1
|
Ding S, Feng S, Zhou S, Zhao Z, Liang X, Wang J, Fu R, Deng R, Zhang T, Shao S, Yu J, Foyer CH, Shi K. A novel LRR receptor-like kinase BRAK reciprocally phosphorylates PSKR1 to enhance growth and defense in tomato. EMBO J 2024:10.1038/s44318-024-00278-z. [PMID: 39448885 DOI: 10.1038/s44318-024-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Plants face constant threats from pathogens, leading to growth retardation and crop failure. Cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) are crucial for plant growth and defense, but their specific functions, especially to necrotrophic fungal pathogens, are largely unknown. Here, we identified an LRR-RLK (Solyc06g069650) in tomato (Solanum lycopersicum) induced by the economically important necrotrophic pathogen Botrytis cinerea. Knocking out this LRR-RLK reduced plant growth and increased sensitivity to B. cinerea, while its overexpression led to enhanced growth, yield, and resistance. We named this LRR-RLK as BRAK (B. cinerea resistance-associated kinase). Yeast two-hybrid screen revealed BRAK interacted with phytosulfokine (PSK) receptor PSKR1. PSK-induced growth and defense responses were impaired in pskr1, brak single and double mutants, as well as in PSKR1-overexpressing plants with silenced BRAK. Moreover, BRAK and PSKR1 phosphorylated each other, promoting their interaction as detected by microscale thermophoresis. This reciprocal phosphorylation was crucial for growth and resistance. In summary, we identified BRAK as a novel regulator of seedling growth, fruit yield and defense, offering new possibilities for developing fungal disease-tolerant plants without compromising yield.
Collapse
Affiliation(s)
- Shuting Ding
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Shibo Zhou
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Zhengran Zhao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Ruishuang Fu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Rui Deng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Leaerts L, Van den Ende W. Sweet Immunity in Action: Unlocking Stem Reserves to Improve Yield and Quality. A Potential Key Role for Jasmonic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18347-18352. [PMID: 39120622 DOI: 10.1021/acs.jafc.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Common agronomic practices such as stem topping, side branch removal, and girdling can induce wound priming, mediated by jasmonic acid (JA). Low light conditions during greenhouse tomato production make the leaves more sensitive to the application of exogenous sugar, which is perceived as a "danger" in accordance with the concept of "Sweet Immunity". Consequently, source-sink balances are altered, leading to the remobilization of stem starch reserves and enabling the redirection of more carbon toward developing fruits, thereby increasing tomato yield and fruit quality. Similarities are drawn with the mobilization of fructans following defoliation of fodder grasses (wounding) and the remobilization of fructan and starch reserves under terminal drought and heat stress in wheat and rice (microwounding, cellular leakage). A central role for JA signaling is evident in all of these processes, closely intertwining with sugar signaling pathways. Therefore, JA signaling, associated with wounding and sugar priming events, offers numerous opportunities to alter source-sink balances across a broader spectrum of agricultural and horticultural crops, for instance, through the exogenous application of JA and fructans or a combination. This may entail reconfiguring and reversing phloem connections, potentially leading to an enhanced yield and product quality. Such processes may also disengage the growth-defense trade-off in plants.
Collapse
Affiliation(s)
- Laura Leaerts
- Lab of Molecular Plant Biology and KU Leuven Plant Institute, Kasteelpark Arenberg 31, B 3001 Leuven, Belgium
| | - Wim Van den Ende
- Lab of Molecular Plant Biology and KU Leuven Plant Institute, Kasteelpark Arenberg 31, B 3001 Leuven, Belgium
| |
Collapse
|
4
|
Wang J, Luo Q, Liang X, Liu H, Wu C, Fang H, Zhang X, Ding S, Yu J, Shi K. Glucose-G protein signaling plays a crucial role in tomato resilience to high temperature and elevated CO2. PLANT PHYSIOLOGY 2024; 195:1025-1037. [PMID: 38447060 DOI: 10.1093/plphys/kiae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 03/08/2024]
Abstract
Global climate change is accompanied by carbon dioxide (CO2) enrichment and high temperature (HT) stress; however, how plants adapt to the combined environments and the underlying mechanisms remain largely unclear. In this study, we show that elevated CO2 alleviated plant sensitivity to HT stress, with significantly increased apoplastic glucose (Glc) levels in tomato (Solanum lycopersicum) leaves. Exogenous Glc treatment enhanced tomato resilience to HT stress under ambient CO2 conditions. Cell-based biolayer interferometry, subcellular localization, and Split-luciferase assays revealed that Glc bound to the tomato regulator of G protein signaling 1 (RGS1) and induced RGS1 endocytosis and thereby RGS1-G protein α subunit (GPA1) dissociation in a concentration-dependent manner. Using rgs1 and gpa1 mutants, we found that RGS1 negatively regulated thermotolerance and was required for elevated CO2-Glc-induced thermotolerance. GPA1 positively regulated the elevated CO2-Glc-induced thermotolerance. A combined transcriptome and chlorophyll fluorescence parameter analysis further revealed that GPA1 integrated photosynthesis- and photoprotection-related mechanisms to regulate thermotolerance. These results demonstrate that Glc-RGS1-GPA1 signaling plays a crucial role in the elevated CO2-induced thermotolerance in tomato. This information enhances our understanding of the Glc-G protein signaling function in stress resilience in response to global climate change and will be helpful for genetic engineering approaches to improve plant resilience.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Luo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Hua Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Changqi Wu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Hanmo Fang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xuanbo Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
5
|
Jain P. Climate-ready crops: Unveiling the molecular dynamics of CO2 and glucose in plant thermotolerance. PLANT PHYSIOLOGY 2024; 195:906-907. [PMID: 38445755 PMCID: PMC11142332 DOI: 10.1093/plphys/kiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Affiliation(s)
- Prateek Jain
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
6
|
Yang S, Chen N, Qi J, Salam A, Khan AR, Azhar W, Yang C, Xu N, Wu J, Liu Y, Liu B, Gan Y. OsUGE2 Regulates Plant Growth through Affecting ROS Homeostasis and Iron Level in Rice. RICE (NEW YORK, N.Y.) 2024; 17:6. [PMID: 38212485 PMCID: PMC10784444 DOI: 10.1186/s12284-024-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Chunyan Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nuo Xu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
7
|
Wang H, Yu H, Chai L, Lu T, Li Y, Jiang W, Li Q. Exogenous Sucrose Confers Low Light Tolerance in Tomato Plants by Increasing Carbon Partitioning from Stems to Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20625-20642. [PMID: 38096491 DOI: 10.1021/acs.jafc.3c05985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low light (LL) stress adversely affects plant growth and productivity. The role of exogenous sucrose in enhancing plant LL tolerance was investigated by spraying sucrose on tomato (Solanum lycopersicum L.) leaves. This study employed physiological and molecular approaches to identify the underlying mechanisms. Exogenous sucrose activated sucrose hydrolysis-related enzyme activity and upregulated genes encoding sucrose and hexose transporters in mature leaves, decreasing endogenous sucrose levels and promoting sucrose unloading during LL. Stem-related genes associated with sucrose synthesis and transport were also upregulated, enhancing sucrose phloem loading. Furthermore, sucrose from stems activated sucrose unloading in sink leaves, forming a feed-forward loop to sustain sucrose flow during LL. This led to increased nonstructural carbohydrates (NSCs), improved energy metabolism, and enhanced protein synthesis in leaves, ultimately boosting photosynthesis and fruit yield after light recovery. These findings highlight how exogenous sucrose enhances LL tolerance in tomatoes by increasing the transport of NSCs from stems to leaves.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Mohanasundaram B, Pandey S. Moving beyond the arabidopsis-centric view of G-protein signaling in plants. TRENDS IN PLANT SCIENCE 2023; 28:1406-1421. [PMID: 37625950 DOI: 10.1016/j.tplants.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA.
| |
Collapse
|
9
|
Luo Q, Wang J, Wang P, Liang X, Li J, Wu C, Fang H, Ding S, Shao S, Shi K. Transcriptomic and genetic approaches reveal that low-light-induced disease susceptibility is related to cellular oxidative stress in tomato. HORTICULTURE RESEARCH 2023; 10:uhad173. [PMID: 37841503 PMCID: PMC10569241 DOI: 10.1093/hr/uhad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
The impact of low light intensities on plant disease outbreaks represents a major challenge for global crop security, as it frequently results in significant yield losses. However, the underlying mechanisms of the effect of low light on plant defense are still poorly understood. Here, using an RNA-seq approach, we found that the susceptibility of tomato to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) under low light was associated with the oxidation-reduction process. Low light conditions exacerbated Pst DC3000-induced reactive oxygen species (ROS) accumulation and protein oxidation. Analysis of gene expression and enzyme activity of ascorbate peroxidase 2 (APX2) and other antioxidant enzymes revealed that these defense responses were significantly induced by Pst DC3000 inoculation under normal light, whereas these genes and their associated enzyme activities were not responsive to pathogen inoculation under low light. Additionally, the reduced ascorbate to dehydroascorbate (AsA/DHA) ratio was lower under low light compared with normal light conditions upon Pst DC3000 inoculation. Furthermore, the apx2 mutants generated by a CRISPR-Cas9 gene-editing approach were more susceptible to Pst DC3000 under low light conditions. Notably, this increased susceptibility could be significantly reduced by exogenous AsA treatment. Collectively, our findings suggest that low-light-induced disease susceptibility is associated with increased cellular oxidative stress in tomato plants. This study sheds light on the intricate relationship between light conditions, oxidative stress, and plant defense responses, and may pave the way for improved crop protection strategies in low light environments.
Collapse
Affiliation(s)
- Qian Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changqi Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hanmo Fang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shujun Shao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|