1
|
Grigusova P, Beilschmidt C, Dobbermann M, Drönner J, Mattig M, Sanchez P, Farwig N, Bendix J. A Data Storage, Analysis, and Project Administration Engine (TMFdw) for Small- to Medium-Size Interdisciplinary Ecological Research Programs with Full Raster Data Capabilities. DATA 2024; 9:143. [DOI: 10.3390/data9120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Over almost 20 years, a data storage, analysis, and project administration engine (TMFdw) has been continuously developed in a series of several consecutive interdisciplinary research projects on functional biodiversity of the southern Andes of Ecuador. Starting as a “working database”, the system now includes program management modules and literature databases, which are all accessible via a web interface. Originally designed to manage data in the ecological Research Unit 816 (SE Ecuador), the open software is now being used in several other environmental research programs, demonstrating its broad applicability. While the system was mainly developed for abiotic and biotic tabular data in the beginning, the new research program demands full capabilities to work with area-wide and high-resolution big models and remote sensing raster data. Thus, a raster engine was recently implemented based on the Geo Engine technology. The great variety of pre-implemented desktop GIS-like analysis options for raster point and vector data is an important incentive for researchers to use the system. A second incentive is to implement use cases prioritized by the researchers. As an example, we present machine learning models to generate high-resolution (30 m) microclimate raster layers for the study area in different temporal aggregation levels for the most important variables of air temperature, humidity, precipitation, and solar radiation. The models implemented as use cases outperform similar models developed in other research programs.
Collapse
Affiliation(s)
- Paulina Grigusova
- Laboratory for Climatology and Remote Sensing (LCRS), Department of Geography, University of Marburg, D-35032 Marburg, Germany
| | | | - Maik Dobbermann
- Laboratory for Climatology and Remote Sensing (LCRS), Department of Geography, University of Marburg, D-35032 Marburg, Germany
| | | | - Michael Mattig
- Geo Engine GmbH, Am Kornacker 68, D-35041 Marburg, Germany
| | - Pablo Sanchez
- Instituto Nacional de Biodiversidad (INABIO), Pje. Rumipamba N. 341 y Av. de los Shyris (Parque La Carolina), Quito 170102, Ecuador
| | - Nina Farwig
- Department of Biology, Conservation Ecology, University of Marburg, D-35032 Marburg, Germany
| | - Jörg Bendix
- Laboratory for Climatology and Remote Sensing (LCRS), Department of Geography, University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
2
|
Ma LL, Seibold S, Cadotte MW, Zou JY, Song J, Mo ZQ, Tan SL, Ye LJ, Zheng W, Burgess KS, Chen ZF, Liu DT, Yang XL, Shi XC, Zhao W, Liu J, Li DZ, Gao LM, Luo YH. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173343. [PMID: 38777069 DOI: 10.1016/j.scitotenv.2024.173343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.
Collapse
Affiliation(s)
- Liang-Liang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Seibold
- TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jia-Yun Zou
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany; Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Jie Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Qiong Mo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Lin Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Jiang Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Tuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xing-Liang Yang
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Lian-Ming Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| | - Ya-Huang Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| |
Collapse
|
3
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
6
|
Cui E, Lu R, Xu X, Sun H, Qiao Y, Ping J, Qiu S, Lin Y, Bao J, Yong Y, Zheng Z, Yan E, Xia J. Soil phosphorus drives plant trait variations in a mature subtropical forest. GLOBAL CHANGE BIOLOGY 2022; 28:3310-3320. [PMID: 35234326 DOI: 10.1111/gcb.16148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Earth system models are implementing soil phosphorus dynamic and plant functional traits to predict functional changes in global forests. However, the linkage between soil phosphorus and plant traits lacks empirical evidence, especially in mature forests. Here, we examined the soil phosphorus constraint on plant functional traits in a mature subtropical forest based on observations of 9943 individuals from 90 species in a 5-ha forest dynamic plot and 405 individuals from 15 species in an adjacent 10-year nutrient-addition experiment. We first confirmed a pervasive phosphorus limitation on subtropical tree growth based on leaf N:P ratios. Then, we found that soil phosphorus dominated multidimensional trait variations in the 5-ha forest dynamic plot. Soil phosphorus content explained 44% and 53% of the variance in the traits defining the main functional space across species and communities, respectively. Lastly, we found much stronger phosphorus effects on most plant functional traits than nitrogen at both species and community levels in the 10-year nutrient-addition experiment. This study provides evidence for the consistent pattern of soil phosphorus constraint on plant trait variations between the species and community levels in a mature evergreen broadleaf forest in the East Asian monsoon region. These findings shed light on the predominant role of soil phosphorus on plant functional trait variations in mature subtropical forests, providing new insights for models to incorporate soil phosphorus constraint in predicting future vegetation dynamics.
Collapse
Affiliation(s)
- Erqian Cui
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Ruiling Lu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Xiaoni Xu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Huanfa Sun
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Yang Qiao
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Jiaye Ping
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Shuying Qiu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| | - Yihua Lin
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jiehuan Bao
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yutong Yong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zemei Zheng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Enrong Yan
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Forest Ecosystem Research and Observation Station in Putuo Island, East China Normal University, Shanghai, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Ren L, Jensen K, Porada P, Mueller P. Biota-mediated carbon cycling-A synthesis of biotic-interaction controls on blue carbon. Ecol Lett 2022; 25:521-540. [PMID: 35006633 DOI: 10.1111/ele.13940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Research into biotic interactions has been a core theme of ecology for over a century. However, despite the obvious role that biota play in the global carbon cycle, the effects of biotic interactions on carbon pools and fluxes are poorly understood. Here we develop a conceptual framework that illustrates the importance of biotic interactions in regulating carbon cycling based on a literature review and a quantitative synthesis by means of meta-analysis. Our study focuses on blue carbon ecosystems-vegetated coastal ecosystems that function as the most effective long-term CO2 sinks of the biosphere. We demonstrate that a multitude of mutualistic, competitive and consumer-resource interactions between plants, animals and microbiota exert strong effects on carbon cycling across various spatial scales ranging from the rhizosphere to the landscape scale. Climate change-sensitive abiotic factors modulate the strength of biotic-interaction effects on carbon fluxes, suggesting that the importance of biota-mediated carbon cycling will change under future climatic conditions. Strong effects of biotic interactions on carbon cycling imply that biosphere-climate feedbacks may not be sufficiently represented in current Earth system models. Inclusion of new functional groups in these models, and new approaches to simplify species interactions, may thus improve the predictions of biotic effects on the global climate.
Collapse
Affiliation(s)
- Linjing Ren
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, P. R. China
| | - Kai Jensen
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Philipp Porada
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Peter Mueller
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany.,Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|