1
|
Xie L, Li Y, Sun W, Pu M, Zhou J, He Y, Peng Y, Zheng C, Jiang C, Xu X, Xie X. OsPIL15-Induced Delay in Rice Heading Date via Direct Binding to the OsLF Promoter is Dependent on Functional Phytochrome B. PLANT, CELL & ENVIRONMENT 2025; 48:3326-3336. [PMID: 39737650 DOI: 10.1111/pce.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Heading date of rice (Oryza sativa) is a key factor determining rice production and regional adaptability. We analysed the molecular mechanism of OsPIL15, encoding phytochrome-interacting factor-like protein, in delaying rice heading date. Overexpression of OsPIL15 delayed rice heading date by upregulating Hd1 and inhibiting Hd3a and RFT1 expression. OsLF, encoding one rice heading repressor, was found to be the putative candidate regulated by OsPIL15 through a chromatin immunoprecipitation sequencing assay and a transcriptome sequencing assay. OsPIL15 could directly bind to the OsLF promoter and activated its expression. Knocking-out OsLF in OsPIL15-overexpressing lines resulted in flowering 2-3 days earlier, partially rescuing the delayed phenotype. This indicates that overexpression of OsPIL15 overexpression delays heading date partially through OsLF. Protein-protein interaction assay of OsPIL15 or OsPIL15-∆APB (OsPIL15 lacking the active phytochrome B [phyB]-binding [APB] motif) with PHYB showed that the APB motif was required for the interaction between OsPIL15 and PHYB. Furthermore, overexpression of either OsPIL15-∆APB in the wild type or OsPIL15 in the phyB mutant did not delay rice heading date under natural long-day conditions, suggesting that phyB influences OsPIL15-mediated delay in rice heading date.
Collapse
Affiliation(s)
- Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yaping Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Sun
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Menglin Pu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jinjun Zhou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanan He
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongbin Peng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongke Zheng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Conghui Jiang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Saini DK, Bahuguna RN, Pal M, Chaturvedi AK, Krishna Jagadish SV. Genome-Wide Mapping, Allelic Fingerprinting, and Haplotypes Validation Provide Insights Into the Genetic Control of Phenotypic Plasticity in Rice. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40108857 DOI: 10.1111/pce.15477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Plant density significantly impacts photosynthesis, crop growth, and yield, thereby shaping the [CO2] fertilization effect and intricate physiological interactions in rice. An association panel of 171 rice genotypes was evaluated for physiological and yield-related traits, including the cumulative response index, under both normal planting density (NPD) and low planting density (LPD) conditions. LPD, serving as a proxy for elevated atmospheric [CO2], significantly increased all trait values, except for harvest index, compared to NPD. A genome-wide association study identified 172 QTNs, including 12 associated with multiple traits under NPD or LPD conditions. Candidate gene mining and network analysis within QTN regions identified potential candidates such as OsHAK1, RGA1, OsalphaCA3, OsalphaCA4, OsalphaCA5, OsCYP38, and OsPIN1, influencing various physiological and yield-related traits under LPD conditions. A significant relationship between the percentage of favorable alleles in genotypes and their performance under different conditions was observed. Potential haplotypes were validated using genotypes identified with contrasting [CO2] responses, grown under LPD and Free-Air [CO2] Enrichment facility. These findings can aid in selectively breeding genotypes with favorable alleles or haplotypes to enhance [CO2] responsiveness in rice. Incorporating greater phenotypic plasticity can help develop climate-smart rice varieties that increase grain yield and quality while mitigating losses from warming temperatures.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| | | | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Ashish Kumar Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, India
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Li R, Liu J, Chai L, Du D, Yang W, Zhu J, Gao Y, Liu Y, Miao L, Song L, Xie X, Chen Y, Zhang Z, Ni P, Zhao Y, Li Z, Lu L, Guo W, Peng H, Sun Q, Ni Z. Natural variation in TaERF-A1 confers semi-dwarf and lodging-resistant plant architecture in wheat. PLANT COMMUNICATIONS 2025; 6:101194. [PMID: 39563037 PMCID: PMC11956107 DOI: 10.1016/j.xplc.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The introduction of Reduced height (Rht) genes into wheat varieties has been pivotal in developing semi-dwarf plant architectures, significantly improving lodging resistance and harvest indices. Therefore, identifying new Rht gene resources for breeding semi-dwarf wheat cultivars has been a key strategy for ensuring high and stable grain yields since the 1960s. In this study, we report the map-based cloning of TaERF-A1, which encodes an AP2/ERF (APETALA2/ethylene responsive factor) transcription factor that acts as a positive regulator of wheat stem elongation, as a novel gene that regulates plant height and spike length. The natural variant, TaERF-A1JD6, features a Phe (derived from 'Nongda3338') to Ser (derived from 'Jingdong6') substitution at position 178, which significantly reduces the stability of the TaERF-A1 protein. This substitution leads to partially attenuated transcriptional activation of downstream target genes, including TaPIF4 (Triticum aestivum Phytochrome Interacting Factor 4), thereby restricting stem and spike elongation. Importantly, the introgression of the semi-dwarfing allele TaERF-A1JD6 into wheat can significantly enhance lodging resistance, particularly in dense cropping systems. Therefore, our study identifies TaERF-A1JD6 as a new Rht gene resource for breeding semi-dwarf wheat varieties with increased yield stability.
Collapse
Affiliation(s)
- Renhan Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Wen Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jun Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yaotian Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yunjie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Long Song
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Zhaoju Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lahu Lu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China.
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Liang X, Zhao C, Cui J, Liu Z, Han D, Chen Q, Yang M, Jiang Z. Genome-Wide Identification of GmPIF Family and Regulatory Pathway Analysis of GmPIF3g in Different Temperature Environments. Int J Mol Sci 2025; 26:551. [PMID: 39859267 PMCID: PMC11765412 DOI: 10.3390/ijms26020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs. Genome-wide collinearity analysis revealed that fragment duplication events play a dominant role in expanding the GmPIF gene family. Cis-acting element analysis revealed that the GmPIF gene family is involved in light response, hormone response, biotic-abiotic stress response elements, and plant growth and development. Gene expression analysis in different temperature environments showed that the GmPIF family was found to be induced by phytohormone treatments, with a significant increase in the expression level of GmPIF3g. GmPIF3g plays a key role in the regulation of the entire network, and in addition, 30 proteins interacting with the GmPIF3g promoter were identified through the use of a novel biofilm interference technique. This technique showed that the transcription factor Dof (DNA binding with one finger) binds to the GmPIF3g promoter, and Y1H assays indicated that Dof regulates its expression by binding to the PIF promoter. These results provide a theoretical basis for further studies on the regulatory network of GmPIF genes to improve the structure of soybean plants under shade environments, as well as a new method for analyzing regulatory elements that interact with gene promoters.
Collapse
Affiliation(s)
- Xuefeng Liang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Caitong Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Jiayang Cui
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China;
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Zhenfeng Jiang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| |
Collapse
|
5
|
Chen H, Sheng J, Ye Q, Li J, Yu X, Wu H, Zhang R, Zhao S, Zou X, Li X, Xue G, Yuan B. Efficient resource recovery from food waste digestate via hydrothermal treatment and its application as organic fertilizer. BIORESOURCE TECHNOLOGY 2025; 416:131742. [PMID: 39542059 DOI: 10.1016/j.biortech.2024.131742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
With the continuous recognition of green, organic and non-polluting products, organic fertilizers play an increasingly vital role in agricultural production. Among them, hydrochar-based organic fertilizer has attracted widespread attention recently. The present study evaluated the potential of digestate from anaerobic digestion of food waste for the preparation of hydrochar-based organic fertilizer by straw-based, FeCl3-catalyzed hydrothermal carbonization (HTC). Under the optimal conditions, a hydrochar-based organic fertilizer with > 25 wt% humus content and limited pollution risk was successfully prepared. The pot experiment demonstrated the feasibility of improving the physicochemical properties of red soil and promoting crop growth after adding hydrochar in place of commercial fertilizer. In addition, the function of zeolite on nutrient recovery in hydrothermal liquid (HTL) was analyzed, and preparing the slow-release organic fertilizer by mixing the nutrient-rich zeolite with hydrochar in a mass ratio of 1:4 was proposed. This work has significant implications for achieving the efficient resource recovery of digestate.
Collapse
Affiliation(s)
- Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jun Sheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qinhui Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jun Li
- Marine Design & Research Institute of China, Zhongshan Nanyi Road, Shanghai 200011, China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hanyue Wu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Rui Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Shiyi Zhao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an 343009, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Baoling Yuan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
6
|
Jiao K, Xia G, Zhou Y, Zhao C, Yan H, Qi M, Xie P, Ni Y, Zhao J, Niu J, Chao Z, Ren J, Li L. Genetic Mapping by 55K Single-Nucleotide Polymorphism Array Reveals Candidate Genes for Tillering Trait in Wheat Mutant dmc. Genes (Basel) 2024; 15:1652. [PMID: 39766919 PMCID: PMC11728102 DOI: 10.3390/genes15121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND The tiller number is a key agronomic trait for increasing the yield potential of wheat (Triticum aestivum L.). A number of quantitative trait loci (QTLs) and key genes controlling tillering have been identified, but the regulatory mechanisms remain unclear. METHODS In this study, we utilized the dwarf-monoculm mutant (dmc) obtained from the ethyl methane sulfonate (EMS)-treated wheat cultivar Guomai 301. The F2 populations were constructed using the dmc mutant crossed to multiple tiller parents. The F2 populations were surveyed for tillering traits at the critical fertility stage for genetic analyses. The extreme-tillering-phenotype plants from the F2 population were used to construct mixing pools that were analyzed by a wheat 55K SNP array. The tillering genes of dmc were mapped using the wheat 55K SNP array combined with transcriptomic data. RESULTS The results showed that the genetic phenotype of dmc is controlled by two dominant genes. The tillering genes of dmc were mapped on the 60-100 Mb region of chromosome 5B and the 135-160 Mb region of chromosome 7A. A total of sixteen candidate genes associated with the tillering trait of dmc were identified. Two candidate genes, TraesCS5B02G058800 and TraesCS7A02G184200, were predicted to be involved in indole acetic acid (IAA) response and transport, which were considered as potential regulatory genes. CONCLUSIONS This study elucidated the genetic basis of the dmc mutant and provided two valuable reference genes for studying the development and regulatory mechanisms of wheat tillering.
Collapse
Affiliation(s)
- Kemeng Jiao
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Guojun Xia
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuan Zhou
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Chenyu Zhao
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Huiyuan Yan
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Menglei Qi
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Pingfan Xie
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Yongjing Ni
- Henan Engineering Research Centre of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, China;
| | - Jingxue Zhao
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaofei Chao
- Jiaozuo Seed Industry Development Center, Jiaozuo 454150, China;
| | - Jiangping Ren
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China; (K.J.); (G.X.); (Y.Z.); (C.Z.); (H.Y.); (M.Q.); (P.X.); (J.Z.); (J.N.); (J.R.)
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
7
|
Zhang N, Liu Y, Gui S, Wang Y. Regulation of tillering and panicle branching in rice and wheat. J Genet Genomics 2024:S1673-8527(24)00354-0. [PMID: 39675465 DOI: 10.1016/j.jgg.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat. Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage, respectively, both of which are significantly impacted by hormones and genetic factors. Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity. Here, we summarize the recent progress in genetic, hormonal, and environmental factors regulation in the branching of rice and wheat. This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat, but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuhao Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Songtao Gui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024; 5:101073. [PMID: 39205390 PMCID: PMC11671761 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Yang T, Ma X, Zhang Q, Li L, Zhu R, Zeng A, Liu W, Liu H, Wang Y, Han S, Khan NU, Li J, Li Z, Zhang Z, Zhang H. Natural variation in the Tn1a promoter regulates tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3345-3360. [PMID: 39189440 PMCID: PMC11606419 DOI: 10.1111/pbi.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K+ content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a+272 bp allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.
Collapse
Affiliation(s)
- Tao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- College of Agriculture, Henan University of Science and TechnologyLuoyangChina
| | - Quan Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Lin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Rui Zhu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - An Zeng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Wanying Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Haixia Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| |
Collapse
|
10
|
Liu Q, Wang B, Xu W, Yuan Y, Yu J, Cui G. Genome-wide investigation of the PIF gene family in alfalfa (Medicago sativa L.) expression profiles during development and stress. BMC Genom Data 2024; 25:79. [PMID: 39223486 PMCID: PMC11370104 DOI: 10.1186/s12863-024-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Phytochrome-interacting factors (PIFs) plays an important role in plants as hubs for intracellular signaling regulation. The PIF gene family has been identified and characterized in many plants, but alfalfa (Medicago sativa L.), an important perennial high-quality legume forage, has not been reported on the PIF gene family. RESULTS In this study, we presented the identification and characterization of five MsPIF genes in alfalfa (Medicago sativa L.). Phylogenetic analysis indicated that PIFs from alfalfa and other four plant species could be divided into three groups supported by similar motif analysis. The collinearity analysis of the MsPIF gene family showed the presence of two gene pairs, and the collinearity analysis with AtPIFs showed three gene pairs, indicating that the evolutionary process of this family is relatively conservative. Analysis of cis-acting elements in promoter regions of MsPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Gene expression analyses demonstrated that MsPIFs were primarily expressed in the leaves and were induced by various abiotic stresses. CONCLUSION This study conducted genome-wide identification, evolution, synteny analysis, and expression analysis of the PIFs in alfalfa. Our study lays a foundation for the study of the biological functions of the PIF gene family and provides a useful reference for improving abiotic stress resistance in alfalfa.
Collapse
Affiliation(s)
- Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
11
|
Xu H, Yu R, Tang Y, Meng J, Tao J. Identification and Functional Studies on the Role of PlSPL14 in Herbaceous Peony Stem Development. Int J Mol Sci 2024; 25:8443. [PMID: 39126014 PMCID: PMC11313244 DOI: 10.3390/ijms25158443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.
Collapse
Affiliation(s)
- Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Renkui Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
13
|
Liu W, Yang Y, Hu Y, Peng X, He L, Ma T, Zhu S, Xiang L, Chen N. Overexpression of SQUAMOSA promoter binding protein-like 4a (NtSPL4a) alleviates Cd toxicity in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108656. [PMID: 38685151 DOI: 10.1016/j.plaphy.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ya Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
14
|
Cao J, Qin Z, Cui G, Chen Z, Cheng X, Peng H, Yao Y, Hu Z, Guo W, Ni Z, Sun Q, Xin M. Natural variation of STKc_GSK3 kinase TaSG-D1 contributes to heat stress tolerance in Indian dwarf wheat. Nat Commun 2024; 15:2097. [PMID: 38453935 PMCID: PMC10920922 DOI: 10.1038/s41467-024-46419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.
Collapse
Affiliation(s)
- Jie Cao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Guangxian Cui
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaoyan Chen
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Xuejiao Cheng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Sun Y, Li Q, Wu M, Wang Q, Zhang D, Gao Y. Rice PIFs: Critical regulators in rice development and stress response. PLANT MOLECULAR BIOLOGY 2024; 114:1. [PMID: 38177976 DOI: 10.1007/s11103-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.
Collapse
Affiliation(s)
- Yixuan Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Meidi Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qingwen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yong Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Lei K, Hu H, Chang M, Sun C, Ullah A, Yu J, Dong C, Gao Q, Jiang D, Cao W, Tian Z, Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:107850. [PMID: 38042099 DOI: 10.1016/j.plaphy.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 12/04/2023]
Abstract
Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjie Chang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Yang R, Yang Z, Xing M, Jing Y, Zhang Y, Zhang K, Zhou Y, Zhao H, Qiao W, Sun J. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging. J Genet Genomics 2023; 50:861-871. [PMID: 37734712 DOI: 10.1016/j.jgg.2023.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Brassinosteroids (BRs) are vital plant steroid hormones involved in numerous aspects of plant life including growth, development, and responses to various stresses. However, the underlying mechanisms of how BR regulates abiotic stress responses in wheat (Triticum aestivum L.) remain to be elucidated. Here, we find that BR signal core transcription factor BRASSINAZOLE-RESISTANT1 (TaBZR1) is significantly up-regulated by salt treatment. Overexpression of Tabzr1-1D (a gain-of-function TaBZR1 mutant protein) improves wheat salt tolerance. Furthermore, we show that TaBZR1 binds directly to the G-box motif in the promoter of ABA biosynthesis gene TaNCED3 to activate its expression and promotes ABA accumulation. Moreover, TaBZR1 associates with the promoters of ROS-scavenging genes TaGPX2 and TaGPX3 to activate their expression. Taken together, our results elucidate that TaBZR1 improves salt-stress tolerance by activating some genes involved in the biosynthesis of ABA and ROS scavenging in wheat, which gives us a new strategy to improve the salt tolerance of wheat.
Collapse
Affiliation(s)
- Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China.
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Dong H, Li D, Yang R, Zhang L, Zhang Y, Liu X, Kong X, Sun J. GSK3 phosphorylates and regulates the Green Revolution protein Rht-B1b to reduce plant height in wheat. THE PLANT CELL 2023; 35:1970-1983. [PMID: 36945740 PMCID: PMC10226569 DOI: 10.1093/plcell/koad090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 05/30/2023]
Abstract
The utilization of stabilized DELLA proteins Rht-B1b and Rht-D1b was crucial for increasing wheat (Triticum aestivum) productivity during the Green Revolution. However, the underlying mechanisms remain to be clarified. Here, we cloned a gain-of-function allele of the GSK3/SHAGGY-like kinase-encoding gene GSK3 by characterizing a dwarf wheat mutant. Furthermore, we determined that GSK3 interacts with and phosphorylates the Green Revolution protein Rht-B1b to promote it to reduce plant height in wheat. Specifically, phosphorylation by GSK3 may enhance the activity and stability of Rht-B1b, allowing it to inhibit the activities of its target transcription factors. Taken together, we reveal a positive regulatory mechanism for the Green Revolution protein Rht-B1b by GSK3, which might have contributed to the Green Revolution in wheat.
Collapse
Affiliation(s)
- Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Liu Y, Shen K, Yin C, Xu X, Yu X, Ye B, Sun Z, Dong J, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Wang Z, Wu H, Liu D, Zhang L, Shen L, Hao Y, Lu F, Guo Z. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biol 2023; 24:114. [PMID: 37173729 PMCID: PMC10176713 DOI: 10.1186/s13059-023-02932-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
21
|
Sun J, Bie XM, Chu XL, Wang N, Zhang XS, Gao XQ. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1142779. [PMID: 36895877 PMCID: PMC9989183 DOI: 10.3389/fpls.2023.1142779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tillering is a critical agronomic trait of wheat (Triticum aestivum L.) that determines the shoot architecture and affects grain yield. TERMINAL FLOWER 1 (TFL1), encoding a phosphatidylethanolamine-binding protein, is implicated in the transition to flowering and shoot architecture in plant development. However, the roles of TFL1 homologs is little known in wheat development. CRISPR/Cas9-mediated targeted mutagenesis was used in this study to generate a set of wheat (Fielder) mutants with single, double or triple-null tatfl1-5 alleles. The wheat tatfl1-5 mutations decreased the tiller number per plant in the vegetative growth stage and the effective tiller number per plant and spikelet number per spike at maturity in the field. RNA-seq analysis showed that the expression of the auxin signaling-related and cytokinin signaling-related genes was significantly changed in the axillary buds of tatfl1-5 mutant seedlings. The results suggested that wheat TaTFL1-5s were implicated in tiller regulation by auxin and cytokinin signaling.
Collapse
|
22
|
He L, Peng X, Cao H, Yang K, Xiang L, Li R, Zhang F, Liu W. The NtSPL Gene Family in Nicotiana tabacum: Genome-Wide Investigation and Expression Analysis in Response to Cadmium Stress. Genes (Basel) 2023; 14:183. [PMID: 36672923 PMCID: PMC9859093 DOI: 10.3390/genes14010183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The SQUAMOSA promoter binding protein-like (SPL)SPL family genes play an important role in regulating plant growth and development, synthesis of secondary metabolites, and resistance to stress. Understanding of the role of the SPL family in tobacco is still limited. In this study, 42 NtSPL genes were identified from the genome of the tobacco variety TN90. According to the results of the conserved motif and phylogenetic tree, the NtSPL genes were divided into eight subgroups, and the genes in the same subgroup showed similar gene structures and conserved domains. The cis-acting element analysis of the NtSPL promoters showed that the NtSPL genes were regulated by plant hormones and stresses. Twenty-eight of the 42 NtSPL genes can be targeted by miR156. Transcriptome data and qPCR results indicated that the expression pattern of miR156-targeted NtSPL genes was usually tissue specific. The expression level of miR156 in tobacco was induced by Cd stress, and the expression pattern of NtSPL4a showed a significant negative correlation with that of miR156. These results suggest that miR156-NtSPL4a may mediate the tobacco response to Cd stress. This study lays a foundation for further research on the function of the NtSPL gene and provides new insights into the involvement of NtSPL genes in the plant response to heavy metal stress.
Collapse
Affiliation(s)
- Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanping Cao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Kunjian Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Lien Xiang
- College of Environmental Science & Engineering, China West Normal University, Nanchong 637009, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fangyuan Zhang
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
23
|
Wang Z, Dhakal S, Cerit M, Wang S, Rauf Y, Yu S, Maulana F, Huang W, Anderson JD, Ma XF, Rudd JC, Ibrahim AMH, Xue Q, Hays DB, Bernardo A, St. Amand P, Bai G, Baker J, Baker S, Liu S. QTL mapping of yield components and kernel traits in wheat cultivars TAM 112 and Duster. FRONTIERS IN PLANT SCIENCE 2022; 13:1057701. [PMID: 36570880 PMCID: PMC9768232 DOI: 10.3389/fpls.2022.1057701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.
Collapse
Affiliation(s)
- Zhen Wang
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Smit Dhakal
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Mustafa Cerit
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shichen Wang
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, United States
| | - Yahya Rauf
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuhao Yu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Frank Maulana
- Noble Research Institute, Ardmore, OK, United States
| | - Wangqi Huang
- Noble Research Institute, Ardmore, OK, United States
| | | | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, United States
| | - Jackie C. Rudd
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Amir M. H. Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Dirk B. Hays
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Amy Bernardo
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Paul St. Amand
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Guihua Bai
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Jason Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shannon Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| |
Collapse
|
24
|
Comprehensive Analysis of Betula platyphylla Suk. PIF Gene Family and Their Potential Functions in Growth and Development. Int J Mol Sci 2022; 23:ijms232315326. [PMID: 36499652 PMCID: PMC9738378 DOI: 10.3390/ijms232315326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Phytochrome-interacting factors (PIFs) are transcription factors with the basic helix-loop-helix (bHLH) domain. As integration factors between different signal pathways, members of the PIF protein family regulate many aspects of plant growth and development, such as seed germination, photomorphogenesis, thermomorphogenesis, rhythm regulation, flowering response, stomatal development, and stress responses. Our previous studies have shown that the BpSPL2 gene may regulate plants' adventitious root development through PIF genes. Within the Betula platyphylla genome, we identified eight PIF (BpPIFs) genes. We analysed and named them based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that transposition or segmental duplication events played a minor role in the expansion of BpPIFs. The comparative syntenic analysis combined with phylogenetic analysis provided a deep insight into the phylogenetic relationships of BpPIF genes, suggesting that BpPIF proteins are closer to PtPIF than to AtPIF. The analysis of cis-acting elements in promoter regions of BpPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. In addition, we found that these promoters have the transcription factor of B. platyphylla SPL2 (BpSPL2) binding motif GTAC. Expression analysis demonstrated that BpPIF genes, especially BpPIF4, BpPIF9b, and BpPIF10, might be the potential target genes of BpSPL2 in the process of adventitious root formation. Besides providing a comprehensive understanding of the BpPIF family, we propose a hypothetical gene network regulatory model for adventitious root formation.
Collapse
|
25
|
Wu J, Xu D, Fu L, Wu L, Hao W, Li J, Dong Y, Wang F, Wu Y, He Z, Si H, Ma C, Xia X. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2665-2673. [PMID: 35986759 DOI: 10.1007/s00122-022-04140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 05/26/2023]
Abstract
A stripe rust resistance gene YrZM175 in Chinese wheat cultivar Zhongmai 175 was mapped to a genomic interval of 636.4 kb on chromosome arm 2AL, and a candidate gene was predicted. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is a worldwide wheat disease that causes large losses in production. Fine mapping and cloning of resistance genes are important for accurate marker-assisted breeding. Here, we report the fine mapping and candidate gene analysis of stripe rust resistance gene YrZM175 in a Chinese wheat cultivar Zhongmai 175. Fifteen F1, 7,325 F2 plants and 117 F2:3 lines derived from cross Avocet S/Zhongmai 175 were inoculated with PST race CYR32 at the seedling stage in a greenhouse, and F2:3 lines were also evaluated for stripe rust reaction in the field using mixed PST races. Bulked segregant RNA-seq (BSR-seq) analyses revealed 13 SNPs in the region 762.50-768.52 Mb on chromosome arm 2AL. By genome mining, we identified SNPs and InDels between the parents and contrasting bulks and mapped YrZM175 to a 0.72-cM, 636.4-kb interval spanned by YrZM175-InD1 and YrZM175-InD2 (763,452,916-764,089,317 bp) including two putative disease resistance genes based on IWGSC RefSeq v1.0. Collinearity analysis indicated similar target genomic intervals in Chinese Spring, Aegilops tauschii (2D: 647.7-650.5 Mb), Triticum urartu (2A: 750.7-752.3 Mb), Triticum dicoccoides (2A: 771.0-774.5 Mb), Triticum turgidum (2B: 784.7-788.2 Mb), and Triticum aestivum cv. Aikang 58 (2A: 776.3-778.9 Mb) and Jagger (2A: 789.3-791.7 Mb). Through collinearity analysis, sequence alignments of resistant and susceptible parents and gene expression level analysis, we predicted TRITD2Bv1G264480 from Triticum turgidum to be a candidate gene for map-based cloning of YrZM175. A gene-specific marker for TRITD2Bv1G264480 co-segregated with the resistance gene. Molecular marker analysis and stripe rust response data revealed that YrZM175 was different from genes Yr1, Yr17, Yr32, and YrJ22 located on chromosome 2A. Fine mapping of YrZM175 lays a solid foundation for functional gene analysis and marker-assisted selection for improved stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Jingchun Wu
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong province, China
| | - Luping Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu province, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu province, Yangzhou, 225009, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610011, Sichuan province, China
| | - Weihao Hao
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong province, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengju Wang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuying Wu
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office c/o, CAAS, Beijing, 100081, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
26
|
Chen Y, Zhang M, Wang Y, Zheng X, Zhang H, Zhang L, Tan B, Ye X, Wang W, Li J, Li M, Cheng J, Feng J. PpPIF8, a DELLA2-interacting protein, regulates peach shoot elongation possibly through auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111409. [PMID: 35934255 DOI: 10.1016/j.plantsci.2022.111409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Rapid growth of branches in a peach tree restricts the light penetration and air ventilation within the orchard, which lowers fruit quality and promotes the occurrence of diseases and insects. Our previous works showed that PpDELLA1 and PpDELLA2 repress the rapid growth of annual shoots. Proteins that interact with DELLA are vital for its function. In this study, seven PpPIFs (PpPIF1, -2, -3, -4, -6, -7 and -8) were identified in the peach genome and contain a conserved bHLH domain. Among the seven PpPIFs, PpPIF8 interacted with PpDELLA2 through an unknown motif in the C-terminal and/or the bHLH domain. Overexpression of PpPIF8 in Arabidopsis promotes plant height and branch numbers. Hypocotyl elongation was significantly enhanced by PpPIF8 under weak light intensity. PpPIF8 overexpressed in Arabidopsis and transiently expressed in peach seedlings upregulated the transcription of YUCCA and SAUR19 and downregulated SHY1 and -2. Additionally, PpPIF4 and -8 were significantly induced by weak light. Phylogentic analysis and intron patterns of the bHLH domain strongly suggested that PIFs from six species could be divided into two groups of different evolutionary origins. These results lay a foundation for the further study of the repression of shoot growth by PpDELLA2 through protein interaction with PpPIF8 in peach.
Collapse
Affiliation(s)
- Yun Chen
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Mengmeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Yingcong Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Ming Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| |
Collapse
|
27
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
28
|
Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Genes (Basel) 2022; 13:genes13081455. [PMID: 36011366 PMCID: PMC9408038 DOI: 10.3390/genes13081455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I–VIII). The exon–intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1–4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Huaqi Cao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
- Correspondence: ; Tel.: +86-186-0346-2517
| |
Collapse
|
29
|
Tregear JW, Richaud F, Collin M, Esbelin J, Parrinello H, Cochard B, Nodichao L, Morcillo F, Adam H, Jouannic S. Micro-RNA-Regulated SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Expression and Cytokinin Accumulation Distinguish Early-Developing Male and Female Inflorescences in Oil Palm (Elaeis guineensis). PLANTS 2022; 11:plants11050685. [PMID: 35270155 PMCID: PMC8912876 DOI: 10.3390/plants11050685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Sexual differentiation of inflorescences and flowers is important for reproduction and affects crop plant productivity. We report here on a molecular study of the process of sexual differentiation in the immature inflorescence of oil palm (Elaeis guineensis). This species is monoecious and exhibits gender diphasy, producing male and female inflorescences separately on the same plant in alternation. Three main approaches were used: small RNA-seq to characterise and study the expression of miRNA genes; RNA-seq to monitor mRNA accumulation patterns; hormone quantification to assess the role of cytokinins and auxins in inflorescence differentiation. Our study allowed the characterisation of 30 previously unreported palm MIRNA genes. In differential gene and miRNA expression studies, we identified a number of key developmental genes and miRNA-mRNA target modules previously described in relation to their developmental regulatory role in the cereal panicle, notably the miR156/529/535-SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) gene regulatory module. Gene enrichment analysis highlighted the importance of hormone-related genes, and this observation was corroborated by the detection of much higher levels of cytokinins in the female inflorescence. Our data illustrate the importance of branching regulation within the developmental window studied, during which the female inflorescence, unlike its male counterpart, produces flower clusters on new successive axes by sympodial growth.
Collapse
Affiliation(s)
- James W. Tregear
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- Correspondence:
| | - Frédérique Richaud
- CIRAD, UMR AGAP, 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Myriam Collin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Jennifer Esbelin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | | | | | - Fabienne Morcillo
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- CIRAD, UMR DIADE, 34394 Montpellier, France
| | - Hélène Adam
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Stefan Jouannic
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| |
Collapse
|