1
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
2
|
Liu Y, Xu X, Fan W, Wang G, Deng X, Rong G, Wang H. Mechanistic characterization of dissolved inorganic phosphorus in water during the red tide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108948. [PMID: 39043057 DOI: 10.1016/j.plaphy.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The eutrophication of water, such as excessive nitrogen and phosphorus, are closely associated with the outbreak of red tide. However, the response of dissolved inorganic phosphorus (DIP) to red tide remained unclear in water. In this study, three species of diatoms capable of causing red tides were cultured in simulated seawater with different concentrations of DIP. The changes of biomass, chlorophyll a concentration and the carbon stable isotope composition of microalgae, the DIP concentration and pH of the culture medium were compared among the experimental groups. In addition, correlation verification was used to test the correlation between the change of DIP concentration and other indicators. The results showed that in the experimental period, the DIP concentration of each experimental group decreased significantly first, and the concentration dropped to less than 40% of the initial level. After that, the pH of the medium, the biomass, chlorophyll a concentration and carbon stable isotope composition of the microalgae showed varying degrees of increase, and then stabilized or decreased. These also marked the outbreak of red tide. Moreover, the correlation test showed that there was a correlation between them and the change of DIP concentration. Therefore, by exploring the relationship between the change of DIP concentration in water and the occurrence of red tide, this study provides a possible direction for the current prediction of red tide, and provides a basis for further investigation of the occurrence mechanism of red tide.
Collapse
Affiliation(s)
- Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China.
| | - Xiaohan Xu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Weijia Fan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Xiaoshuang Deng
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Guangzhi Rong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, PR China
| |
Collapse
|
3
|
Komuro A, Son BK, Nanao-Hamai M, Song Z, Ogawa S, Akishita M. Effects of a high-phosphate diet on vascular calcification and abdominal aortic aneurysm in mice. Geriatr Gerontol Int 2024. [PMID: 39139097 DOI: 10.1111/ggi.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
AIM Vascular aging is an important risk factor for cardiovascular diseases, including abdominal aortic aneurysm (AAA) and pathological aortic dilatation, playing a critical role in the morbidity and mortality of older adults. Vascular calcification, a phenotype of vascular aging, is frequently associated with AAA. However, this association remains unclear owing to the lack of animal models. This study investigated the effects of a high-phosphate diet (HPD), a prominent trigger of vascular calcification in AAA. METHODS Eight-week-old male mice were fed either a normal diet (ND; Ca 1.18%/P 1.07% = 1.10) or an HPD (Ca 1.23%/P 1.65% = 0.75) for 4 weeks. Subsequently, AAA was induced using CaCl2 application and angiotensin II (AngII) infusion for 4 weeks. RESULTS The HPD resulted in more pronounced AAA formation than did the ND. Importantly, vascular calcification was observed only in the aorta of the HPD mice. Enhanced Runt-related transcription factor 2 expression and apoptosis (downregulation of growth arrest-specific gene 6/pAkt survival pathway), two major mechanisms of vascular calcification, were also observed. Furthermore, increased IL-6 and F4/80 expression was observed in the aorta of HPD mice. In RAW264.7 cells, inorganic phosphate enhanced IL-6 and IL-1β expression under AngII priming. Ferric citrate, a phosphate binder, significantly inhibited HPD-induced AAA formation. CONCLUSIONS These findings suggest that HPD induces vascular calcification and AAA formation, possibly through inflammation. This murine model suggests that vascular calcification induced by phosphate burden may be a therapeutic target for vascular diseases, including AAA. Geriatr Gerontol Int 2024; ••: ••-••.
Collapse
Grants
- 22K11697 Ministry of Education, Culture, Sports, Science, and Teis the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 23H02811 Ministry of Education, Culture, Sports, Science, and Teis the Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Aya Komuro
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Bo-Kyung Son
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Gerontology, The University of Tokyo, Tokyo, Japan
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Michiko Nanao-Hamai
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zehan Song
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Luo B, Ma P, Zhang C, Zhang X, Li J, Ma J, Han Z, Zhang S, Yu T, Zhang G, Zhang H, Zhang H, Li B, Guo J, Ge P, Lan Y, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Mining for QTL controlling maize low-phosphorus response genes combined with deep resequencing of RIL parental genomes and in silico GWAS analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:190. [PMID: 39043952 DOI: 10.1007/s00122-024-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ge
- SaileGene Inc, Beijing, 100020, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Cao M, Wang F, Ma S, Bashir S, Liu S, Sun K, Xing B. Deciphering the Impact of ZnO Nanoparticles and a Sunscreen Product Containing ZnO on Phosphorus Dynamics and Release in Chlorella pyrenoidosa in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10262-10274. [PMID: 38809112 DOI: 10.1021/acs.est.4c01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) expedite the conversion of organic phosphorus (OP) into PO4-P (Pi), facilitating phosphorus (P) absorption by algae. Our study explored the mechanisms of converting OP (2-aminoethylphosphonic acid (AEP) and β-glycerol phosphate (β-GP)) into Pi in Chlorella pyrenoidosa under P deficiency with sunscreen and ZnO NPs. Cell density followed the order of K2HPO4 > β-GP+ZnO > β-GP > AEP+ZnO > AEP > P-free. ZnO NPs promoted the conversion of β-GP, containing C-O-P bonds (0.028-0.041 mg/L), into Pi more efficiently than AEP, which possesses C-P bonds (0.022-0.037 mg/L). Transcriptomics revealed Pi transport/metabolism (phoB (3.99-12.01 fold), phoR (2.20-5.50 fold), ppa (4.49-10.40 fold), and ppk (2.50-5.40 fold)) and phospholipid metabolism (SQD1 (1.85-2.79 fold), SQD2 (2.60-6.53 fold), MGD (2.13-3.21 fold), and DGD (4.08-7.56 fold)) were up-regulated compared to K2HPO4. 31P nuclear magnetic resonance spectroscopy identified intracellular P as polyphosphate, orthophosphate, and pyrophosphate. Synchrotron radiation-based X-ray near-edge structure spectroscopy indicated that K2HPO4 and Zn3(PO4)2 in β-GP+ZnO were increased by 8.09% and 7.28% compared to AEP+ZnO, suggesting superior P storage in β-GP+ZnO. Overall, ZnO NPs improved photoinduced electron-hole pair separation and charge separation efficiency and amplified the ·OH and ·O2- levels, promoting OP photoconversion into Pi and algae growth.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street Beijing 100875, China
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan 32000, Pakistan
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst Massachusetts 01003, United States
| |
Collapse
|
6
|
Tao H, Gao F, Linying Li, He Y, Zhang X, Wang M, Wei J, Zhao Y, Zhang C, Wang Q, Hong G. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation. PLANT COMMUNICATIONS 2024; 5:100821. [PMID: 38229439 PMCID: PMC11121177 DOI: 10.1016/j.xplc.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.
Collapse
Affiliation(s)
- Han Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengyu Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Yan M, Xie M, Chen W, Si WJ, Lin HH, Yang J. Transcriptome analysis with different leaf blades identifies the phloem-specific phosphate transporter OsPHO1;3 required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:905-919. [PMID: 38251949 DOI: 10.1111/tpj.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengyang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wen-Jing Si
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
8
|
Mimura T, Reid R. Phosphate environment and phosphate uptake studies: past and future. JOURNAL OF PLANT RESEARCH 2024; 137:307-314. [PMID: 38517655 PMCID: PMC11082026 DOI: 10.1007/s10265-024-01520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 03/24/2024]
Abstract
The present review explains briefly the importance of phosphorus in the biological activities and states that the most phosphorus of living organisms is absorbed by plants from the soil. Next, previous studies on the mechanisms of phosphate uptake by plants are reviewed as H+-dependent or Na+-dependent co-transport systems and the phosphate environment in which plants grow is discussed. The evolution of transporter genes and their regulation mechanisms of expression is discussed in relation to the phosphorus environment.
Collapse
Affiliation(s)
- Tetsuro Mimura
- Department of Biosciences, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan.
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Biology, Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo, 188-0002, Japan.
| | - Robert Reid
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
9
|
Liu F, Cai S, Dai L, Zhou B. Two PHOSPHATE-TRANSPORTER1 genes in cotton enhance tolerance to phosphorus starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108128. [PMID: 39492164 DOI: 10.1016/j.plaphy.2023.108128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Phosphorus is an essential macronutrient element for productivity of crop ecosystems. But orthophosphate (Pi), the direct uptake form by plants, is found in low solubility in soil, leading to plants often suffer from Pi starvation when they grow. High-affinity Pi transporters (PTs) play roles in Pi starvation response (PSR), and they are the main Pi influx machinery. Like most sessile plants, cotton is also threatened by Pi deficiency and has developed sophisticated PSR systems to cope with phosphorus deficiency. However, the regulation mechanism of Pi homeostasis is largely unknown in cotton. Here, we identified that two cotton PHOSPHATE-TRANSPORTER1 family genes, GhPHT1;4 and GhPHT1;5, were mainly responsible for Pi uptake under Pi-starvation conditions in cotton. Their promoter activities were significantly activated by Pi deficiency and the overexpression of two genes enhanced the Pi uptake under Pi-deficiency and Pi-normal conditions. Furthermore, we found that PHT1;4 and PHT1;5 participated in modifying root architecture during Pi-starvation, as well as affecting the PSR in plant. Thus, we identified that two cotton Pi transporters functioned in Pi homeostasis, which would provide new gene resources for sustainable agriculture.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Liu X, Tian J, Liu G, Sun L. Multi-Omics Analysis Reveals Mechanisms of Strong Phosphorus Adaptation in Tea Plant Roots. Int J Mol Sci 2023; 24:12431. [PMID: 37569806 PMCID: PMC10419353 DOI: 10.3390/ijms241512431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Low phosphorus (P) is a major limiting factor for plant growth in acid soils, which are preferred by tea plants. This study aims to investigate the unique mechanisms of tea plant roots adaptation to low-P conditions. Tea plant roots were harvested for multi-omics analysis after being treated with 0 µmol·L-1 P (0P) and 250 µmol·L-1 P (250P) for 30 days. Under 250P conditions, root elongation was significantly inhibited, and the density of lateral roots was dramatically increased. This suggests that 250P may inhibit the elongation of tea plant roots. Moreover, the P concentration in roots was about 4.58 times higher than that under 0P, indicating that 250P may cause P toxicity in tea plant roots. Contrary to common plants, the expression of CsPT1/2 in tea plant roots was significantly increased by four times at 250P, which indicated that tea plant roots suffering from P toxicity might be due to the excessive expression of phosphate uptake-responsible genes under 250P conditions. Additionally, 94.80% of P-containing metabolites accumulated due to 250P stimulation, most of which were energy-associated metabolites, including lipids, nucleotides, and sugars. Especially the ratio of AMP/ATP and the expression of energy sensor CsSnRKs were inhibited by P application. Therefore, under 250P conditions, P over-accumulation due to the excessive expression of CsPT1/2 may inhibit energy metabolism and thus the growth of tea plant roots.
Collapse
Affiliation(s)
- Xiaomei Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China;
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Tropical Crops Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 570228, China;
| | - Jing Tian
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guodao Liu
- Institute of Tropical Crops Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 570228, China;
| | - Lili Sun
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
11
|
Wang L, Jia X, Xu L, Yu J, Ren S, Yang Y, Wang K, López-Arredondo D, Herrera-Estrella L, Lambers H, Yi K. Engineering microalgae for water phosphorus recovery to close the phosphorus cycle. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36920783 DOI: 10.1111/pbi.14040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahong Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suna Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujie Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Jia X, Wang L, Nussaume L, Yi K. Cracking the code of plant central phosphate signaling. TRENDS IN PLANT SCIENCE 2023; 28:267-270. [PMID: 36588035 DOI: 10.1016/j.tplants.2022.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phosphate (Pi) is involved in numerous metabolic processes and plays a vital role in plant growth. Green plants have evolved intricate molecular bases of Pi signaling to maintain cellular Pi homeostasis. Here, we summarize recent advances in the molecular and structural bases of central Pi signaling and discuss pending questions.
Collapse
Affiliation(s)
- Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, Saint-Paul lez Durance, France
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
13
|
Gu M, Huang H, Hisano H, Ding G, Huang S, Mitani-Ueno N, Yokosho K, Sato K, Yamaji N, Ma JF. A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains. THE NEW PHYTOLOGIST 2022; 234:1249-1261. [PMID: 35218012 DOI: 10.1111/nph.18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.
Collapse
Affiliation(s)
- Mian Gu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hengliang Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Guangda Ding
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
14
|
Chen J, Han X, Ye S, Liu L, Yang B, Cao Y, Zhuo R, Yao X. Integration of small RNA, degradome, and transcriptome sequencing data illustrates the mechanism of low phosphorus adaptation in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2022; 13:932926. [PMID: 35979079 PMCID: PMC9377520 DOI: 10.3389/fpls.2022.932926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 05/02/2023]
Abstract
Phosphorus (P) is an indispensable macronutrient for plant growth and development, and it is involved in various cellular biological activities in plants. Camellia oleifera is a unique high-quality woody oil plant that grows in the hills and mountains of southern China. However, the available P content is deficient in southern woodland soil. Until now, few studies focused on the regulatory functions of microRNAs (miRNAs) and their target genes under low inorganic phosphate (Pi) stress. In this study, we integrated small RNA, degradome, and transcriptome sequencing data to investigate the mechanism of low Pi adaptation in C. oleifera. We identified 40,689 unigenes and 386 miRNAs by the deep sequencing technology and divided the miRNAs into four different groups. We found 32 miRNAs which were differentially expressed under low Pi treatment. A total of 414 target genes of 108 miRNAs were verified by degradome sequencing. Gene ontology (GO) functional analysis of target genes found that they were related to the signal response to the stimulus and transporter activity, indicating that they may respond to low Pi stress. The integrated analysis revealed that 31 miRNA-target pairs had negatively correlated expression patterns. A co-expression regulatory network was established based on the profiles of differentially expressed genes. In total, three hub genes (ARF22, WRKY53, and SCL6), which were the targets of differentially expressed miRNAs, were discovered. Our results showed that integrated analyses of the small RNA, degradome, and transcriptome sequencing data provided a valuable basis for investigating low Pi in C. oleifera and offer new perspectives on the mechanism of low Pi tolerance in woody oil plants.
Collapse
Affiliation(s)
- Juanjuan Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Sicheng Ye
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Linxiu Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Bingbing Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Renying Zhuo,
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Xiaohua Yao,
| |
Collapse
|