1
|
Jiang C, Wu J. Hypothesis: hematogenous metastatic cancer cells of solid tumors may disguise themselves as memory macrophages for metastasis. Front Oncol 2024; 14:1412296. [PMID: 39035733 PMCID: PMC11257992 DOI: 10.3389/fonc.2024.1412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
German pathologist Otto Aichel suggested, a century ago, that the cancer cell acquired its metastatic property from a leukocyte via cell-cell fusion. Since then, several revised versions of this theory have been proposed. Most of the proposals attribute the generation of the metastatic cancer cell to the fusion between a primary cancer cell and a macrophage. However, these theories have not addressed several issues, such as dormancy and stem cell-like self-renewal, of the metastatic cancer cell. On the other hand, recent studies have found that, like T- and B-/plasma cells, macrophages can also be categorized into naïve, effector, and memory/trained macrophages. As a memory/trained macrophage can enter dormancy/quiescence, be awakened from the dormancy/quiescence by acquainted primers, and re-populate via stem cell-like self-renewal, we, therefore, further specify that the macrophage fusing with the cancer cell and contributing to metastasis, belongs with the memory/trained macrophage, not other subtypes of macrophages. The current theory can explain many puzzling clinical features of cancer, including the paradoxal effects (recurrence vs. regression) of microbes on tumors, "spontaneous" and Coley's toxin-induced tumor regression, anticancer activities of β-blockers and anti-inflammatory/anti-immune/antibiotic drugs, oncotaxis, surgery- and trauma-promoted metastasis, and impact of microbiota on tumors. Potential therapeutic strategies, such as Coley's toxin-like preparations, are proposed. This is the last article of our trilogy on carcinogenesis theories.
Collapse
Affiliation(s)
- Chuo Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
- Office of Industrial Cooperation, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Du JR, Teng DK, Wang Y, Wang Q, Lin YQ, Luo Q, Xue JN, Zhu LY, Dong P, Zhang GM, Liu Y, Sun ZX, Wang H, Sui GQ. Endogenous H 2O 2 Self-Replenishment and Sustainable Cascades Enhance the Efficacy of Sonodynamic Therapy. Int J Nanomedicine 2023; 18:6667-6687. [PMID: 38026520 PMCID: PMC10656771 DOI: 10.2147/ijn.s431221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Sonodynamic therapy (SDT), with its high tissue penetration and noninvasive advantages, represents an emerging approach to eradicating solid tumors. However, the outcomes of SDT are typically hampered by the low oxygen content and immunosuppression in the tumor microenvironment (TME). Accordingly, we constructed a cascade nanoplatform to regulate the TME and improve the anti-tumor efficiency of SDT. Methods In this study, we rationally design cascade nanoplatform by incorporating immunostimulant hyaluronic acid (HA) and sonosensitizer chlorin e6 (Ce6) on the polydopamine nanocarrier that is pre-doped with platinum nanozymes (designated Ce6/Pt@PDA-HA, PPCH). Results The cascade reactions of PPCH are evidenced by the results that HA exhibits reversing immunosuppressive that converts M2 macrophages into M1 macrophages in situ, while producing H2O2, and then platinum nanozymes further catalyze the H2O2 to produce O2, and O2 produces abundant singlet oxygen (1O2) under the action of Ce6 and low-intensity focused ultrasound (LIFU), resulting in a domino effect and further amplifying the efficacy of SDT. Due to its pH responsiveness and mitochondrial targeting, PPCH effectively accumulates in tumor cells. Under LIFU irradiation, PPCH effectively reverses immunosuppression, alleviates hypoxia in the TME, enhances reactive oxygen species (ROS) generation, and enhances SDT efficacy for eliminating tumor cells in vivo and in vitro. Meanwhile, an in vivo dual-modal imaging including fluorescence and photoacoustic imaging achieves precise tumor diagnosis. Conclusion This cascade nanoplatform will provide a promising strategy for enhancing SDT eradication against tumors by modulating immunosuppression and relieving hypoxia.
Collapse
Affiliation(s)
- Jia-Rui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Deng-Ke Teng
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Yang Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Qimeihui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Yuan-Qiang Lin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Jia-Nan Xue
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Ling-Yu Zhu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Peng Dong
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Gen-Mao Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Yan Liu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Zhi-Xia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Guo-Qing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
4
|
Hernández-Barrientos D, Pelayo R, Mayani H. The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 2023; 114:404-420. [PMID: 37386890 DOI: 10.1093/jleuko/qiad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.
Collapse
Affiliation(s)
- Daniel Hernández-Barrientos
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| | - Rosana Pelayo
- Onco-Immunology Laboratory, Eastern Biomedical Research Center, IMSS, Km 4.5 Atlixco-Metepec, 74360, Puebla, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| |
Collapse
|
5
|
Li X, Li Z, Cai D, Li Y, Zhu Y, Jiao R, Lai C, Sun J, Bai W. Vitisin A, as a Type of Pyranoanthocyanin, Suppresses Inflammation by Restricting Hematopoietic Stem Cell Differentiation toward Monocytes in Bone Marrow. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15048-15063. [PMID: 37811833 DOI: 10.1021/acs.jafc.3c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) could be differentiated into mature myeloid and lymphoid cells, maintaining the requirements of immune cells. Atherosclerosis and ulcerative colitis (UC) drive HSPC homeostasis destruction, which triggers expansive HSPC proliferation and Ly6Chi monocyte production, contributing to aggravated inflammation. Vitisin A belongs to the anthocyanin derivatives with excellent stability and bioactivity in vitro. However, there is no report about the anti-inflammation of Vitisin A via reprogramming HSPC differentiation toward monocytes. In this study, we found that Vitisin A presents anti-inflammatory ability during the development of atherosclerosis and UC by depressing Ly6Chi monocyte production from bone marrow. This performance depended on restricted HSPC differentiation, which suggested that Vitisin A participated in monocyte generation and carried out the immunomodulation. Together, Vitisin A ameliorates inflammation during atherosclerosis and UC via the suppressed differentiation of HSPCs toward monocytes, which could be considered an ideal functional component with immunomodulatory effects.
Collapse
Affiliation(s)
- Xusheng Li
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, P. R. China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yawen Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Caiyong Lai
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Urology, Institute of Kidney Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
6
|
Santovito D, Steffens S, Barachini S, Madonna R. Autophagy, innate immunity, and cardiac disease. Front Cell Dev Biol 2023; 11:1149409. [PMID: 37234771 PMCID: PMC10206260 DOI: 10.3389/fcell.2023.1149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cell adaptation to metabolic and environmental stress. It mediates the disposal of protein aggregates and dysfunctional organelles, although non-conventional features have recently emerged to broadly extend the pathophysiological relevance of autophagy. In baseline conditions, basal autophagy critically regulates cardiac homeostasis to preserve structural and functional integrity and protect against cell damage and genomic instability occurring with aging. Moreover, autophagy is stimulated by multiple cardiac injuries and contributes to mechanisms of response and remodeling following ischemia, pressure overload, and metabolic stress. Besides cardiac cells, autophagy orchestrates the maturation of neutrophils and other immune cells, influencing their function. In this review, we will discuss the evidence supporting the role of autophagy in cardiac homeostasis, aging, and cardioimmunological response to cardiac injury. Finally, we highlight possible translational perspectives of modulating autophagy for therapeutic purposes to improve the care of patients with acute and chronic cardiac disease.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Unit of Milan, Institute for Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Serena Barachini
- Hematology Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology & Critical Care Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Feng Y, Xiao M, Cao G, Liu H, Li Y, Wang S, Zijtveld S, Delvoux B, Xanthoulea S, Romano A, Liu C, Zhang Z. Human monocytes differentiate into tumor-associated macrophages upon SKOV3 cells coculture and/or lysophosphatidic acid stimulation. J Inflamm (Lond) 2022; 19:11. [PMID: 35842650 PMCID: PMC9288080 DOI: 10.1186/s12950-022-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Serous ovarian carcinoma is the most common type of ovarian carcinoma. Tumor-associated macrophages (TAMs) promote ovarian cancer progression. Most macrophages are generated by monocyte differentiation. Lysophosphatidic acid (LPA) levels are high in blood, tissues and ascites of patients with ovarian cancer. This study investigated whether human monocytes can directly differentiate into TAMs in the serous ovarian carcinoma microenvironment. METHODS Human monocytes were isolated and purified from umbilical cord blood. A serous ovarian carcinoma-like microenvironment was generated by coculturing monocytes and SKOV3 cells in 0.4-μm-pore-size Transwell chambers. Additionally, the effect of LPA was assessed. The two cultured cell types and supernatants were evaluated. RESULTS The morphology and function of monocytes cocultured with SKOV3 cells and/or stimulated with LPA were significantly changed compared with those of non-stimulated monocytes. The CD14 + CD163 + and CD206 + phenotype indicated that stimulated cells were TAMs. The induced cells promoted SKOV3 cell proliferation and invasion, further proving that they were TAMs. The level of the cytokine interleukin-6R in the supernatant was significantly elevated in the treatment groups compared to the control monocyte group. Pathway enrichment analysis of ELISA results showed a strong influence of interleukin-6 family signaling, especially the JAK-STAT signaling pathway, further confirming the importance of IL-6R. CONCLUSION Monocytes can differentiate into TAMs under coculture with SKOV3 cells and/or LPA stimulation. The induced TAMs promote SKOV3 cell proliferation and invasion. The cytokine receptor IL-6sR and the JAK-STAT signaling pathway play an important role in the differentiation of monocytes into TAMs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Yanfang Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Stan Zijtveld
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bert Delvoux
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
9
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
10
|
Feng Y, Wang Z, Cui R, Xiao M, Gao H, Bai H, Delvoux B, Zhang Z, Dekker A, Romano A, Wang S, Traverso A, Liu C, Zhang Z. Clinical analysis and artificial intelligence survival prediction of serous ovarian cancer based on preoperative circulating leukocytes. J Ovarian Res 2022; 15:64. [PMID: 35610701 PMCID: PMC9129061 DOI: 10.1186/s13048-022-00994-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Circulating leukocytes are an important part of the immune system. The aim of this work is to explore the role of preoperative circulating leukocytes in serous ovarian carcinoma and investigate whether they can be used to predict survival prognosis. Routine blood test results and clinical information of patients with serous ovarian carcinoma were retrospectively collected. And to predict survival according to the blood routine test result the decision tree method was applied to build a machine learning model. The results showed that the number of preoperative white blood cells (p = 0.022), monocytes (p < 0.001), lymphocytes (p < 0.001), neutrophils (p < 0.001), and eosinophils (p < 0.001) and the monocyte to lymphocyte (MO/LY) ratio in the serous ovarian cancer group were significantly different from those in the control group. These factors also showed a correlation with other clinicopathological characteristics. The MO/LY was the root node of the decision tree, and the predictive AUC for survival was 0.69. The features involved in the decision tree were the MO/LY, differentiation status, CA125 level, neutrophils (NE,) ascites cytology, LY% and age. In conclusion, the number and percentage of preoperative leukocytes in patients with ovarian cancer is changed significantly compared to those in the normal control group, as well as the MO/LY. A decision tree was built to predict the survival of patients with serous ovarian cancer based on the CA125 level, white blood cell (WBC) count, presence of lymph node metastasis (LNM), MO count, the MO/LY ratio, differentiation status, stage, LY%, ascites cytology, and age.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Zhixiang Wang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ran Cui
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huiqiao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bert Delvoux
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Zhen Zhang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zlotnikov ID, Kudryashova EV. Mannose Receptors of Alveolar Macrophages as a Target for the Addressed Delivery of Medicines to the Lungs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Macrophage Involvement in Medication-Related Osteonecrosis of the Jaw (MRONJ): A Comprehensive, Short Review. Cancers (Basel) 2022; 14:cancers14020330. [PMID: 35053492 PMCID: PMC8773732 DOI: 10.3390/cancers14020330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Medication-related Osteonecrosis of the Jaw (MRONJ) is a significant complication mainly of antiresorptive medications used in the management of bone diseases. MRONJ development may be accompanied by pain, eating discomfort, self-consciousness, and other symptoms that overall disturb patients’ everyday life. Hence, MRONJ occurrence is of growing clinical concern and affects treatment decisions. Although MRONJ has been extensively studied since being first reported in 2003, the mechanisms of disease pathogenesis have not yet been determined and disease management is mostly empirical. Recent data investigate the effects of antiresorptive medications on immune system components including macrophages and introduce these cells as key players in MRONJ pathogenesis. Considering macrophage versatility, developmental plasticity, and its pivotal role in immune response, the current short review focused on the potential involvement of these multi-potential cells in MRONJ pathogenesis. Understanding the complex role of macrophages in MRONJ pathophysiology will add new valuable data on disease prevention and control. Abstract Antiresorptive agents such as bisphosphonates (BP) and denosumab are commonly prescribed for the management of primary bone malignancy, bone metastasis, osteoporosis, Paget disease, or other bone disorders. Medication-related osteonecrosis of the Jaws (MRONJ) is a rare but significant complication of antiresorptive medications. Duration, dose, and antiresorptive potency as well as concomitant diseases, additional medications, and local factors affect MRONJ incidence and severity. MRONJ pathophysiology is still poorly understood. Nevertheless, decreased bone resorption due to osteoclastic inhibition along with trauma, infection/inflammation, or blood supply inhibition are considered synergistic factors for disease development. In addition, previous data research examined the effects of antiresorptive medication on immune system components and introduced potential alterations on immune response as novel elements in MRONJ pathogenesis. Considering that macrophages are the first cells in the nonspecific immune response, it is not surprising that these multifaceted players attracted increased attention in MRONJ research recently. This current review attempted to elucidate the effects of antiresorptive medications on several aspects of macrophage activity in relation to the complex inflammatory microenvironment of MRONJ. Collectively, unravelling the mode of action and extent of macrophages’ potential contribution in MRONJ occurrence will provide novel insight in disease pathogenesis and potentially identify intrinsic therapeutic targets.
Collapse
|
13
|
Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021; 191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
When nanoparticles (NPs) come into contact with bioenvironments, a protein corona forms on the NP surface. Previous reports showed that the constituents of the corona change with time. However, how different protein corona compositions influence cells, especially immune cells, has received less attention. Macrophages are important immune cells that can be polarized into a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. In this study, AuNPs were incubated with human plasma for different periods to obtain time-related AuNP-coronas, and the influences of time-related AuNP-coronas on macrophage polarization were investigated. The macrophage morphology, biomarkers, cytokine secretion studies show that the pristine AuNPs and 4 h-AuNP-corona induced macrophage cells into M2 phenotype, while the co-incubation of 12 h-AuNP-corona and macrophage cells result in M1 phenotype. Further proteomic analysis showed that the compositions of protein corona were changing constantly after AuNPs contacted with plasma. When the incubation time increased to 12 h, the immune proteins in protein corona were increased significantly, which play a key role in modulation of the different macrophages polarization. Our findings demonstrated that plasma incubation time is an important parameter that needs to be taken into account in the study of nano-immune interactions and safe use of NPs in biological systems. Moreover, our finding can be a new efficient strategy for activating inflammatory or anti-inflammatory in medical treatment.
Collapse
|
14
|
Nasirzade J, Kargarpour Z, Panahipour L, Gruber R. Acid Dentin Lysate Modulates Macrophage Polarization and Osteoclastogenesis In Vitro. MATERIALS 2021; 14:ma14226920. [PMID: 34832320 PMCID: PMC8622705 DOI: 10.3390/ma14226920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Dentin prepared from extracted teeth is used as autograft for alveolar bone augmentation. Graft consolidation involves the acid lysis of dentin thereby generating a characteristic paracrine environment. Acid lysate of dentin is mimicking this environment. Acid dentin lysate (ADL) potentially targets hematopoietic cells thereby affecting their differentiation towards macrophages and osteoclasts; however, the question remains if ADL controls macrophage polarization and osteoclastogenesis. Here, we show that ADL reduced lipopolysaccharide (LPS)-induced macrophage polarization of the pro-inflammatory (M1) phenotype, indicated by attenuated Interleukin 1 (IL1), Interleukine 6 (IL6)and cyclooxygenase 2 (COX2) expression. This decrease in M1 macrophages was confirmed by the reduced phosphorylation and nuclear translocation of p65 in the LPS-exposed RAW 264.7 macrophages. Similarly, when RAW 264.7 macrophages were incubated with other agonists of Toll-like receptor (TLR) signaling e.g., FSL1, Polyinosinic-polycytidylic acid High Molecular Weight (Poly (1:C) HMW), Pam3CSK4, and imiquimod, ADL reduced the IL6 expression. We further show herein that ADL decreased osteoclastogenesis indicated by the reduced formation of multinucleated cell expressing cathepsin K and tartrate-resistant acid phosphatase in murine bone marrow cultures. Overall, our results suggest that acid dentin lysate can affect the differentiation of hematopoietic cells to M1 macrophage polarization and a decrease in osteoclastogenesis in bone marrow cultures.
Collapse
Affiliation(s)
- Jila Nasirzade
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Layla Panahipour
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
15
|
Bhattacharya A, Ghosh P, Singh A, Ghosh A, Bhowmick A, Sinha DK, Ghosh A, Sen P. Delineating the complex mechanistic interplay between NF-κβ driven mTOR depedent autophagy and monocyte to macrophage differentiation: A functional perspective. Cell Signal 2021; 88:110150. [PMID: 34547324 DOI: 10.1016/j.cellsig.2021.110150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022]
Abstract
Autophagy is an extremely essential cellular process aimed to clear redundant and damaged materials, namely organelles, protein aggregates, invading pathogens, etc. through the formation of autophagosomes which are ultimately targeted to lysosomal degradation. In this study, we demonstrated that mTOR dependent classical autophagy is ubiquitously triggered in differentiating monocytes. Moreover, autophagy plays a decisive role in sustaining the process of monocyte to macrophage differentiation. We have delved deeper into understanding the underlying mechanistic complexities that trigger autophagy during differentiation. Intrigued by the significant difference between the protein profiles of monocytes and macrophages, we investigated to learn that autophagy directs monocyte differentiation via protein degradation. Further, we delineated the complex cross-talk between autophagy and cell-cycle arrest in differentiating monocytes. This study also inspects the contribution of adhesion on various steps of autophagy and its ultimate impact on monocyte differentiation. Our study reveals new mechanistic insights into the process of autophagy associated with monocyte differentiation and would undoubtedly help to understand the intricacies of the process better for the effective design of therapeutics as autophagy and autophagy-related processes have enormous importance in human patho-physiology.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Purnam Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arghya Bhowmick
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Deepak Kumar Sinha
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
16
|
ACE Inhibition Modulates Myeloid Hematopoiesis after Acute Myocardial Infarction and Reduces Cardiac and Vascular Inflammation in Ischemic Heart Failure. Antioxidants (Basel) 2021; 10:antiox10030396. [PMID: 33807982 PMCID: PMC8001011 DOI: 10.3390/antiox10030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Aims: Angiotensin-converting-enzyme inhibitors (ACE inhibitors) are a cornerstone of drug therapy after myocardial infarction (MI) and improve left ventricular function and survival. We aimed to elucidate the impact of early treatment with the ACE inhibitor ramipril on the hematopoietic response after MI, as well as on the chronic systemic and vascular inflammation. Methods and Results: In a mouse model of MI, induced by permanent ligation of the left anterior descending artery, immediate initiation of treatment with ramipril (10 mg/k/d via drinking water) reduced cardiac inflammation and the number of circulating inflammatory monocytes, whereas left ventricular function was not altered significantly, respectively. This effect was accompanied by enhanced retention of hematopoietic stem cells, Lin−Sca1−c-Kit+CD34+CD16/32+ granulocyte–macrophage progenitors (GMP) and Lin−Sca1−c-Kit+CD150−CD48− multipotent progenitors (MPP) in the bone marrow, with an upregulation of the niche factors Angiopoetin 1 and Kitl at 7 d post MI. Long-term ACE inhibition for 28 d limited vascular inflammation, particularly the infiltration of Ly6Chigh monocytes/macrophages, and reduced superoxide formation, resulting in improved endothelial function in mice with ischemic heart failure. Conclusion: ACE inhibition modulates the myeloid inflammatory response after MI due to the retention of myeloid precursor cells in their bone marrow reservoir. This results in a reduction in cardiac and vascular inflammation with improvement in survival after MI.
Collapse
|
17
|
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells 2020; 9:cells9092040. [PMID: 32900001 PMCID: PMC7565932 DOI: 10.3390/cells9092040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.
Collapse
|
18
|
Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S, Bao W, Wang H, Qin M, Liu Z, Wei W, Liu H. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003563. [PMID: 32627937 DOI: 10.1002/adma.202003563] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 05/23/2023]
Abstract
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2 O2 ) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation-enhanced nanozyme-based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF-β inhibitor (TI)-loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN-PEG-TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase-like and catalase-like activities under acidic TME, which can decompose H2 O2 into hydroxyl radicals (•OH) and oxygen (O2 ), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2 O2 , which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN-PEG-TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26-tumor-bearing mice models. It is believed that the immunomodulation-enhanced nanozyme-based tumor treatment strategy is a promising tool to kill cancer cells.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Cui
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Cassidy T, Humphries AR, Craig M, Mackey MC. Characterizing Chemotherapy-Induced Neutropenia and Monocytopenia Through Mathematical Modelling. Bull Math Biol 2020; 82:104. [PMID: 32737602 DOI: 10.1007/s11538-020-00777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
In spite of the recent focus on the development of novel targeted drugs to treat cancer, cytotoxic chemotherapy remains the standard treatment for the vast majority of patients. Unfortunately, chemotherapy is associated with high hematopoietic toxicity that may limit its efficacy. We have previously established potential strategies to mitigate chemotherapy-induced neutropenia (a lack of circulating neutrophils) using a mechanistic model of granulopoiesis to predict the interactions defining the neutrophil response to chemotherapy and to define optimal strategies for concurrent chemotherapy/prophylactic granulocyte colony-stimulating factor (G-CSF). Here, we extend our analyses to include monocyte production by constructing and parameterizing a model of monocytopoiesis. Using data for neutrophil and monocyte concentrations during chemotherapy in a large cohort of childhood acute lymphoblastic leukemia patients, we leveraged our model to determine the relationship between the monocyte and neutrophil nadirs during cyclic chemotherapy. We show that monocytopenia precedes neutropenia by 3 days, and rationalize the use of G-CSF during chemotherapy by establishing that the onset of monocytopenia can be used as a clinical marker for G-CSF dosing post-chemotherapy. This work therefore has important clinical applications as a comprehensive approach to understanding the relationship between monocyte and neutrophils after cyclic chemotherapy with or without G-CSF support.
Collapse
Affiliation(s)
- Tyler Cassidy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Antony R Humphries
- Department of Mathematics and Statistics, McGill University, Montréal, QC, H3A 0B9, Canada.,Department of Physiology, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada. .,CHU Sainte-Justine Research Centre, University of Montreal, Montréal, Canada.
| | - Michael C Mackey
- Department of Physiology, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Mathematics and Statistics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Physics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|
20
|
Docosahexaenoic Acid Improves Diabetic Wound Healing in a Rat Model by Restoring Impaired Plasticity of Macrophage Progenitor Cells. Plast Reconstr Surg 2020; 145:942e-950e. [PMID: 32332536 DOI: 10.1097/prs.0000000000006739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic inflammation associated with delayed diabetic wound healing is induced by disturbed polarization of macrophages derived mainly from predisposed progenitor cells in bone marrow. Docosahexaenoic acid plays a critical role in regulating the function of macrophage progenitor cells. The authors evaluated whether docosahexaenoic acid accelerates diabetic wound healing in rats. METHODS Streptozotocin-induced diabetic rats divided into control and docosahexaenoic acid-treated groups (n = 10) were subjected to paired dorsal skin wounds. Docosahexaenoic acid (100 mg/kg per day) was orally supplemented 2 weeks before wounding until termination. The wound healing process was recorded 0, 7, and 14 days after wounding. At day 7, blood perfusion was measured by laser Doppler perfusion imaging; angiogenesis was compared using immunofluorescent CD31 and α-smooth muscle actin staining; macrophage polarization was detected using immunofluorescence for CD68, CD206, and inducible nitric oxide synthase. Hematoxylin and eosin staining was used to examine wound healing at day 14. Activation status of macrophages derived from bone marrow cells in normal, diabetic, and docosahexaenoic acid-treated diabetic rats was determined in vitro using Western blotting and enzyme-linked immunosorbent assay. RESULTS Docosahexaenoic acid significantly accelerated wound healing 7 and 14 days (p < 0.01) after wounding. Increased vessel densities (1.96-fold; p < 0.001) and blood perfusion (2.56-fold; p < 0.001) were observed in docosahexaenoic acid-treated wounds. Immunofluorescence revealed more CD206 and fewer inducible nitric oxide synthase-positive macrophages (p < 0.001) in treated wounds. Furthermore, macrophages derived from diabetic rats expressed higher levels of inducible nitric oxide synthase and tumor necrosis factor-α and lower arginase-1 and interleukin-10 (p < 0.05). CONCLUSION Docosahexaenoic acid accelerates diabetic wound healing at least in part by restoring impaired plasticity of macrophage progenitor cells.
Collapse
|
21
|
Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res 2020; 69:883-895. [PMID: 32647933 PMCID: PMC7347666 DOI: 10.1007/s00011-020-01378-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Macrophages are highly plastic cells. Under different stimuli, macrophages can be polarized into several different subsets. Two main macrophage subsets have been suggested: classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages. Macrophage polarization is governed by a highly complex set of regulatory networks. Many recent studies have shown that macrophages are key orchestrators in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and that regulation of macrophage polarization may improve the prognosis of ALI/ARDS. A further understanding of the mechanisms of macrophage polarization is expected to be helpful in the development of novel therapeutic targets to treat ALI/ARDS. Therefore, we performed a literature review to summarize the regulatory mechanisms of macrophage polarization and its role in the pathogenesis of ALI/ARDS. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning macrophages, macrophage polarization, and ALI/ARDS. RESULTS In this review, we discuss the origin, polarization, and polarization regulation of macrophages as well as the role of macrophage polarization in various stages of ARDS. According to the current literature, regulating the polarized state of macrophages might be a potential therapeutic strategy against ALI/ARDS.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Weizheng Shuai
- Department of ICU, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100037, China
| | - Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, China.
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
22
|
Kulshrestha R, Dhanda H, Pandey A, Singh A, Kumar R. Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Rev Respir Med 2020; 14:917-928. [PMID: 32600077 DOI: 10.1080/17476348.2020.1776117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The diffuse parenchymal lung diseases (DPLD)/interstitial lung diseases (ILD) are progressive lung disorders with usually unclear etiology, poor long-term survival and no effective treatment. Their pathogenesis is characterized by alveolar epithelial cell injury, inflammation, epithelial-mesenchymal transition, and parenchymal fibrosis. Macrophages play diverse roles in their development, both in the acute phase and in tissue repair. AREAS COVERED In this review, we summarize the current state of knowledge regarding the role of macrophages and their phenotypes in the immunopathogenesis of DPLDs; CVD-ILD, UIP, NSIP, DIP, RB-ILD, AIP, HP, Sarcoidosis, etc. Our goal is to update the understanding of the immune mechanisms underlying the initiation and progression of fibrosis in DPLDs. This will help in identification of biomarkers and in developing novel therapeutic strategies for DPLDs. A thorough literature search of the published studies in PubMed (from 1975 to 2020) was done. EXPERT OPINION The macrophage associated inflammatory markers needs to be explored for their potential as biomarkers of disease activity and progression. Pharmacological targeting of macrophage activation may reduce the risk of macrophage activation syndrome (MAS) and help improving the survival and prognosis of these patients.
Collapse
Affiliation(s)
| | - Himanshu Dhanda
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Apoorva Pandey
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Amit Singh
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Raj Kumar
- Department of Pulmonary Medicine, V.P.Chest Institute , New Delhi, India
| |
Collapse
|
23
|
Bhattacharya A, Ghosh P, Prasad R, Ghosh A, Das K, Roy A, Mallik S, Sinha DK, Sen P. MAP Kinase driven actomyosin rearrangement is a crucial regulator of monocyte to macrophage differentiation. Cell Signal 2020; 73:109691. [PMID: 32531262 DOI: 10.1016/j.cellsig.2020.109691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
Rearrangement of actin cytoskeleton correlates significantly with the immune responses as the perturbation of cytoskeletal dynamics leads to many immune deficiencies. Mechanistic insights into this correlation remain unknown. Cellular spreading, the most characteristic phenotype associated with monocyte to macrophage differentiation, led us to investigate the contribution of actomyosin dynamics in monocyte differentiation. Our observation revealed that actomyosin reorganization intrinsically governs the process of monocyte to macrophage differentiation. Further, we established that the MAPK-driven signaling pathways regulate the cellular actomyosin dynamics that direct monocyte to macrophage differentiation. We also identified P42/44 Mitogen-Activated Protein Kinase (P42/44 MAPK), P38 Mitogen-Activated Protein Kinase (P38 MAPK), MAP Kinase Activated Protein Kinase 2 (MK-2), Heat Shock Protein 27 (Hsp-27), Lim Kinase (Lim K), non-muscle cofilin (n-cofilin), Myosin Light Chain Kinase (MLCK) and Myosin Light Chain (MLC) as critical components of the signaling network. Moreover, we have shown the involvement of the same signaling cascade in 3D gel-like microenvironment induced spontaneous monocyte to macrophage differentiation and in human blood-derived PBMC differentiation. Our study reveals new mechanistic insights into the process of monocyte to macrophage differentiation.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Purnam Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ramesh Prasad
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kaushik Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Roy
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suman Mallik
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
24
|
de Almeida Nagata DE, Chiang EY, Jhunjhunwala S, Caplazi P, Arumugam V, Modrusan Z, Chan E, Merchant M, Jin L, Arnott D, Romero FA, Magnuson S, Gascoigne KE, Grogan JL. Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Rep 2020; 27:269-281.e4. [PMID: 30943407 DOI: 10.1016/j.celrep.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are found in most cancer malignancies and support tumorigenesis by suppressing immunity and promoting tumor growth. Here we identify the bromodomain (BRD) of CBP/EP300 as a critical regulator of H3K27 acetylation (H3K27ac) in MDSCs across promoters and enhancers of pro-tumorigenic target genes. In preclinical tumor models, in vivo administration of a CBP/EP300-BRD inhibitor (CBP/EP300-BRDi) alters intratumoral MDSCs and attenuates established tumor growth in immunocompetent tumor-bearing mice, as well as in MDSC-dependent xenograft models. Inhibition of CBP/EP300-BRD redirects tumor-associated MDSCs from a suppressive to an inflammatory phenotype through downregulation of STAT pathway-related genes and inhibition of Arg1 and iNOS. Similarly, CBP/EP300-BRDi decreases differentiation and suppressive function of human MDSCs in vitro. Our findings uncover a role of CBP/EP300-BRD in intratumoral MDSCs that may be targeted therapeutically to boost anti-tumor immunity.
Collapse
Affiliation(s)
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vidhyalakshmi Arumugam
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Micro Array Lab, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chan
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lingyan Jin
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Arnott
- Department of Technology, Proteomics & Biological Resources, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - F Anthony Romero
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Magnuson
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karen E Gascoigne
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
25
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
26
|
Jonscher KR, Abrams J, Friedman JE. Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:315-325. [PMID: 33426540 PMCID: PMC7793570 DOI: 10.33696/immunology.2.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is strongly associated with development of NAFLD in offspring. However, mechanisms by which "priming" of the immune system in early life increases susceptibility to NAFLD are poorly understood. Recent studies have focused on the role "non-reparative" macrophages play in accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid cells during gestation. Further, microbial dysbiosis in neonatal life contributes to training innate immune cell responsiveness in the gut, bone marrow, and liver, leading to developmental programming of pediatric NAFLD. Comprehensive understanding of how different gut bacteria and their byproducts shape development of the early innate immune system and microbiome will uncover early interventions to prevent NAFLD pathophysiology.
Collapse
Affiliation(s)
- Karen R. Jonscher
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jesse Abrams
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
- Departments of Physiology and Pediatrics, University of Oklahoma Health Sciences Center, USA
| |
Collapse
|
27
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
28
|
Abstract
Myeloid cells assume a wide range of phenotypes, some of which are protective against injury and infection whilst others promote cardiovascular disease. This heterogeneity is partially caused by switching of cell sources from local tissue-resident macrophage proliferation to recruitment of circulating cells, and partially due to macrophages' phenotypic plasticity. While long-lived tissue-resident macrophages support development, tissue homoeostasis and cardiac conduction, monocyte-derived cells may promote destruction of the arterial wall and the myocardium, leading to organ ischaemia and heart failure. Influencing myeloid cell flux and phenotype shifts emerges as a therapeutic opportunity in many disease areas, including atherosclerosis, acute myocardial infarction, heart failure and stroke. However, it is currently unclear which cell subsets and drug targets are the most efficient and safest options. Here I review the neutrophil and macrophage supply chain and the cells' emerging heterogeneity in the setting of atherosclerosis and ischaemic heart disease.
Collapse
Affiliation(s)
- M Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
30
|
Zhang M, Liu F, Zhou P, Wang Q, Xu C, Li Y, Bian L, Liu Y, Zhou J, Wang F, Yao Y, Fang Y, Li D. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy 2019; 15:1150-1162. [PMID: 30724690 DOI: 10.1080/15548627.2019.1578040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Understanding of the mechanism for myeloid differentiation provides important insights into the hematopoietic developmental processes. By using an ESC-derived myeloid progenitor cell model, we found that CSF2/GM-CSF triggered macrophage differentiation and activation of the MTOR signaling pathway. Activation or inhibition of the MTOR signaling enhanced or attenuated macrophage differentiation, respectively, suggesting a critical function. We further showed that macroautophagy/autophagy was inhibited with the addition of CSF2. Furthermore, pharmacological inhibition and genetic modification of autophagy enhanced macrophage differentiation and rescued the inhibitory effect on differentiation caused by MTOR inhibition. Thus, the MTOR signaling pathway regulates macrophage differentiation of myeloid progenitors by inhibiting autophagy. Our results provide new insights into the mechanisms for myeloid differentiation and may prove useful for therapeutic applications of hematopoietic and myeloid progenitor cells. Abbreviations: 2-DG: 2-deoxy-D-glucose; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; BM: bone marrow; CQ: chloroquine; ECAR: extracellular acidification rate; ESC: embryonic stem cell; CSF2/GM-CSF: colony stimulating factor 2; CSF3/G-CSF: colony stimulating factor 3; HPC: hematopoietic progenitor cell; ITGAM/CD11b: integrin alpha M; LPS: lipopolysaccharide; MFI: median fluorescence intensity; MTOR: mechanistic target of rapamycin kinase; RPS6KB1/p70S6K1: ribosomal protein S6 kinase, polypeptide 1; shRNA: short hairpin RNA; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Meichao Zhang
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Furao Liu
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Pingting Zhou
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qian Wang
- b Department of Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ci Xu
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanyan Li
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Lei Bian
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yuanhua Liu
- c Department of Chemotherapy , Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province , Nanjing , Jiangsu , China
| | - Jiaxi Zhou
- d State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , China
| | - Fei Wang
- e Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Yuan Yao
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yong Fang
- f Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital , Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Dong Li
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
31
|
Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ, Weissleder R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Am J Cancer Res 2018; 8:5842-5854. [PMID: 30613266 PMCID: PMC6299430 DOI: 10.7150/thno.26888] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAM) have attracted attention as they can modulate key cancer-related activities, yet TAM represent a heterogenous group of cells that remain incompletely characterized. In growing tumors, TAM are often referred to as M2-like macrophages, which are cells that display immunosuppressive and tumorigenic functions and express the enzyme arginase 1 (Arg1). Methods: Here we combined high resolution intravital imaging with single cell RNA seq to uncover the topography and molecular profiles of immunosuppressive macrophages in mice. We further assessed how immunotherapeutic interventions impact these cells directly in vivo. Results: We show that: i) Arg1+ macrophages are more abundant in tumors compared to other organs; ii) there exist two morphologically distinct subsets of Arg1 TAM defined by previously unknown markers (Gbp2b, Bst1, Sgk1, Pmepa1, Ms4a7); iii) anti-Programmed Cell Death-1 (aPD-1) therapy decreases the number of Arg1+ TAM while increasing Arg1- TAM; iv) accordingly, pharmacological inhibition of arginase 1 does not synergize with aPD-1 therapy. Conclusion: Overall, this research shows how powerful complementary single cell analytical approaches can be used to improve our understanding of drug action in vivo.
Collapse
|
32
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Exosome and Macrophage Crosstalk in Sleep-Disordered Breathing-Induced Metabolic Dysfunction. Int J Mol Sci 2018; 19:ijms19113383. [PMID: 30380647 PMCID: PMC6274857 DOI: 10.3390/ijms19113383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent worldwide public health problem that is characterized by repetitive upper airway collapse leading to intermittent hypoxia, pronounced negative intrathoracic pressures, and recurrent arousals resulting in sleep fragmentation. Obesity is a major risk factor of OSA and both of these two closely intertwined conditions result in increased sympathetic activity, oxidative stress, and chronic low-grade inflammation, which ultimately contribute, among other morbidities, to metabolic dysfunction, as reflected by visceral white adipose tissue (VWAT) insulin resistance (IR). Circulating extracellular vesicles (EVs), including exosomes, are released by most cell types and their cargos vary greatly and reflect underlying changes in cellular homeostasis. Thus, exosomes can provide insights into how cells and systems cope with physiological perturbations by virtue of the identity and abundance of miRNAs, mRNAs, proteins, and lipids that are packaged in the EVs cargo, and are secreted from the cells into bodily fluids under normal as well as diseased states. Accordingly, exosomes represent a novel pathway via which a cohort of biomolecules can travel long distances and result in the modulation of gene expression in selected and targeted recipient cells. For example, exosomes secreted from macrophages play a critical role in innate immunity and also initiate the adaptive immune response within specific metabolic tissues such as VWAT. Under normal conditions, phagocyte-derived exosomes represent a large portion of circulating EVs in blood, and carry a protective signature against IR that is altered when secreting cells are exposed to altered physiological conditions such as those elicited by OSA, leading to emergence of IR within VWAT compartment. Consequently, increased understanding of exosome biogenesis and biology should lead to development of new diagnostic biomarker assays and personalized therapeutic approaches. Here, the evidence on the major biological functions of macrophages and exosomes as pathophysiological effectors of OSA-induced metabolic dysfunction is discussed.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Sections of Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA.
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
33
|
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018; 2:578-588. [PMID: 31015631 PMCID: PMC6192054 DOI: 10.1038/s41551-018-0236-8] [Citation(s) in RCA: 665] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
Tumour-associated macrophages (TAMs) are abundant in many cancers, and often display an immune-suppressive M2-like phenotype that fosters tumour growth and promotes resistance to therapy. Yet macrophages are highly plastic and can also acquire an anti-tumourigenic M1-like phenotype. Here, we show that R848, an agonist of the toll-like receptors (TLRs) TLR7 and TLR8 identified in a morphometric-based screen, is a potent driver of the M1 phenotype in vitro and that R848-loaded β-cyclodextrin nanoparticles (CDNPs) lead to efficient drug delivery to TAMs in vivo. As a monotherapy, the administration of CDNP-R848 in multiple tumour models in mice altered the functional orientation of the tumour immune microenvironment towards an M1 phenotype, leading to controlled tumour growth and protecting the animals against tumour rechallenge. When used in combination with the immune checkpoint inhibitor anti-PD-1, we observed improved immunotherapy response rates, also in a tumour model resistant to anti-PD-1 therapy. Our findings demonstrate the ability of rationally engineered drug–nanoparticle combinations to efficiently modulate TAMs for cancer immunotherapy.
Collapse
|
34
|
La Fleur L, Boura VF, Alexeyenko A, Berglund A, Pontén V, Mattsson JSM, Djureinovic D, Persson J, Brunnström H, Isaksson J, Brandén E, Koyi H, Micke P, Karlsson MCI, Botling J. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer 2018; 143:1741-1752. [PMID: 29667169 DOI: 10.1002/ijc.31545] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are attractive targets for immunotherapy. Recently, studies in animal models showed that treatment with an anti-TAM antibody directed against the scavenger receptor MARCO resulted in suppression of tumor growth and metastatic dissemination. Here we investigated the expression of MARCO in relation to other macrophage markers and immune pathways in a non-small cell lung cancer (NSCLC) cohort (n = 352). MARCO, CD68, CD163, MSR1 and programmed death ligand-1 (PD-L1) were analyzed by immunohistochemistry and immunofluorescence, and associations to other immune cells and regulatory pathways were studied in a subset of cases (n = 199) with available RNA-seq data. We observed a large variation in macrophage density between cases and a strong correlation between CD68 and CD163, suggesting that the majority of TAMs present in NSCLC exhibit a protumor phenotype. Correlation to clinical data only showed a weak trend toward worse survival for patients with high macrophage infiltration. Interestingly, MARCO was expressed on a distinct subpopulation of TAMs, which tended to aggregate in close proximity to tumor cell nests. On the transcriptomic level, we found a positive association between MARCO gene expression and general immune response pathways including strong links to immunosuppressive TAMs, T-cell infiltration and immune checkpoint molecules. Indeed, a higher macrophage infiltration was seen in tumors expressing PD-L1, and macrophages residing within tumor cell nests co-expressed MARCO and PD-L1. Thus, MARCO is a potential new immune target for anti-TAM treatment in a subset of NSCLC patients, possibly in combination with available immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Linnéa La Fleur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vanessa F Boura
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden.,Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Solna, Sweden
| | | | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Persson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden.,Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
35
|
Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with 18F-DPA-714 PET/CT. Eur J Nucl Med Mol Imaging 2018; 45:1956-1963. [PMID: 29728748 PMCID: PMC6132543 DOI: 10.1007/s00259-018-4038-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/19/2018] [Indexed: 11/10/2022]
Abstract
Purpose An acute coronary syndrome (ACS) is characterized by a multi-level inflammatory response, comprising activation of bone marrow and spleen accompanied by augmented release of leukocytes into the circulation. The duration of this response after an ACS remains unclear. Here, we assessed the effect of an ACS on the multi-level inflammatory response in patients both acutely and after 3 months. Methods We performed 18F-DPA-714 PET/CT acutely and 3 months post-ACS in eight patients and eight matched healthy controls. DPA-714, a PET tracer binding the TSPO receptor and highly expressed in myeloid cells, was used to assess hematopoietic activity. We also characterized circulating monocytes and hematopoietic stem and progenitor cells (HSPCs) by flow cytometry in 20 patients acutely and 3 months post-ACS and in 19 healthy controls. Results In the acute phase, patients displayed a 1.4-fold and 1.3-fold higher 18F-DPA-714 uptake in, respectively, bone marrow (p = 0.012) and spleen (p = 0.039) compared with healthy controls. This coincided with a 2.4-fold higher number of circulating HSPCs (p = 0.001). Three months post-ACS, 18F-DPA-714 uptake in bone marrow decreased significantly (p = 0.002), but no decrease was observed for 18F-DPA-714 uptake in the spleen (p = 0.67) nor for the number of circulating HSPCs (p = 0.75). Conclusions 18F-DPA-714 PET/CT reveals an ACS- triggered hematopoietic organ activation as initiator of a prolonged cellular inflammatory response beyond 3 months, characterized by a higher number of circulating leukocytes and their precursors. This multi-level inflammatory response may provide an attractive target for novel treatment options aimed at reducing the high recurrence rate post-ACS. Electronic supplementary material The online version of this article (10.1007/s00259-018-4038-8) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
ANG II facilitated CD11
+
Ly6C
hi
cells reprogramming into M1‐like macrophage through Erk1/2 or p38‐Stat3 pathway and involved in EAM. J Leukoc Biol 2018; 103:719-730. [DOI: 10.1002/jlb.3a0617-264rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023] Open
|
37
|
Pucci F, Rickelt S, Newton AP, Garris C, Nunes E, Evavold C, Pfirschke C, Engblom C, Mino-Kenudson M, Hynes RO, Weissleder R, Pittet MJ. PF4 Promotes Platelet Production and Lung Cancer Growth. Cell Rep 2017; 17:1764-1772. [PMID: 27829148 DOI: 10.1016/j.celrep.2016.10.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/02/2016] [Accepted: 10/11/2016] [Indexed: 01/10/2023] Open
Abstract
Co-option of host components by solid tumors facilitates cancer progression and can occur in both local tumor microenvironments and remote locations. At present, the signals involved in long-distance communication remain insufficiently understood. Here, we identify platelet factor 4 (PF4, CXCL4) as an endocrine factor whose overexpression in tumors correlates with decreased overall patient survival. Furthermore, engineered PF4 over-production in a Kras-driven lung adenocarcinoma genetic mouse model expanded megakaryopoiesis in bone marrow, augmented platelet accumulation in lungs, and accelerated de novo adenocarcinogenesis. Additionally, anti-platelet treatment controlled mouse lung cancer progression, further suggesting that platelets can modulate the tumor microenvironment to accelerate tumor outgrowth. These findings support PF4 as a cancer-enhancing endocrine signal that controls discrete aspects of bone marrow hematopoiesis and tumor microenvironment and that should be considered as a molecular target in anticancer therapy.
Collapse
Affiliation(s)
- Ferdinando Pucci
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Steffen Rickelt
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andita P Newton
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ernesto Nunes
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Charles Evavold
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, MA 02115, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun 2017; 8:14293. [PMID: 28176769 PMCID: PMC5309815 DOI: 10.1038/ncomms14293] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Involvement of the immune system in tumour progression is at the forefront of cancer research. Analysis of the tumour immune microenvironment has yielded a wealth of information on tumour biology, and alterations in some immune subtypes, such as tumour-associated macrophages (TAM), can be strong prognostic indicators. Here, we use optical tissue clearing and a TAM-targeting injectable fluorescent nanoparticle (NP) to examine three-dimensional TAM composition, tumour-to-tumour heterogeneity, response to colony-stimulating factor 1 receptor (CSF-1R) blockade and nanoparticle-based drug delivery in murine pulmonary carcinoma. The method allows for rapid tumour volume assessment and spatial information on TAM infiltration at the cellular level in entire lungs. This method reveals that TAM density was heterogeneous across tumours in the same animal, overall TAM density is different among separate pulmonary tumour models, nanotherapeutic drug delivery correlated with TAM heterogeneity, and successful response to CSF-1R blockade is characterized by enhanced TAM penetration throughout and within tumours. Tumour-associated macrophages (TAM) can be used as prognostic indicators in cancer. Here, the authors establish a platform for high-throughput 3D microscopy in murine lung carcinoma that allows to visualize TAMs infiltration throughout the entire lung, response to CSF-1R blockade and nanoparticle drug delivery.
Collapse
|
39
|
Lother A, Hein L. Pharmacology of heart failure: From basic science to novel therapies. Pharmacol Ther 2016; 166:136-49. [PMID: 27456554 DOI: 10.1016/j.pharmthera.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Chronic heart failure is one of the leading causes for hospitalization in the United States and Europe, and is accompanied by high mortality. Current pharmacological therapy of chronic heart failure with reduced ejection fraction is largely based on compounds that inhibit the detrimental action of the adrenergic and the renin-angiotensin-aldosterone systems on the heart. More than one decade after spironolactone, two novel therapeutic principles have been added to the very recently released guidelines on heart failure therapy: the HCN-channel inhibitor ivabradine and the combined angiotensin and neprilysin inhibitor valsartan/sacubitril. New compounds that are in phase II or III clinical evaluation include novel non-steroidal mineralocorticoid receptor antagonists, guanylate cyclase activators or myosine activators. A variety of novel candidate targets have been identified and the availability of gene transfer has just begun to accelerate translation from basic science to clinical application. This review provides an overview of current pharmacology and pharmacotherapy in chronic heart failure at three stages: the updated clinical guidelines of the American Heart Association and the European Society of Cardiology, new drugs which are in clinical development, and finally innovative drug targets and their mechanisms in heart failure which are emerging from preclinical studies will be discussed.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Abstract
Recent clinical trials have demonstrated the ability to durably control cancer in some patients by manipulating T lymphocytes. These immunotherapies are revolutionizing cancer treatment but benefit only a minority of patients. It is thus a crucial time for clinicians, cancer scientists and immunologists to determine the next steps in shifting cancer treatment towards better cancer control. This Review describes recent advances in our understanding of tumour-associated myeloid cells. These cells remain less studied than T lymphocytes but have attracted particular attention because their presence in tumours is often linked to altered patient survival. Also, experimental studies indicate that myeloid cells modulate key cancer-associated activities, including immune evasion, and affect virtually all types of cancer therapy. Consequently, targeting myeloid cells could overcome limitations of current treatment options.
Collapse
Affiliation(s)
- Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
41
|
Skuljec J, Cabanski M, Surdziel E, Lachmann N, Brennig S, Pul R, Jirmo AC, Habener A, Visic J, Dalüge K, Hennig C, Moritz T, Happle C, Hansen G. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice. Eur J Immunol 2016; 46:1656-68. [DOI: 10.1002/eji.201546200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Maciej Cabanski
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Ewa Surdziel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Sebastian Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Refik Pul
- Department of Neurology; Hannover Medical School; Hannover Germany
| | - Adan C. Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Julia Visic
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Kathleen Dalüge
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Christian Hennig
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| |
Collapse
|
42
|
Kraakman MJ, Dragoljevic D, Kammoun HL, Murphy AJ. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis. Clin Transl Immunology 2016; 5:e84. [PMID: 27350883 PMCID: PMC4910124 DOI: 10.1038/cti.2016.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use.
Collapse
Affiliation(s)
- Michael J Kraakman
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Dragana Dragoljevic
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Helene L Kammoun
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Mead ME, Hull CM. Transcriptional control of sexual development in Cryptococcus neoformans. J Microbiol 2016; 54:339-46. [PMID: 27095452 DOI: 10.1007/s12275-016-6080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Medical Microbiology & Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
44
|
Kakizaki M, Togayachi A, Narimatsu H, Watanabe R. Contribution of Lewis X Carbohydrate Structure to Neuropathogenic Murine Coronaviral Spread. Jpn J Infect Dis 2016; 69:405-13. [PMID: 26902214 DOI: 10.7883/yoken.jjid.2015.499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although Lewis X (Le(x)), a carbohydrate structure, is involved in innate immunity through cell-to-cell and pathogen recognition, its expression has not been observed in mouse monocytes/macrophages (Mo/Mas). The Mo/Mas that infiltrate the meninges after infection with the neuropathogenic murine coronavirus strain srr7 are an initial target of infection. Furthermore, higher inflammatory responses were observed in gene-manipulated mice lacking α1,3-fucosyltransferase 9, which determines the expression of the Le(x) structure, than in wild type mice after infection. We investigated Le(x) expression using CD11b-positive peritoneal exudate cells (PECs) and found that Le(x) is inducible in Mo/Mas after infection with srr7, especially in the syncytial cells during the late phase of infection. The number of syncytial cells was reduced after treatment of the infected PECs with anti-Le(x) antibody, during the late phase of infection. In addition, the antibody treatment induced a marked reduction in the number of the infected cells at 24 hours post inoculation, without changing the infected cell numbers during the initial phase of infection. These data indicate that the Le(x) structure could play a role in syncytial formation and cell-to-cell infection during the late phase of infection.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | | | | | | |
Collapse
|
45
|
Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol 2016; 9:38-55. [PMID: 25921340 PMCID: PMC4626445 DOI: 10.1038/mi.2015.34] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/07/2015] [Indexed: 02/07/2023]
Abstract
The roles of macrophages in type 2-driven inflammation and fibrosis remain unclear. Here, using CD11b-diphtheria toxin receptor (DTR) transgenic mice and three models of interleukin 13 (IL-13)-dependent inflammation, fibrosis, and immunity, we show that CD11b(+) F4/80(+) Ly6C(+) macrophages are required for the maintenance of type 2 immunity within affected tissues but not secondary lymphoid organs. Direct depletion of macrophages during the maintenance or resolution phases of secondary Schistosoma mansoni egg-induced granuloma formation caused a profound decrease in inflammation, fibrosis, and type 2 gene expression. Additional studies with CD11c-DTR and CD11b/CD11c-DTR double-transgenic mice suggested that macrophages but not dendritic cells were critical. Mechanistically, macrophage depletion impaired effector CD4(+) T helper type 2 (Th2) cell homing and activation within the inflamed lung. Depletion of CD11b(+) F4/80(+) Ly6C(+) macrophages similarly reduced house dust mite-induced allergic lung inflammation and suppressed IL-13-dependent immunity to the nematode parasite Nippostrongylus brasiliensis. Consequently, therapeutic strategies targeting macrophages offer a novel approach to ameliorate established type 2 inflammatory diseases.
Collapse
|
46
|
Borthwick LA, Wynn TA. IL-13 and TGF-β1: Core Mediators of Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Abstract
Macrophages are cellular components of the innate immune system that reside in virtually all tissues and contribute to immunity, repair, and homeostasis. The traditional view that all tissue-resident macrophages derive from the bone marrow through circulating monocyte intermediates has dramatically shifted recently with the observation that macrophages from embryonic progenitors can persist into adulthood and self-maintain by local proliferation. In several tissues, however, monocytes also contribute to the resident macrophage population, on which the local environment can impose tissue-specific macrophage functions. These observations have raised important questions: What determines resident macrophage identity and function, ontogeny or environment? How is macrophage proliferation regulated? In this review, we summarize the current knowledge about the identity, proliferation, and turnover of tissue-resident macrophages and how they differ from freshly recruited short-lived monocyte-derived cells. We examine whether macrophage proliferation can be qualified as self-renewal of mature differentiated cells and whether the concepts and molecular pathways are comparable to self-renewal mechanisms in stem cells. Finally, we discuss how improved understanding of macrophage identity and self-renewal could be exploited for therapeutic intervention of macrophage-mediated pathologies by selectively targeting freshly recruited or resident macrophages.
Collapse
Affiliation(s)
- Rebecca Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France; Institute National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | | | | |
Collapse
|
48
|
Abstract
Diet, exercise, stress, and sleep are receiving attention as environmental modifiers of chronic inflammatory diseases, including atherosclerosis, the culprit condition of myocardial infarction and stroke. Accumulating data indicate that psychosocial stress and a high-fat, high-cholesterol diet aggravate cardiovascular disease, whereas regular physical activity and healthy sleeping habits help prevent it. Here, we raise the possibility that inflammation-associated leukocyte production plays a causal role in lifestyle effects on atherosclerosis progression. Specifically, we explore whether and how potent real-life disease modifiers influence hematopoiesis' molecular and cellular machinery. Lifestyle, we hypothesize, may rearrange hematopoietic topography, diverting production from the bone marrow to the periphery, thus propagating a quantitative and qualitative drift of the macrophage supply chain. These changes may involve progenitor-extrinsic and intrinsic communication nodes that connect organ systems along neuroimmune and immunometabolic axes, ultimately leading to an altered number and phenotype of lesional macrophages. We propose that, in conjunction with improved public health policy, future therapeutics could aim to modulate the quantitative and qualitative output, as well as the location, of the hematopoietic tree to decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
49
|
Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JHF, Fayad ZA, Lehrer-Graiwer J, Korsgren M, Figueroa AL, Fredrickson J, Rubin B, Hoffmann U, Truong QA, Min JK, Baruch A, Nasir K, Nahrendorf M, Tawakol A. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 2015; 8:121-30. [PMID: 25577441 DOI: 10.1016/j.jcmg.2014.10.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study sought to determine whether splenic activation after acute coronary syndrome (ACS) is linked to leukocyte proinflammatory remodeling and whether splenic activity independently predicts the risk of cardiovascular disease (CVD) events. BACKGROUND Pre-clinical data suggest the existence of a cardiosplenic axis, wherein activation of hematopoietic tissues (notably in the spleen) results in liberation of proinflammatory leukocytes and accelerated atherosclerotic inflammation. However, it is presently unknown whether a cardiosplenic axis exists in humans and whether splenic activation relates to CVD risk. METHODS (18)F-fluorodeoxyglucose ((18)FDG)-positron emission tomography (PET) imaging was performed in 508 individuals across 2 studies. In the first study, we performed FDG-PET imaging in 22 patients with recent ACS and 22 control subjects. FDG uptake was measured in spleen and arterial wall, whereas proinflammatory gene expression of circulating leukocytes was assessed by quantitative real-time polymerase chain reaction. In a second study, we examined the relationship between splenic tissue FDG uptake with subsequent CVD events during follow-up (median 4 years) in 464 patients who previously had undergone FDG-PET imaging. RESULTS Splenic activity increased after ACS and was significantly associated with multiple indices of inflammation: 1) up-regulated gene expression of proinflammatory leukocytes; 2) increased C-reactive protein; and 3) increased arterial wall inflammation (FDG uptake). Moreover, in the second study, splenic activity (greater than or equal to the median) was associated with an increased risk of CVD events (hazard ratio [HR]: 3.3; 95% confidence interval [CI]: 1.5 to 7.3; p = 0.003), which remained significant after adjustment for CVD risk factors (HR: 2.26; 95% CI: 1.01 to 5.06; p = 0.04) and for arterial FDG uptake (HR: 2.68; 95% CI: 1.5 to 7.4; p = 0.02). CONCLUSIONS Our findings demonstrate increased splenic metabolic activity after ACS and its association with proinflammatory remodeling of circulating leukocytes. Moreover, we observed that metabolic activity of the spleen independently predicted risk of subsequent CVD events. Collectively, these findings provide evidence of a cardiosplenic axis in humans similar to that shown in pre-clinical studies.
Collapse
Affiliation(s)
- Hamed Emami
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Parmanand Singh
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan MacNabb
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Esad Vucic
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zachary Lavender
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Amparo L Figueroa
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Barry Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Udo Hoffmann
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Quynh A Truong
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James K Min
- Departments of Radiology and Medicine, Weill Cornell Medical College and the New York-Presbyterian Hospital, New York, New York
| | | | | | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ahmed Tawakol
- Cardiac MR PET CT Program, Division of Cardiac Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
50
|
Evrard M, Chong SZ, Devi S, Chew WK, Lee B, Poidinger M, Ginhoux F, Tan SM, Ng LG. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol 2014; 97:611-9. [PMID: 25516753 DOI: 10.1189/jlb.1ta0514-274r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major "checkpoint" for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1(gfp/+) mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1(gfp/+)Flt3L(-/-) mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1(gfp/+)-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo.
Collapse
Affiliation(s)
- Maximilien Evrard
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shu Zhen Chong
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sapna Devi
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weng Keong Chew
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bernett Lee
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Michael Poidinger
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Florent Ginhoux
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suet Mien Tan
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|