG 1 (MSH1) perturbation in sensory plastids induces heritable epigenetic phenotype adjustment. Previously, the PsbP homolog DOMAIN-CONTAINING PROTEIN 3 (PPD3), a protein of unknown function, was postulated to be an interactor with MSH1. This study investigates the relationship of PPD3 with MSH1 and with plant environmental sensing. The ppd3 mutant displays a whole-plant phenotype variably altered in growth rate, flowering time, reactive oxygen species (ROS) modulation and response to salt, with effects on meristem growth. Present in both chloroplasts and sensory plastids, PPD3 colocalized with MSH1 in root tips but not in leaf tissues. The suppression or overexpression of PPD3 affected the plant growth rate and stress tolerance, and led to a heritable, heterogenous 'memory' state with both dwarfed and vigorous growth phenotypes. Gene expression and DNA methylome data sets from PPD3-OX and derived memory states showed enrichment in growth versus defense networks and meristem effects. Our results support a model of sensory plastid influence on nuclear epigenetic behavior and ppd3 as a second trigger, functioning within meristem plastids to recalibrate growth plasticity.
Collapse
Affiliation(s)
- Ha Eun Jeh
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Robersy Sanchez
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Jesús Beltrán
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Botany and Plant Sciences, University of California, Riverside, Riverside CA 92521
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588
- Current Address: MatMaCorp, Lincoln, NE
| | - Isaac Dopp
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Alenka Hafner
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
10
|
Zhou SM, Wang F, Yan SY, Zhu ZM, Gao XF, Zhao XL. Phylogenomics and plastome evolution of Indigofera (Fabaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1186598. [PMID: 37346129 PMCID: PMC10280451 DOI: 10.3389/fpls.2023.1186598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Introduction Indigofera L. is the third largest genus in Fabaceae and includes economically important species that are used for indigo dye-producing, medicinal, ornamental, and soil and water conservation. The genus is taxonomically difficult due to the high level of overlap in morphological characters of interspecies, fewer reliability states for classification, and extensive adaptive evolution. Previous characteristic-based taxonomy and nuclear ITS-based phylogenies have contributed to our understanding of Indigofera taxonomy and evolution. However, the lack of chloroplast genomic resources limits our comprehensive understanding of the phylogenetic relationships and evolutionary processes of Indigofera. Methods Here, we newly assembled 18 chloroplast genomes of Indigofera. We performed a series of analyses of genome structure, nucleotide diversity, phylogenetic analysis, species pairwise Ka/Ks ratios, and positive selection analysis by combining with allied species in Papilionoideae. Results and discussion The chloroplast genomes of Indigofera exhibited highly conserved structures and ranged in size from 157,918 to 160,040 bp, containing 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Thirteen highly variable regions were identified, of which trnK-rbcL, ndhF-trnL, and ycf1 were considered as candidate DNA barcodes for species identification of Indigofera. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) methods based on complete chloroplast genome and protein-coding genes (PCGs) generated a well-resolved phylogeny of Indigofera and allied species. Indigofera monophyly was strongly supported, and four monophyletic lineages (i.e., the Pantropical, East Asian, Tethyan, and Palaeotropical clades) were resolved within the genus. The species pairwise Ka/Ks ratios showed values lower than 1, and 13 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis using the branch-site model, eight of which were associated with photosynthesis. Positive selection of accD suggested that Indigofera species have experienced adaptive evolution to selection pressures imposed by their herbivores and pathogens. Our study provided insight into the structural variation of chloroplast genomes, phylogenetic relationships, and adaptive evolution in Indigofera. These results will facilitate future studies on species identification, interspecific and intraspecific delimitation, adaptive evolution, and the phylogenetic relationships of the genus Indigofera.
Collapse
Affiliation(s)
- Sheng-Mao Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Si-Yuan Yan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Xin-Fen Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xue-Li Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
11
|
Yapa MM, Doroodian P, Gao Z, Yu P, Hua Z. MORF2-mediated plastidial retrograde signaling is involved in stress response and skotomorphogenesis beyond RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1146922. [PMID: 37056496 PMCID: PMC10086144 DOI: 10.3389/fpls.2023.1146922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Retrograde signaling modulates the expression of nuclear genome-encoded organelle proteins to adjust organelle function in response to environmental cues. MULTIPLE ORGANELLAR RNA EDITING FACTOR 2 (MORF2) was initially recognized as a plastidial RNA-editing factor but recently shown to interact with GUN1. Given the central role of GUN1 in chloroplast retrograde signaling and the unviable phenotype of morf2 mutants that is inconsistent with many viable mutants involved in RNA editing, we hypothesized that MORF2 has functions either dosage dependent or beyond RNA editing. Using an inducible Clustered Interspaced Short Palindromic Repeat interference (iCRISPRi) approach, we were able to reduce the MORF2 transcripts in a controlled manner. In addition to MORF2-dosage dependent RNA-editing errors, we discovered that reducing MORF2 by iCRISPRi stimulated the expression of stress responsive genes, triggered plastidial retrograde signaling, repressed ethylene signaling and skotomorphogenesis, and increased accumulation of hydrogen peroxide. These findings along with previous discoveries suggest that MORF2 is an effective regulator involved in plastidial metabolic pathways whose reduction can readily activate multiple retrograde signaling molecules possibly involving reactive oxygen species to adjust plant growth. In addition, our newly developed iCRISPRi approach provided a novel genetic tool for quantitative reverse genetics studies on hub genes in plants.
Collapse
Affiliation(s)
- Madhura M. Yapa
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
| | - Paymon Doroodian
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Zhenyu Gao
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Peifeng Yu
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Zhihua Hua
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
12
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
13
|
Gallusci P, Agius DR, Moschou PN, Dobránszki J, Kaiserli E, Martinelli F. Deep inside the epigenetic memories of stressed plants. TRENDS IN PLANT SCIENCE 2023; 28:142-153. [PMID: 36404175 DOI: 10.1016/j.tplants.2022.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence sheds light on the peculiar type of plant intelligence. Plants have developed complex molecular networks that allow them to remember, choose, and make decisions depending on the stress stimulus, although they lack a nervous system. Being sessile, plants can exploit these networks to optimize their resources cost-effectively and maximize their fitness in response to multiple environmental stresses. Even more interesting is the capability to transmit this experience to the next generation(s) through epigenetic modifications that add to the classical genetic inheritance. In this opinion article, we present concepts and perspectives regarding the capabilities of plants to sense, perceive, remember, re-elaborate, respond, and to some extent transmit to their progeny information to adapt more efficiently to climate change.
Collapse
Affiliation(s)
- Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France
| | - Dolores R Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Ġ.F. Abela Junior College, Ġuzè Debono Square, Msida, Malta
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden; Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
14
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
15
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
16
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
17
|
Mackenzie SA, Mullineaux PM. Plant environmental sensing relies on specialized plastids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7155-7164. [PMID: 35994779 DOI: 10.1093/jxb/erac334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In plants, plastids are thought to interconvert to various forms that are specialized for photosynthesis, starch and oil storage, and diverse pigment accumulation. Post-endosymbiotic evolution has led to adaptations and specializations within plastid populations that align organellar functions with different cellular properties in primary and secondary metabolism, plant growth, organ development, and environmental sensing. Here, we review the plastid biology literature in light of recent reports supporting a class of 'sensory plastids' that are specialized for stress sensing and signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display shared features of dynamic morphology, proteome composition, and plastid-nuclear interaction that facilitate environmental sensing and signaling. These findings have the potential to reshape our understanding of plastid functional diversification.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
18
|
Gill-Hille M, Wang A, Murcha MW. Presequence translocase-associated motor subunits of the mitochondrial protein import apparatus are dual-targeted to mitochondria and plastids. FRONTIERS IN PLANT SCIENCE 2022; 13:981552. [PMID: 36438081 PMCID: PMC9695410 DOI: 10.3389/fpls.2022.981552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The import and assembly of most of the mitochondrial proteome is regulated by protein translocases located within the mitochondrial membranes. The Presequence Translocase-Associated Motor (PAM) complex powers the translocation of proteins across the inner membrane and consists of Hsp70, the J-domain containing co-chaperones, Pam16 and Pam18, and their associated proteins Tim15 and Mge1. In Arabidopsis, multiple orthologues of Pam16, Pam18, Tim15 and Mge1 have been identified and a mitochondrial localization has been confirmed for most. As the localization of Pam18-1 has yet to be determined and a plastid localization has been observed for homologues of Tim15 and Mge1, we carried out a comprehensive targeting analysis of all PAM complex orthologues using multiple in vitro and in vivo methods. We found that, Pam16 was exclusively targeted to the mitochondria, but Pam18 orthologues could be targeted to both the mitochondria and plastids, as observed for the PAM complex interacting partner proteins Tim15 and Mge1.
Collapse
Affiliation(s)
- Mabel Gill-Hille
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Andre Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Monika W. Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Yadav V, Wang Z, Guo Y, Zhang X. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1016822. [PMID: 36340394 PMCID: PMC9632293 DOI: 10.3389/fpls.2022.1016822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Yield and fruit quality loss by powdery mildew (PM) fungus is a major concern in cucurbits, but early-stage resistance mechanisms remain elusive in the majority of cucurbits. Here, we explored the comparative transcriptomic dynamics profiling of resistant line ZXG1755 (R) and susceptible line ZXG1996 (S) 48 h post-inoculation in watermelon seedlings to check precise expression changes induced by Podosphaera. xanthii race '2F'. Phenotypic responses were confirmed by microscopy and endogenous levels of defense and signaling related phytochromes were detected higher in resistant lines. In total, 7642 differently expressed genes (DEGs) were detected, and 57.27% of genes were upregulated in four combinations. DEGs were predominantly abundant in the KEGG pathway linked with phenylpropanoid biosynthesis, plant hormone and transduction, and phenylalanine metabolism, whereas GO terms of defense response, response to fungus, and chitin response were predominant in resistant lines, evidencing significant defense mechanisms and differences in the basal gene expression levels between these contrasting lines. The expression of selected DEGs from major pathways (hormonal, lignin, peroxidase, sugar) were validated via qRT-PCR. Detailed analysis of DEGs evidenced that along with other DEGs, genes including PR1 (Cla97C02G034020) and PRX (Cla97C11G207220/30, Cla97C02G045100 and Cla97C02G049950) should be studied for their potential role. In short, our study portrayed strong evidence indicating the important role of a complex network associated with lignin biosynthesis and phytohormone related downstream mechanisms that are responsible for incompatible interaction between PM and watermelon resistance line.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
20
|
He C, Liew LC, Yin L, Lewsey MG, Whelan J, Berkowitz O. The retrograde signaling regulator ANAC017 recruits the MKK9-MPK3/6, ethylene, and auxin signaling pathways to balance mitochondrial dysfunction with growth. THE PLANT CELL 2022; 34:3460-3481. [PMID: 35708648 PMCID: PMC9421482 DOI: 10.1093/plcell/koac177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 05/12/2023]
Abstract
In plant cells, mitochondria are ideally positioned to sense and balance changes in energy metabolism in response to changing environmental conditions. Retrograde signaling from mitochondria to the nucleus is crucial for adjusting the required transcriptional responses. We show that ANAC017, the master regulator of mitochondrial stress, directly recruits a signaling cascade involving the plant hormones ethylene and auxin as well as the MAP KINASE KINASE (MKK) 9-MAP KINASE (MPK) 3/6 pathway in Arabidopsis thaliana. Chromatin immunoprecipitation followed by sequencing and overexpression demonstrated that ANAC017 directly regulates several genes of the ethylene and auxin pathways, including MKK9, 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2, and YUCCA 5, in addition to genes encoding transcription factors regulating plant growth and stress responses such as BASIC REGION/LEUCINE ZIPPER MOTIF (bZIP) 60, bZIP53, ANAC081/ATAF2, and RADICAL-INDUCED CELL DEATH1. A time-resolved RNA-seq experiment established that ethylene signaling precedes the stimulation of auxin signaling in the mitochondrial stress response, with a large part of the transcriptional regulation dependent on ETHYLENE-INSENSITIVE 3. These results were confirmed by mutant analyses. Our findings identify the molecular components controlled by ANAC017, which integrates the primary stress responses to mitochondrial dysfunction with whole plant growth via the activation of regulatory and partly antagonistic feedback loops.
Collapse
Affiliation(s)
- Cunman He
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lingling Yin
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
21
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
22
|
Feng Y, Gao XF, Zhang JY, Jiang LS, Li X, Deng HN, Liao M, Xu B. Complete Chloroplast Genomes Provide Insights Into Evolution and Phylogeny of Campylotropis (Fabaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:895543. [PMID: 35665174 PMCID: PMC9158520 DOI: 10.3389/fpls.2022.895543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/03/2023]
Abstract
The genus Campylotropis Bunge (Desmodieae, Papilionoideae) comprises about 37 species distributed in temperate and tropical Asia. Despite the great potential in soil conservation, horticulture, and medicine usage, little is known about the evolutionary history and phylogenetic relationships of Campylotropis due to insufficient genetic resources. Here, we sequenced and assembled 21 complete chloroplast genomes of Campylotropis species. In combination with the previously published chloroplast genomes of C. macrocarpa and closely related species, we conducted comparative genomics and phylogenomic analysis on these data. Comparative analysis of the genome size, structure, expansion and contraction of inverted repeat (IR) boundaries, number of genes, GC content, and pattern of simple sequence repeats (SSRs) revealed high similarities among the Campylotropis chloroplast genomes. The activities of long sequence repeats contributed to the variation in genome size and gene content in Campylotropis chloroplast genomes. The Campylotropis chloroplast genomes showed moderate sequence variation, and 13 highly variable regions were identified for species identification and further phylogenetic studies. We also reported one more case of matK pseudogene in the legume family. The phylogenetic analysis confirmed the monophyly of Campylotropis and the sister relationship between Lespedeza and Kummerowia, the latter two genera were then sister to Campylotropis. The intrageneric relationships of Campylotropis based on genomic scale data were firstly reported in this study. The two positively selected genes (atpF and rps19) and eight fast-evolving genes identified in this study may help us to understand the adaptation of Campylotropis species. Overall, this study enhances our understanding of the chloroplast genome evolution and phylogenetic relationships of Campylotropis.
Collapse
Affiliation(s)
- Yu Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li-Sha Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| |
Collapse
|
23
|
Li X, Tian Z, Chai Y, Yang H, Zhang M, Yang C, Xu R, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Cytological and proteomic evidence reveals the involvement of mitochondria in hypoxia-induced quality degradation in postharvest citrus fruit. Food Chem 2022; 375:131833. [PMID: 34974349 DOI: 10.1016/j.foodchem.2021.131833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Hypoxia frequently occurs in postharvest logistics, which greatly influences fruit storability. Here, we for the first time studied the dynamic variations of mitochondrial morphology in living citrus fruit cells, and revealed that waxing treatment-induced hypoxia strongly triggered mitochondrial fission and fragmentation. Correspondingly, hypoxia caused a decline in mitochondrial membrane potential and mobility. Besides, impairment of energetic and redox status was also found in waxed fruit. The proteomic changes of mitochondria after waxing treatment were also characterized. Using weighted gene co-expression network analysis (WGCNA), we identified 167 key hypoxia-responsive proteins, which were mainly involved in fatty acid, amino acid and organic acid metabolism. Metabolite analysis verified that waxing treatment promoted the accumulation of several hypoxic metabolites, such as ethanol, acetaldehyde, succinic acid and γ-aminobutyric acid (GABA). Taken together, our findings provide new insights into the cytological and proteomic responses of mitochondria to hypoxia during fruit storage.
Collapse
Affiliation(s)
- Xin Li
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhen Tian
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingfang Chai
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingfei Zhang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Feng Zhu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunliu Zeng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiuxin Deng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengwei Wang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Yang Q, Fu GF, Wu ZQ, Li L, Zhao JL, Li QJ. Chloroplast Genome Evolution in Four Montane Zingiberaceae Taxa in China. FRONTIERS IN PLANT SCIENCE 2021; 12:774482. [PMID: 35082807 PMCID: PMC8784687 DOI: 10.3389/fpls.2021.774482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878-163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.
Collapse
Affiliation(s)
- Qian Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Gao-Fei Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Qiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Jian-Li Zhao,
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|