1
|
Mingjian Z, Zhang K, Xie Y. Revealing how plants utilize H 2S to relay drought stress signals. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00235-8. [PMID: 39332914 DOI: 10.1016/j.tplants.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Hydrogen sulfide (H2S) has been proposed to regulate plant-environment interactions. Here, we compare its distinct pathways in plants with those in animals, summarizing recently uncovered mechanisms that govern plant H2S production in subcellular compartments. We underscore the importance of H2S and its role in drought stress and guard cell (GC) signaling.
Collapse
Affiliation(s)
- Zhou Mingjian
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kailu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yanjie Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
3
|
Zhang J, Aroca A, Hervás M, Navarro JA, Moreno I, Xie Y, Romero LC, Gotor C. Analysis of sulfide signaling in rice highlights specific drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5130-5145. [PMID: 38808567 PMCID: PMC11349868 DOI: 10.1093/jxb/erae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 05/30/2024]
Abstract
Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the post-translational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins are involved in the maintenance of cellular redox homeostasis, the tricarboxylic acid cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, with the aquaporin family showing the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates with an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, levels of reactive oxygen species, antioxidant enzymatic activities, and relative water content. Interestingly, the role of persulfidation in aquaporin transport activity as an adaptation response in rice differs from current knowledge of Arabidopsis, which highlights the distinct role of sulfide in improving rice tolerance to drought.
Collapse
Affiliation(s)
- Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
4
|
Stoltzfus AT, Ballot JG, Vignane T, Li H, Worth MM, Muller L, Siegler MA, Kane MA, Filipovic MR, Goldberg DP, Michel SLJ. Chemoselective Proteomics, Zinc Fingers, and a Zinc(II) Model for H 2S Mediated Persulfidation. Angew Chem Int Ed Engl 2024; 63:e202401003. [PMID: 38808693 PMCID: PMC11346292 DOI: 10.1002/anie.202401003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 05/30/2024]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Jasper G. Ballot
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Madison M. Worth
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ludovic Muller
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Milos R. Filipovic
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| |
Collapse
|
5
|
Muñoz-Vargas MA, González-Gordo S, Aroca A, Romero LC, Gotor C, Palma JM, Corpas FJ. Persulfidome of Sweet Pepper Fruits during Ripening: The Case Study of Leucine Aminopeptidase That Is Positively Modulated by H 2S. Antioxidants (Basel) 2024; 13:719. [PMID: 38929158 PMCID: PMC11200738 DOI: 10.3390/antiox13060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Protein persulfidation is a thiol-based oxidative posttranslational modification (oxiPTM) that involves the modification of susceptible cysteine thiol groups present in peptides and proteins through hydrogen sulfide (H2S), thus affecting their function. Using sweet pepper (Capsicum annuum L.) fruits as a model material at different stages of ripening (immature green and ripe red), endogenous persulfidated proteins (persulfidome) were labeled using the dimedone switch method and identified using liquid chromatography and mass spectrometry analysis (LC-MS/MS). A total of 891 persulfidated proteins were found in pepper fruits, either immature green or ripe red. Among these, 370 proteins were exclusively present in green pepper, 237 proteins were exclusively present in red pepper, and 284 proteins were shared between both stages of ripening. A comparative analysis of the pepper persulfidome with that described in Arabidopsis leaves allowed the identification of 25% of common proteins. Among these proteins, glutathione reductase (GR) and leucine aminopeptidase (LAP) were selected to evaluate the effect of persulfidation using an in vitro approach. GR activity was unaffected, whereas LAP activity increased by 3-fold after persulfidation. Furthermore, this effect was reverted through treatment with dithiothreitol (DTT). To our knowledge, this is the first persulfidome described in fruits, which opens new avenues to study H2S metabolism. Additionally, the results obtained lead us to hypothesize that LAP could be involved in glutathione (GSH) recycling in pepper fruits.
Collapse
Affiliation(s)
- María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| |
Collapse
|
6
|
Mukherjee S, Roy S, Corpas FJ. Aquaporins: a vital nexus in H 2O 2-gasotransmitter signaling. TRENDS IN PLANT SCIENCE 2024; 29:681-693. [PMID: 38199830 DOI: 10.1016/j.tplants.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Land plants have evolved with a complex mechanism of water uptake facilitated by the activity of aquaporins under normal and challenging environments. However, we lack a clear understanding of its interactions with reactive oxygen species, particularly hydrogen peroxide (H2O2) and the gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S), under oxidative stress. Here, we assess the crosstalk of aquaporin function, H2O2 homeostasis, and NO-H2S signaling in plants and provide a computational prediction of cysteine-based oxidative post-translational modifications (oxiPTMs) in plant aquaporins. We propose that aquaporin activity could be regulated by three major oxiPTMs, S-nitrosation, S-sulfenylation, and persulfidation, mediated by NO, H2O2, and H2S, respectively. Therefore, aquaporins might be key players in the gasotransmitter-mediated long-distance oxidative stress signals in plant cells.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
| | - Suchismita Roy
- Department of Cell and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council), Granada, Spain.
| |
Collapse
|
7
|
Liu Z, Liu Y, Liao W. Hydrogen Sulfide in the Oxidative Stress Response of Plants: Crosstalk with Reactive Oxygen Species. Int J Mol Sci 2024; 25:1935. [PMID: 38339212 PMCID: PMC10856001 DOI: 10.3390/ijms25031935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Growing evidence suggests that exposure of plants to unfavorable environments leads to the accumulation of hydrogen sulfide (H2S) and reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels. Therefore, it is essential to elucidate the mechanisms by which H2S and ROS interact. The molecular mechanism of action by H2S relies on the post-translational modification of the cysteine sulfur group (-SH), known as persulfidation. H2S cannot react directly with -SH, but it can react with oxidized cysteine residues, and this oxidation process is induced by H2O2. Evidently, ROS is involved in the signaling pathway of H2S and plays a significant role. In this review, we summarize the role of H2S-mediated post-translational modification mechanisms in oxidative stress responses. Moreover, the mechanism of interaction between H2S and ROS in the regulation of redox reactions is focused upon, and the positive cooperative role of H2S and ROS is elucidated. Subsequently, based on the existing evidence and clues, we propose some potential problems and new clues to be explored, which are crucial for the development of the crosstalk mechanism of H2S and ROS in plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (Z.L.); (Y.L.)
| |
Collapse
|
8
|
Li L, Liang Y, Liu Y, Sun Z, Liu Y, Yuan Z, Fu C. Transcriptome analyses reveal photosynthesis-related genes involved in photosynthetic regulation under low temperature stress in Lavandula angustifolia Mill. FRONTIERS IN PLANT SCIENCE 2023; 14:1268666. [PMID: 38107014 PMCID: PMC10722586 DOI: 10.3389/fpls.2023.1268666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
In order to reveal the mechanisms of photosynthetic regulation of Lavandula angustifolia Mill. under low temperature stress, photosynthesis-related genes were screened and the molecular mechanism were analyzed for this species growing in Harbin, northeast of China. RNA-seq technique and photosynthetic physiology measurement were performed under 20°C, 10°C, and 0°C in this study. The results showed that the observing modified rectangular hyperbola mode could accurately reflect the light-response processes under low temperature stress and the low temperature reduced the light energy utilization of L. angustifolia. The stomatal conductance decreased with the temperature dropping, which was associated with the up-regulation of LaBAM1s, LaMPK4-1 and LaMMK2. The up-regulation of LaMPK4-1 and LaMMK2 was beneficial for ROS scavenging. The improvement of cold resistance in L. angustifolia was related to the up-regulated expression of LaFBA and LaOMTs and down-regulated expression of LaGAPAs, LaGOX, and LaTKL1s with the temperature decreasing. The up-expression of LaPSY at 10°C than it at 20°C could protect the photosynthetic organs from oxidative damage. Moreover, the photosynthetic rates at 10°C and 0°C were close to the measured values, which was related to the interactions of RCA with SBPase and Rubisco with SBPase. These findings could provide a theoretical reference for further exploring the cold tolerance mechanism of L. angustifolia, as an important aromatic plant resource, and promoting its cultivation and distribution in the northeast of China.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuchen Liang
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yinan Liu
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Zeyi Sun
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuning Liu
- College of Science and Technology, Harbin Normal University, Harbin, China
| | - Zening Yuan
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Chang Fu
- College of Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
9
|
Aroca A, García-Díaz I, García-Calderón M, Gotor C, Márquez AJ, Betti M. Photorespiration: regulation and new insights on the potential role of persulfidation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6023-6039. [PMID: 37486799 PMCID: PMC10575701 DOI: 10.1093/jxb/erad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada García-Díaz
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| |
Collapse
|