1
|
Alderotti F, Sillo F, Brilli L, Bussotti F, Centritto M, Ferrini F, Gori A, Inghes R, Pasquini D, Pollastrini M, Saurer M, Cherubini P, Balestrini R, Brunetti C. Quercus ilex L. dieback is genetically determined: Evidence provided by dendrochronology, δ 13C and SSR genotyping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166809. [PMID: 37690750 DOI: 10.1016/j.scitotenv.2023.166809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.
Collapse
Affiliation(s)
- Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Fabiano Sillo
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Lorenzo Brilli
- CNR-IBE, National Research Council of Italy (CNR), Institute for the BioEconomy, Via Caproni 8, 50145 Firenze, Italy
| | - Filippo Bussotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Roberto Inghes
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; University of British Columbia, Department of Forest and Conservation Sciences, Vancouver, BC, Canada
| | - Raffaella Balestrini
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Cecilia Brunetti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
2
|
Zhang Y, Cao JJ, Yang QP, Wu MZ, Zhao Y, Kong DL. The worldwide allometric relationship in anatomical structures for plant roots. PLANT DIVERSITY 2023; 45:621-629. [PMID: 38197011 PMCID: PMC10772186 DOI: 10.1016/j.pld.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 01/11/2024]
Abstract
The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO2 concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.
Collapse
Affiliation(s)
- Yue Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing-Jing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qing-Pei Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming-Zuo Wu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - De-Liang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
López-Ballesteros A, Rodríguez-Caballero E, Moreno G, Escribano P, Hereş AM, Yuste JC. Topography modulates climate sensitivity of multidecadal trends of holm oak decline. GLOBAL CHANGE BIOLOGY 2023; 29:6336-6349. [PMID: 37688536 DOI: 10.1111/gcb.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987-2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.
Collapse
Affiliation(s)
- Ana López-Ballesteros
- Department of Agricultural and Forest Systems, and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - Emilio Rodríguez-Caballero
- Department of Agronomy and Centro de Investigación de Colecciones Científicas (CECOUAL), Universidad de Almería, Almeria, Spain
| | - Gerardo Moreno
- Forestry School, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Plasencia, Spain
| | | | - Ana-Maria Hereş
- Faculty of Silviculture and Forest Engineering, Transilvania University of Braşov, Braşov, Romania
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
5
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
6
|
Dorado FJ, Alías JC, Chaves N, Solla A. Warming Scenarios and Phytophthora cinnamomi Infection in Chestnut ( Castanea sativa Mill.). PLANTS (BASEL, SWITZERLAND) 2023; 12:556. [PMID: 36771639 PMCID: PMC9921032 DOI: 10.3390/plants12030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The main threats to chestnut in Europe are climate change and emerging pathogens. Although many works have separately addressed the impacts on chestnut of elevated temperatures and Phytophthora cinnamomi Rands (Pc) infection, none have studied their combined effect. The objectives of this work were to describe the physiology, secondary metabolism and survival of 6-month-old C. sativa seedlings after plants were exposed to ambient temperature, high ambient temperature and heat wave events, and subsequent infection by Pc. Ten days after the warming scenarios, the biochemistry of plant leaves and roots was quantified and the recovery effect assessed. Plant growth and root biomass under high ambient temperature were significantly higher than in plants under ambient temperature and heat wave event. Seven secondary metabolite compounds in leaves and three in roots were altered significantly with temperature. Phenolic compounds typically decreased in response to increased temperature, whereas ellagic acid in roots was significantly more abundant in plants exposed to ambient and high ambient temperature than in plants subjected to heat waves. At recovery, leaf procyanidin and catechin remained downregulated in plants exposed to high ambient temperature. Mortality by Pc was fastest and highest in plants exposed to ambient temperature and lowest in plants under high ambient temperature. Changes in the secondary metabolite profile of plants in response to Pc were dependent on the warming scenarios plants were exposed to, with five compounds in leaves and three in roots showing a significant 'warming scenario' × 'Pc' interaction. The group of trees that best survived Pc infection was characterised by increased quercetin 3-O-glucuronide, 3-feruloylquinic acid, gallic acid ethyl ester and ellagic acid. To the best of our knowledge, this is the first study addressing the combined effects of global warming and Pc infection in chestnut.
Collapse
Affiliation(s)
- F. Javier Dorado
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| | - Juan Carlos Alías
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| |
Collapse
|