1
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
2
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2024:S0966-842X(24)00214-2. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
3
|
Toloza-Moreno DL, Yockteng R, Pérez-Zuñiga JI, Salinas-Castillo C, Caro-Quintero A. Implications of Domestication in Theobroma cacao L. Seed-Borne Microbial Endophytes Diversity. MICROBIAL ECOLOGY 2024; 87:108. [PMID: 39196422 PMCID: PMC11358227 DOI: 10.1007/s00248-024-02409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
The study of plant-microbe interactions is a rapidly growing research field, with increasing attention to the role of seed-borne microbial endophytes in protecting the plant during its development from abiotic and biotic stresses. Recent evidence suggests that seed microbiota is crucial in establishing the plant microbial community, affecting its composition and structure, and influencing plant physiology and ecology. For Theobroma cacao L., the diversity and composition of vertically transmitted microbes have yet to be addressed in detail. We explored the composition and diversity of seed-borne endophytes in cacao pods of commercial genotypes (ICS95, IMC67), recently liberated genotypes from AGROSAVIA (TCS01, TCS19), and landraces from Tumaco (Colombia) (AC9, ROS1, ROS2), to evaluate microbial vertical transmission and establishment in various tissues during plant development. We observed a higher abundance of Pseudomonas and Pantoea genera in the landraces and AGROSAVIA genotypes, while the commercial genotypes presented a higher number of bacteria species but in low abundance. In addition, all the genotypes and plant tissues showed a high percentage of fungi of the genus Penicillium. These results indicate that domestication in cacao has increased bacterial endophyte diversity but has reduced their abundance. We isolated some of these seed-borne endophytes to evaluate their potential as growth promoters and found that Bacillus, Pantoea, and Pseudomonas strains presented high production of indole acetic acid and ACC deaminase activity. Our results suggest that cacao domestication could lead to the loss of essential bacteria for seedling establishment and development. This study improves our understanding of the relationship and interaction between perennial plants and seed-borne microbiota.
Collapse
Affiliation(s)
- Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - José Ives Pérez-Zuñiga
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Popayán, Popayán, Cauca, Colombia
| | - Cristian Salinas-Castillo
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
4
|
Schweitzer M, Kögl I, Wassermann B, Abdelfattah A, Wicaksono WA, Berg G. Urban air quality affects the apple microbiome assembly. ENVIRONMENTAL RESEARCH 2024; 262:119858. [PMID: 39197489 DOI: 10.1016/j.envres.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Exposure to air pollution affects health of all organisms on earth but the impact on the plant microbiome is less understood. Here, we link the Air Quality Index with the dust and apple epiphytic and endophytic microbiome across the city of Graz (Austria). The microbiome of the apple episphere, peel endosphere and pulp endosphere, and surrounding dust was analyzed. Our results show that the fungal communities were more influenced by air quality than bacterial communities. Bacterial communities, instead, were more specific for the individual sample types, especially noticeable in the pulp endosphere. The microbiome of each sample type was comprised of distinct microbial communities. Overall, the bacterial communities were highly dominated by Proteobacteria followed by Bacteroidota and Actinobacteriota, and the fungal communities were dominated by Ascomycota followed by Basidiomycota. With lower air quality, the relative abundance of the fungal orders Hypocreales and Pleosporales decreased in the apple episphere and the peel endosphere, respectively. Interestingly, an unexpectedly high level of similarity was observed between the bacterial communities of dust and peel endosphere, while the epiphytic bacterial community was significantly different compared to the other samples. We suggested that dust served as a potential microbial colonization route for the fruit microbiome as most bacteria (55%) colonizing the peel endosphere originated from dust. In conclusion, air quality affects the microbiome of edible plants, which can cause health consequences in humans. Therefore, this knowledge should be considered in urban and horticultural farming strategies.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
5
|
Zeng C, Liu Y, Zhang B, Zhang C, Li N, Ji L, Lan C, Qin B, Yang Y, Wang J, Chen T, Fang C, Lin W. The functional identification and evaluation of endophytic bacteria sourced from the roots of tolerant Achyranthes bidentata to overcome monoculture problems of Rehmannia glutinosa. Front Microbiol 2024; 15:1399406. [PMID: 39081886 PMCID: PMC11286500 DOI: 10.3389/fmicb.2024.1399406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
The isolation and identification of plant growth-promoting endophytic bacteria (PGPEB) from Achyranthes bidentata roots have profound theoretical and practical implications in ecological agriculture, particularly as bio-inoculants to address challenges associated with continuous monoculture. Our research revealed a significant increase in the abundance of these beneficial bacteria in A. bidentata rhizosphere soil under prolonged monoculture conditions, as shown by bioinformatics analysis. Subsequently, we isolated 563 strains of endophytic bacteria from A. bidentata roots. Functional characterization highlighted diverse plant growth-promoting traits among these bacteria, including the secretion of indole-3-acetic acid (IAA) ranging from 68.01 to 73.25 mg/L, phosphorus and potassium solubilization capacities, and antagonistic activity against pathogenic fungi (21.54%-50.81%). Through 16S rDNA sequencing, we identified nine strains exhibiting biocontrol and growth-promoting potential. Introduction of a synthetic microbial consortium (SMC) in pot experiments significantly increased root biomass by 48.19% in A. bidentata and 27.01% in replanted Rehmannia glutinosa. These findings provide innovative insights and strategies for addressing continuous cropping challenges, highlighting the practical promise of PGPEB from A. bidentata in ecological agriculture to overcome replanting obstacles for non-host plants like R. glutinosa, thereby promoting robust growth in medicinal plants.
Collapse
Affiliation(s)
- Chunli Zeng
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yazhou Liu
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bianhong Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chenjing Zhang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Niu Li
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leshan Ji
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chaojie Lan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Qin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuncheng Yang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juanying Wang
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Ting Chen
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Changxun Fang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Dor S, Nudel K, Eagan JL, Cohen R, Hull CM, Keller NP, Prusky D, Afriat-Jurnou L. Bacterial-fungal crosstalk is defined by a fungal lactone mycotoxin and its degradation by a bacterial lactonase. Appl Environ Microbiol 2024; 90:e0029924. [PMID: 38786360 PMCID: PMC11218642 DOI: 10.1128/aem.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.
Collapse
Affiliation(s)
- Shlomit Dor
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
| | - Keren Nudel
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Justin L. Eagan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rami Cohen
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
| | - Christina M. Hull
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Livnat Afriat-Jurnou
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
7
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
8
|
Su C, Xie T, Jiang L, Wang Y, Wang Y, Nie R, Zhao Y, He B, Ma J, Yang Q, Hao J. Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau. Ecol Evol 2024; 14:e11218. [PMID: 38606343 PMCID: PMC11007261 DOI: 10.1002/ece3.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Tingting Xie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Lijun Jiang
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Yunliang Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ying Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ruie Nie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Youjie Zhao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Bo He
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Junye Ma
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
| | - Qun Yang
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
- Nanjing CollegeUniversity of Chinese Academy of SciencesNanjingChina
| | - Jiasheng Hao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| |
Collapse
|
9
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
10
|
McLaughlin MS, Yurgel SN, Abbasi PA, Ali S. The effects of chemical fungicides and salicylic acid on the apple microbiome and fungal disease incidence under changing environmental conditions. Front Microbiol 2024; 15:1342407. [PMID: 38374916 PMCID: PMC10875086 DOI: 10.3389/fmicb.2024.1342407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Epiphytic and endophytic micro-organisms associated with plants form complex communities on or in their host plant. These communities influence physiological traits, development, and host susceptibility to abiotic and biotic stresses, and these communities are theorized to have evolved alongside their hosts, forming a unit of selection known as the holobiont. The microbiome is highly variable and can be influenced by abiotic factors, including applied exogenous agents. In this study, we compared the impact of chemical fungicide and salicylic acid treatments on the fungal communities of "Honeycrisp" apples at harvest over two consecutive growing years. We demonstrated variations in fungal community structure and composition by tissue type, growing season, and treatment regimes and that fungicide treatments were associated with reduced network complexity. Finally, we show that the inclusion of salicylic acid with 50% less chemical fungicides in an integrated spray program allowed a reduction in fungicide use while maintaining effective control of disease at harvest and following storage.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA, United States
| | - Pervaiz A. Abbasi
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| |
Collapse
|
11
|
Yang L, Guo Y, Yang H, Li S, Zhang Y, Hao L. Taxonomic and functional assembly cues enrich the endophytic tobacco microbiota across epiphytic compartments. mSphere 2024; 9:e0060723. [PMID: 38085017 PMCID: PMC10826349 DOI: 10.1128/msphere.00607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 01/31/2024] Open
Abstract
The plant microbiome plays a critical role in plant growth, development, and health, with endophytes being recognized as essential members due to their close interactions with host plants. However, knowledge gaps remain in understanding the mechanisms driving the colonization and establishment of endophytic communities. To address this issue, we investigated the microbiota of tobacco roots and leaves, including both epiphytic and endophytic microorganisms. We found that Actinobacteria and Alphaproteobacteria were significantly enriched in the root endosphere. Additionally, we identified higher abundances of functional traits involved in antibiotic synthesis, plant cell wall degradation, iron metabolism, secretion systems, and nicotine degradation enzymes in the endosphere. We further studied metagenome-assembled genomes from the rhizosphere and root endosphere, revealing a greater diversity of secondary metabolites in bacteria within the root endosphere. Together, this study provides insights into the taxonomic and functional assembly cues that may contribute to shaping the endophytic plant microbiota.IMPORTANCEThe presence of diverse microorganisms within plant tissues under natural conditions is a well-established fact. However, due to the plant immune system's barrier and the unique microhabitat of the plant interior, it remains unclear what specific characteristics bacteria require to successfully colonize and thrive in the plant endosphere. Recognizing the significance of unraveling these functional features, our study focused on investigating the enriched traits in the endophytic microbiota compared to the epiphytes. Through our research, we have successfully identified the taxonomic and functional assembly cues that drive the enrichment of the endophytic microbiota across the epiphytic compartments. These findings shed new light on the intricate mechanisms of endophyte colonization, thereby deepening our understanding of plant-microbe interactions and paving the way for further advancements in microbiome manipulation.
Collapse
Affiliation(s)
- Luhua Yang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yunzeng Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China
| |
Collapse
|
12
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
13
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
14
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
15
|
Hanifah NASB, Ghadamgahi F, Ghosh S, Ortiz R, Whisson SC, Vetukuri RR, Kalyandurg PB. Comparative transcriptome profiling provides insights into the growth promotion activity of Pseudomonas fluorescens strain SLU99 in tomato and potato plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1141692. [PMID: 37534284 PMCID: PMC10393259 DOI: 10.3389/fpls.2023.1141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 08/04/2023]
Abstract
The use of biocontrol agents with plant growth-promoting activity has emerged as an approach to support sustainable agriculture. During our field evaluation of potato plants treated with biocontrol rhizobacteria, four bacteria were associated with increased plant height. Using two important solanaceous crop plants, tomato and potato, we carried out a comparative analysis of the growth-promoting activity of the four bacterial strains: Pseudomonas fluorescens SLU99, Serratia plymuthica S412, S. rubidaea AV10, and S. rubidaea EV23. Greenhouse and in vitro experiments showed that P. fluorescens SLU99 promoted plant height, biomass accumulation, and yield of potato and tomato plants, while EV23 promoted growth in potato but not in tomato plants. SLU99 induced the expression of plant hormone-related genes in potato and tomato, especially those involved in maintaining homeostasis of auxin, cytokinin, gibberellic acid and ethylene. Our results reveal potential mechanisms underlying the growth promotion and biocontrol effects of these rhizobacteria and suggest which strains may be best deployed for sustainably improving crop yield.
Collapse
Affiliation(s)
- Nurul Atilia Shafienaz binti Hanifah
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- Agrobiodiversity and Environment Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
16
|
Wicaksono WA, Semler B, Pöltl M, Berg C, Berg G, Cernava T. The microbiome of Riccia liverworts is an important reservoir for microbial diversity in temporary agricultural crusts. ENVIRONMENTAL MICROBIOME 2023; 18:46. [PMID: 37264474 DOI: 10.1186/s40793-023-00501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The microbiota of liverworts provides an interesting model for plant symbioses; however, their microbiome assembly is not yet understood. Here, we assessed specific factors that shape microbial communities associated with Riccia temporary agricultural crusts in harvested fields by investigating bacterial, fungal and archaeal communities in thalli and adhering soil from different field sites in Styria and Burgenland, Austria combining qPCR analyses, amplicon sequencing and advanced microscopy. RESULTS Riccia spec. div. was colonized by a very high abundance of bacteria (1010 16S rRNA gene copies per g of thallus) as well as archaea and fungi (108 ITS copies per g of thallus). Each Riccia thallus contain approx. 1000 prokaryotic and fungal ASVs. The field type was the main driver for the enrichment of fungal taxa, likely due to an imprint on soil microbiomes by the cultivated crop plants. This was shown by a higher fungal richness and different fungal community compositions comparing liverwort samples collected from pumpkin fields, with those from corn fields. In contrast, bacterial communities linked to liverworts are highly specialized and the soil attached to them is not a significant source of these bacteria. Specifically, enriched Cyanobacteria, Bacteroidetes and Methylobacteria suggest a symbiotic interaction. Intriguingly, compared to the surrounding soil, the thallus samples were shown to enrich several well-known bacterial and fungal phytopathogens indicating an undescribed role of liverworts as potential reservoirs of crop pathogens. CONCLUSIONS Our results provide evidence that a stable bacterial community but varying fungal communities are colonizing liverwort thalli. Post-harvest, temporary agricultural biocrusts are important reservoirs for microbial biodiversity but they have to be considered as potential reservoirs for pathogens as well.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Bettina Semler
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Martina Pöltl
- Institute of Biology, University of Graz, Graz, 8010, Austria
| | - Christian Berg
- Institute of Biology, University of Graz, Graz, 8010, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria.
- Graz University of Technology, Graz, Austria.
| |
Collapse
|
17
|
da Silva JL, Mendes LW, Rocha SMB, Antunes JEL, Oliveira LMDS, Melo VMM, Oliveira FAS, Pereira APDA, Costa GDN, da Silva VB, Gomes RLF, de Alcantara Neto F, Lopes ACDA, Araujo ASF. Domestication of Lima Bean (Phaseolus lunatus) Changes the Microbial Communities in the Rhizosphere. MICROBIAL ECOLOGY 2023; 85:1423-1433. [PMID: 35525854 DOI: 10.1007/s00248-022-02028-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 05/10/2023]
Abstract
Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly. In general, rhizosphere communities were more diverse than bulk soil, but no differences were found among genotypes. Our results showed that the microbial community's structure was different from wild and semi-domesticated as compared to domesticated genotypes. The community similarity decreased 57.67% from wild to domesticated genotypes. In general, the most abundant phyla were Actinobacteria (21.9%), Proteobacteria (20.7%), Acidobacteria (14%), and Firmicutes (9.7%). Comparing the different genotypes, the analysis showed that Firmicutes (Bacillus) was abundant in the rhizosphere of the wild genotypes, while Acidobacteria dominated semi-domesticated plants, and Proteobacteria (including rhizobia) was enriched in domesticated P. lunatus rhizosphere. The domestication process also affected the microbial community network, in which the complexity of connections decreased from wild to domesticated genotypes in the rhizosphere. Together, our work showed that the domestication of P. lunatus shaped rhizosphere microbial communities from taxonomic to a functional level, changing the abundance of specific microbial groups and decreasing the complexity of interactions among them.
Collapse
Affiliation(s)
- Josieli Lima da Silva
- Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Sandra Mara Barbosa Rocha
- Soil Microbial Ecology Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | - Vania Maria Maciel Melo
- Laboratório de Ecologia Microbiana E Biotecnologia, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Gérson do Nascimento Costa
- Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Veronica Brito da Silva
- Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Regina Lucia Ferreira Gomes
- Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | |
Collapse
|
18
|
Abdelfattah A, Tack AJM, Lobato C, Wassermann B, Berg G. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol 2023; 31:346-355. [PMID: 36481186 DOI: 10.1016/j.tim.2022.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/10/2022]
Abstract
Despite evidence that the microbiome extends host genetic and phenotypic traits, information on how the microbiome is transmitted and maintained across generations remains fragmented. For seed-bearing plants, seeds harbor a distinct microbiome and play a unique role by linking one generation to the next. Studies on microbial inheritance, a process we suggest including both vertical transmission and the subsequent migration of seed microorganisms to the new plant, thus become essential for our understanding of host evolutionary potential and host-microbiome coevolution. We propose dividing the inheritance process into three stages: (i) plant to seed, (ii) seed dormancy, and (iii) seed to seedling. We discuss the factors affecting the assembly of the microbiome during the three stages, highlight future research directions, and emphasize the implications of microbial inheritance for fundamental science and society.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria.
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Carolina Lobato
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria; Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
19
|
Zhou R, Duan GL, García-Palacios P, Yang G, Cui HL, Yan M, Yin Y, Yi XY, Li L, Delgado-Baquerizo M, Zhu YG. Environmental factors and host genotype control foliar epiphytic microbial community of wild soybeans across China. Front Microbiol 2023; 14:1065302. [PMID: 36992926 PMCID: PMC10041966 DOI: 10.3389/fmicb.2023.1065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionThe microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood.MethodsHere, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified.ResultsOur findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa.ConclusionOur study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lv Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- *Correspondence: Yong-Guan Zhu,
| |
Collapse
|
20
|
Zhang YL, Guo XJ, Huang X, Guo RJ, Lu XH, Li SD, Zhang H. The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease. BIOLOGY 2023; 12:biology12020143. [PMID: 36829422 PMCID: PMC9952826 DOI: 10.3390/biology12020143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The root microbiota contributes to the plant's defense against stresses and pathogens. However, the co-association pattern of functional bacteria that improves plant resistance has not been interpreted clearly. Using Illumina high-throughput sequencing technology, the root bacterial community profiles of six cucumber cultivars with different resistance in response to the causative agent of cucumber Fusarium wilt (CFW), Fusarium oxysporum f. sp. cucumerinum (Foc), were analyzed. The principal coordinate analysis indicated that the interactions of the cultivars and pathogens drove the cucumber root bacterial communities (p = 0.001). The resistance-specific differential genera across the cultivars were identified, including Massilia in the resistant cultivars, unclassified Enterobacteriaceae in resistant CL11 and JY409, Pseudomonas in JY409, Cronobacter in moderately resistant ZN106, and unclassified Rhizobiaceae and Streptomyces in susceptible ZN6. The predominant root bacterium Massilia accounted for the relative abundance of up to 28.08-61.55%, but dramatically declined to 9.36% in Foc-inoculated susceptible ZN6. Pseudomonas ASV103 and ASV48 of Pseudomonadaceae and Cronobacter ASV162 of Enterobacteriaceae were consistently differential across the cultivars at the phylum, genus, and ASV levels. Using the culture-based method, antagonistic strains of Enterobacteriaceae with a high proportion of 51% were isolated. Furthermore, the bacterial complexes of Pantoea dispersa E318 + Pseudomonas koreensis Ps213 and Cronobacter spp. C1 + C7 reduced the disease index of CFW by 77.2% and 60.0% in the pot experiment, respectively. This study reveals the co-association of specific root bacteria with host plants and reveals insight into the suppressing mechanism of resistant cultivars against CFW disease by regulating the root microbiota.
Collapse
Affiliation(s)
- Yu-Lu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Jing Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Rong-Jun Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Xiao-Hong Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
21
|
Malacrinò A, Abdelfattah A, Belgacem I, Schena L. Plant genotype influence the structure of cereal seed fungal microbiome. Front Microbiol 2023; 13:1075399. [PMID: 36687609 PMCID: PMC9846234 DOI: 10.3389/fmicb.2022.1075399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Plant genotype is a crucial factor for the assembly of the plant-associated microbial communities. However, we still know little about the variation of diversity and structure of plant microbiomes across host species and genotypes. Here, we used six species of cereals (Avena sativa, Hordeum vulgare, Secale cereale, Triticum aestivum, Triticum polonicum, and Triticum turgidum) to test whether the plant fungal microbiome varies across species, and whether plant species use different mechanisms for microbiome assembly focusing on the plant ears. Using ITS2 amplicon metagenomics, we found that host species influences the diversity and structure of the seed-associated fungal communities. Then, we tested whether plant genotype influences the structure of seed fungal communities across different cultivars of T. aestivum (Aristato, Bologna, Rosia, and Vernia) and T. turgidum (Capeiti, Cappelli, Mazzancoio, Trinakria, and Timilia). We found that cultivar influences the seed fungal microbiome in both species. We found that in T. aestivum the seed fungal microbiota is more influenced by stochastic processes, while in T. turgidum selection plays a major role. Collectively, our results contribute to fill the knowledge gap on the wheat seed microbiome assembly and, together with other studies, might contribute to understand how we can manipulate this process to improve agriculture sustainability.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria,Leibniz-Institute for Agricultural Engineering Potsdam (ATB) and University of Potsdam, Potsdam, Germany,*Correspondence: Ahmed Abdelfattah, ✉
| | - Imen Belgacem
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, Le Rheu, France
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
22
|
Li X, Zeng S, Wisniewski M, Droby S, Yu L, An F, Leng Y, Wang C, Li X, He M, Liao Q, Liu J, Wang Y, Sui Y. Current and future trends in the biocontrol of postharvest diseases. Crit Rev Food Sci Nutr 2022; 64:5672-5684. [PMID: 36530065 DOI: 10.1080/10408398.2022.2156977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Postharvest diseases of fruits and vegetables cause significant economic losses to producers and marketing firms. Many of these diseases are caused by necrotrophic fungal pathogens that require wounded or injured tissues to establish an infection. Biocontrol of postharvest diseases is an evolving science that has moved from the traditional paradigm of one organism controlling another organism to viewing biocontrol as a system involving the biocontrol agent, the pathogen, the host, the physical environment, and most recently the resident microflora. Thus, the paradigm has shifted from one of simplicity to complexity. The present review provides an overview of how the field of postharvest biocontrol has evolved over the past 40 years, a brief review of the biology of necrotrophic pathogens, the discovery of BCAs, their commercialization, and mechanisms of action. Most importantly, current research on the use of marker-assisted-selection, the fruit microbiome and its relationship to the pathobiome, and the use of double-stranded RNA as a biocontrol strategy is discussed. These latter subjects represent evolving trends in postharvest biocontrol research and suggestions for future research are presented.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Shixian Zeng
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Fuquan An
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Min He
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yong Wang
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
23
|
Microbiome-based biotechnology for reducing food loss post harvest. Curr Opin Biotechnol 2022; 78:102808. [PMID: 36183451 DOI: 10.1016/j.copbio.2022.102808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Microbiomes have an immense potential to enhance plant resilience to various biotic and abiotic stresses. However, intrinsic microbial communities respond to changes in their host's physiology and environment during plant's life cycle. The potential of the inherent plant microbiome has been neglected for a long time, especially for the postharvest period. Currently, close to 50% of all produced fruits and vegetables are lost either during production or storage. Biological control of spoilage and storage diseases is still lacking sufficiency. Today, novel multiomics technologies allow us to study the microbiome and its responses on a community level, which will help to advance current classic approaches and develop more effective and robust microbiome-based solutions for fruit and vegetable storability, quality, and safety.
Collapse
|
24
|
Endophytes: Improving Plant Performance. Microorganisms 2022; 10:microorganisms10091777. [PMID: 36144379 PMCID: PMC9501292 DOI: 10.3390/microorganisms10091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Endophytes represent microorganisms that reside within plant tissues, without typically causing adverse effects to the plants, for a substantial part of their life cycle, and are primarily known for their beneficial role to their host plant [...].
Collapse
|
25
|
Microbial eco-evolutionary dynamics in the plant rhizosphere. Curr Opin Microbiol 2022; 68:102153. [DOI: 10.1016/j.mib.2022.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
|
26
|
Masocha VF, Liu H, Zhan P, Wang K, Zeng A, Shen S, Schneider H. Bacterial Microbiome in the Phyllo-Endosphere of Highly Specialized Rock Spleenwort. FRONTIERS IN PLANT SCIENCE 2022; 13:891155. [PMID: 35874023 PMCID: PMC9302946 DOI: 10.3389/fpls.2022.891155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Bacteria communities associated with plants have been given increasing consideration because they are arguably beneficial to their host plants. To understand the ecological and evolutionary impact of these mutualistic associations, it is important to explore the vast unknown territory of bacterial genomic diversity and their functional contributions associated with the major branches of the tree-of-life. Arguably, this aim can be achieved by profiling bacterial communities by applying high throughput sequencing approaches, besides establishing model plant organisms to test key predictions. This study utilized the Illumina Miseq reads of bacterial 16S rRNA sequences to determine the bacterial diversity associated with the endosphere of the leaves of the highly specialized rock spleenwort Asplenium delavayi (Aspleniaceae). By documenting the bacterial communities associated with ferns collected in natural occurrence and cultivation, this study discovered the most species-rich bacterial communities associated with terrestrial ferns reported until now. Despite the substantial variations of species diversity and composition among accessions, a set of 28 bacterial OTUs was found to be shared among all accessions. Functional analyses recovered evidence to support the predictions that changes in bacterial community compositions correspond to functional differentiation. Given the ease of cultivating this species, Asplenium delavayi is introduced here as a model organism to explore the ecological and evolutionary benefits created by mutualistic associations between bacteria and ferns.
Collapse
Affiliation(s)
- Valerie F. Masocha
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Pingshan Zhan
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Kaikai Wang
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ao Zeng
- School of Biological and Chemical Sciences, Pu’er University, Pu’er, China
| | - Sike Shen
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Harald Schneider
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Hacquard S, Wang E, Slater H, Martin F. Impact of global change on the plant microbiome. THE NEW PHYTOLOGIST 2022; 234:1907-1909. [PMID: 35599439 DOI: 10.1111/nph.18187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Holly Slater
- New Phytologist Central Office, Lancaster University, Bailrigg House, Lancaster, LA1 4YE, UK
| | - Francis Martin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
28
|
Wassermann B, Abdelfattah A, Wicaksono WA, Kusstatscher P, Müller H, Cernava T, Goertz S, Rietz S, Abbadi A, Berg G. The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines. Microb Biotechnol 2022; 15:2379-2390. [PMID: 35593114 PMCID: PMC9437892 DOI: 10.1111/1751-7915.14077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant‐related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes.
Collapse
Affiliation(s)
- Birgit Wassermann
- ACIB GmbH, Petersgasse 14, 8010, Graz, Austria.,Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Henry Müller
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Simon Goertz
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Steffen Rietz
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria.,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.,Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam OT Golm, Germany
| |
Collapse
|
29
|
Wassermann B, Abdelfattah A, Müller H, Korsten L, Berg G. The microbiome and resistome of apple fruits alter in the post-harvest period. ENVIRONMENTAL MICROBIOME 2022; 17:10. [PMID: 35256002 PMCID: PMC8900306 DOI: 10.1186/s40793-022-00402-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/06/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND A detailed understanding of antimicrobial resistance trends among all human-related environments is key to combat global health threats. In food science, however, the resistome is still little considered. Here, we studied the apple microbiome and resistome from different cultivars (Royal Gala and Braeburn) and sources (freshly harvested in South Africa and exported apples in Austrian supermarkets) by metagenomic approaches, genome reconstruction and isolate sequencing. RESULTS All fruits harbor an indigenous, versatile resistome composed of 132 antimicrobial resistance genes (ARGs) encoding for 19 different antibiotic classes. ARGs are partially of clinical relevance and plasmid-encoded; however, their abundance within the metagenomes is very low (≤ 0.03%). Post-harvest, after intercontinental transport, the apple microbiome and resistome was significantly changed independently of the cultivar. In comparison to fresh apples, the post-harvest microbiome is characterized by higher abundance of Enterobacteriales, and a more diversified pool of ARGs, especially associated with multidrug resistance, as well as quinolone, rifampicin, fosfomycin and aminoglycoside resistance. The association of ARGs with metagenome-assembled genomes (MAGs) suggests resistance interconnectivity within the microbiome. Bacterial isolates of the phyla Gammaproteobacteria, Alphaproteobacteria and Actinobacteria served as representatives actively possessing multidrug resistance and ARGs were confirmed by genome sequencing. CONCLUSION Our results revealed intrinsic and potentially acquired antimicrobial resistance in apples and strengthen the argument that all plant microbiomes harbor diverse resistance features. Although the apple resistome appears comparatively inconspicuous, we identified storage and transport as potential risk parameters to distribute AMR globally and highlight the need for surveillance of resistance emergence along complex food chains.
Collapse
Affiliation(s)
- Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Republic of South Africa
- DSI-NRF Centre of Excellence in Food Security, Pretoria, Republic of South Africa
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Postdam, 14476 Potsdam OT Golm, Germany
| |
Collapse
|