1
|
Wang HM, Hu GR, Luo WY, Li FL. The horizontal gene transfer of perchlorate reduction genomic island in three bacteria from an ecological niche. Appl Microbiol Biotechnol 2024; 108:22. [PMID: 38159121 DOI: 10.1007/s00253-023-12827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 μm long and 0.5-0.6 μm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.
Collapse
Affiliation(s)
- Hao-Ming Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research CenterQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guang-Rong Hu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research CenterQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Wen-Yong Luo
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research CenterQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266400, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research CenterQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
2
|
Chen S, Tan Z, Wang B, Xu H, Zhao Y, Tian B, Hua Y, Wang L. The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters. Int J Mol Sci 2024; 25:11533. [PMID: 39519086 PMCID: PMC11546323 DOI: 10.3390/ijms252111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Perchlorate is one of the major inorganic pollutants in the natural environment and the living environment, which is toxic to organisms and difficult to degrade due to its special structure. As previously reported, the Phoenix Mars lander detected approximately 0.6% perchlorate in the Martian soil, indicating challenges for Earth-based life to survive there. Currently, biological approaches using dissimilatory perchlorate-reducing bacteria (DPRB) are the most promising methods for perchlorate degradation. However, the majority of DPRB exhibit limited radiation resistance, rendering them unsuitable for survival on Mars. In this study, we obtained the transcriptome data of Deinococcus deserti, and predicted and identified multiple constitutive expression promoters of D. deserti with varying activities. The top-five most active promoters were separately fused to specific genes involved in the degradation of perchlorate from DPRB Dechloromonas agitata CKB, and transformed into Deinococcus radiodurans R1, forming a novel dissimilatory perchlorate-reducing bacterium, R1-CKB. It exhibited both efficient perchlorate degradation capability and strong radiation resistance, potentially offering a valuable tool for the further enhancement of the Martian atmosphere in the future.
Collapse
Affiliation(s)
- Shanhou Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zichun Tan
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Binqiang Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Cadena S, Cerqueda-García D, Uribe-Flores MM, Ramírez SI. Metagenomic profiling of halites from the Atacama Desert: an extreme environment with natural perchlorate does not promote high diversity of perchlorate reducing microorganisms. Extremophiles 2024; 28:25. [PMID: 38664270 DOI: 10.1007/s00792-024-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/12/2024] [Indexed: 07/17/2024]
Abstract
We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.
Collapse
Affiliation(s)
- Santiago Cadena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Daniel Cerqueda-García
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic®, Instituto de Ecología, A.C., Carretera Antigua a Coatepec #351, Col. El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - María Magdalena Uribe-Flores
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Sandra I Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Torres-Rojas F, Muñoz D, Pía Canales C, Hevia SA, Leyton F, Veloso N, Isaacs M, Vargas IT. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. ENVIRONMENTAL RESEARCH 2023; 233:116442. [PMID: 37343755 DOI: 10.1016/j.envres.2023.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107, Reykjavík, Iceland
| | - Samuel A Hevia
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile; Instituto de Física, Pontificia Universidad Católica de, Chile
| | - Felipe Leyton
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Nicolás Veloso
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Mauricio Isaacs
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
5
|
Saedi Y, Batista JR, Britto R, Grady D. Impacts of co-contaminants and dilution on perchlorate biodegradation using various carbon sources. Biodegradation 2023; 34:301-323. [PMID: 36598629 DOI: 10.1007/s10532-022-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer. The results revealed that both soluble and slow-release carbon sources support biodegradation of contaminants in the sequence nitrate > chlorate > perchlorate. Degradation rates, including and excluding lag times, revealed that the overall impact of the presence of co-contaminants depends on degradation kinetics and the relative concentrations of the contaminants. When the lag time caused by the presence of the co-contaminants is considered, the degradation rates for chlorate and perchlorate were two to three times slower. The results also show that dilution causes lower initial contaminant concentrations, and consequently, slower degradation rates, which is not desirable. On the other hand, the dilution resulting from the injection of amendments to support remediation promotes desirably lower salinity levels. However, the salinity associated with the presence of sulfate does not inhibit biodegradation. The naturally occurring bacteria were able to support the degradation of all contaminants. Bio-augmentation was effective only in diluted microcosms. Proteobacteria and Firmicutes were the dominant phyla identified in the microcosms.
Collapse
Affiliation(s)
- Yasaman Saedi
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA.
| | - Ronnie Britto
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| | - Dana Grady
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| |
Collapse
|
6
|
McCarthy WP, Srinivas M, Danaher M, Connor CO, Callaghan TFO, van Sinderen D, Kenny J, Tobin JT. Isolation and identification of chlorate-reducing Hafnia sp. from milk. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001347. [PMID: 37450378 PMCID: PMC10433419 DOI: 10.1099/mic.0.001347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
Chlorate has become a concern in the food and beverage sector, related to chlorine sanitizers in industrial food production and water treatment. It is of particular concern to regulatory bodies due to the negative health effects of chlorate exposure. This study investigated the fate of chlorate in raw milk and isolated bacterial strains of interest responsible for chlorate breakdown. Unpasteurized milk was demonstrated to have a chlorate-reducing capacity, breaking down enriched chlorate to undetectable levels in 11 days. Further enrichment and isolation using conditions specific to chlorate-reducing bacteria successfully isolated three distinct strains of Hafnia paralvei. Chlorate-reducing bacteria were observed to grow in a chlorate-enriched medium with lactate as an electron donor. All isolated strains were demonstrated to reduce chlorate in liquid medium; however, the exact mechanism of chlorate degradation was not definitively identified in this study.
Collapse
Affiliation(s)
- William P. McCarthy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, Ireland
| | - Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Christine O. Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, Ireland
| | - Tom F. O. Callaghan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- VistaMilk Science Foundation Ireland Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| | - John T. Tobin
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- VistaMilk Science Foundation Ireland Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
7
|
Xu J, Zhu Z, Zhong B, Gong W, Du S, Zhang D, Chen Y, Li X, Zheng Q, Ma J, Sun L, Lu S. Health risk assessment of perchlorate and chlorate in red swamp crayfish (Procambarus clarkii) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156889. [PMID: 35753452 DOI: 10.1016/j.scitotenv.2022.156889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate and chlorate are both strong oxidants and thyroid toxicants that are widely distributed in soil, water and human foods. The red swamp crayfish (Procambarus clarkii) is a common aquatic organism that is popular in Chinese culinary dishes. Dietary intake is the main route of human exposure to perchlorate and chlorate, though the health risks of crayfish consumption are unknown. Thus, this study investigated the quantities of perchlorate and chlorate in red swap crayfish from sampling sites in five provinces located near the Yangtze River in China, along with the associated health risks of consuming this species. Perchlorate was detected in 55.6-100 % of crayfish samples in each sampling location, and chlorate was found in 100 % of samples cross all sites. Concentrations of perchlorate in crayfish from upstream provinces (Hubei, Hunan and Jiangxi) were higher than those from downstream provinces (Anhui and Jiangsu). Perchlorate and chlorate concentrations were positively correlated in crayfish, suggesting that chlorate may be a degradation byproduct of perchlorate. The quantities of both pollutants in hepatopancreas tissue were higher than in muscle tissues (p < 0.05), such that we do not recommend ingesting crayfish hepatopancreas. Hazard quotient (HQ) values for chlorate in crayfish were <1 across all provinces, suggesting no potential health risk of chlorate exposure through crayfish consumption. However, perchlorate concentrations in crayfish from the Jiangxi province had an associated HQ value >1, suggesting potential risks for human health. These results will be useful in informing mitigation measures aimed at reducing perchlorate exposure associated with crayfish consumption.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Baisen Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Yu H, Lee KH, Park JW. Impact of Acetate in Reduction of Perchlorate by Mixed Microbial Culture under the Influence of Nitrate and Sulfate. Int J Mol Sci 2022; 23:ijms231810608. [PMID: 36142508 PMCID: PMC9504539 DOI: 10.3390/ijms231810608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The biological reduction of slow degradation contaminants such as perchlorate (ClO4−) is considered to be a promising water treatment technology. The process is based on the ability of a specific mixed microbial culture to use perchlorate as an electron acceptor in the absence of oxygen. In this study, batch experiments were conducted to investigate the effect of nitrate on perchlorate reduction, the kinetic parameters of the Monod equation and the optimal ratio of acetate to perchlorate for the perchlorate reducing bacterial consortium. The results of this study suggest that acclimated microbial cultures can be applied to treat wastewater containing high concentrations of perchlorate. Reactor experiments were carried out with different hydraulic retention times (HRTs) to determine the optimal operating conditions. A fixed optimal HRT and the effect of nitrate on perchlorate reduction were investigated with various concentrations of the electron donor. The results showed that perchlorate reduction occurred after nitrate removal. Moreover, the presence of sulfate in wastewater had no effect on the perchlorate reduction. However, it had little effect on biomass concentration in the presence of nitrate during exposure to a mixed microbial culture, considering the nitrate as the inhibitor of perchlorate reduction by reducing the degradation rate. The batch scale experiment results illustrated that for efficient operation of perchlorate reduction, the optimal acetate to perchlorate ratio of 1.4:1.0 would be enough. Moreover, these experiments found the following results: the kinetic parameters equivalent to Y = 0.281 mg biomass/mg perchlorate, Ks = 37.619 mg/L and qmax = 0.042 mg perchlorate/mg biomass/h. In addition, anoxic–aerobic experimental reactor results verify the optimal HRT of 6 h for continuous application. Furthermore, it also illustrated that using 600 mg/L of acetate as a carbon source is responsible for 100% of nitrate reduction with less than 50% of the perchlorate reduction, whereas at 1000 mg/L acetate, approximately 100% reduction was recorded.
Collapse
Affiliation(s)
- Hosung Yu
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Korea
- Correspondence: (K.H.L.); (J.-W.P.)
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Correspondence: (K.H.L.); (J.-W.P.)
| |
Collapse
|
9
|
Acevedo-Barrios R, Rubiano-Labrador C, Navarro-Narvaez D, Escobar-Galarza J, González D, Mira S, Moreno D, Contreras A, Miranda-Castro W. Perchlorate-reducing bacteria from Antarctic marine sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:654. [PMID: 35934758 DOI: 10.1007/s10661-022-10328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in different ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is significant as it is the first finding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica offer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in high-salinity ecosystems.
Collapse
Affiliation(s)
- Rosa Acevedo-Barrios
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia.
| | - Carolina Rubiano-Labrador
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Dhania Navarro-Narvaez
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Johana Escobar-Galarza
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Diana González
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Stephanie Mira
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Dayana Moreno
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Aura Contreras
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Wendy Miranda-Castro
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| |
Collapse
|
10
|
Torres-Rojas F, Muñoz D, Pía Canales C, Vargas IT. Bioprospecting for electrochemically active perchlorate-reducing microorganisms. Bioelectrochemistry 2022; 147:108171. [DOI: 10.1016/j.bioelechem.2022.108171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
11
|
Zhang S, Amanze C, Sun C, Zou K, Fu S, Deng Y, Liu X, Liang Y. Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon 2021; 7:e07181. [PMID: 34159268 PMCID: PMC8203704 DOI: 10.1016/j.heliyon.2021.e07181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Xenobiotics are generally known as man-made refractory organic pollutants widely distributed in various environments. For exploring the bioremediation possibility of xenobiotics, two novel xenobiotics-degrading strains affiliated with Azonexaceae were isolated. We report here the phylogenetics, genome, and geo-distribution of a novel and ubiquitous Azonexaceae species that primarily joins in the cometabolic process of some xenobiotics in natural communities. Strains s22 and t15 could be proposed as a novel species within Dechloromonas based on genomic and multi-phylogenetic analysis. Pan-genome analysis showed that the 63 core genes in Dechloromonas include genes for dozens of metabolisms such as nitrogen fixation protein (nifU), nitrogen regulatory protein (glnK), dCTP deaminase, C4-dicarboxylate transporter, and fructose-bisphosphate aldolase. Strains s22 and t15 have the ability to metabolize nitrogen, including nitrogen fixation, NirS-dependent denitrification, and dissimilatory nitrate reduction. Moreover, the novel species possesses the EnvZ-OmpR two-component system for controlling osmotic stress and QseC-QseB system for quorum sensing to rapidly sense environmental changes. It is intriguing that this new species has a series of genes for the biodegradation of some xenobiotics such as azathioprine, 6-Mercaptopurine, trinitrotoluene, chloroalkane, and chloroalkene. Specifically, glutathione S-transferase (GST) and 4-oxalocrotonate tautomerase (praC) in this novel species play important roles in the detoxification metabolism of some xenobiotics like dioxin, trichloroethene, chloroacetyl chloride, benzo[a]pyrene, and aflatoxin B1. Using data from GenBank, DDBJ and EMBL databases, we also demonstrated that members of this novel species were found globally in plants (e.g. rice), guts (e.g. insect), pristine and contaminated regions. Given these data, Dechloromonas sp. strains s22 and t15 take part in the biodegradation of some xenobiotics through key enzymes.
Collapse
Affiliation(s)
- Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Chongran Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
- Corresponding author.
| |
Collapse
|
12
|
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. MINERALS 2021. [DOI: 10.3390/min11050475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.
Collapse
|
13
|
Liu W, Lian J, Guo J, Guo Y, Yue L, Niu Y, Duan L. Perchlorate bioreduction by anaerobic granular sludge immobilised with Fe-HA complex: Performance, extracellular polymeric substances and microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122898. [PMID: 32464563 DOI: 10.1016/j.jhazmat.2020.122898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
An iron-humic acid (Fe-HA) complex was used as a redox mediator in perchlorate (ClO4-) bioreduction. Bioreduction performance, extracellular polymeric substances (EPS), and microbial community structure were comprehensively explored using different types of anaerobic granular sludge (AnGS) immobilised without the Fe-HA complex (AnGSCON) and with the Fe-HA complex (AnGSFH). The ClO4- was completely removed by AnGSCON by day 20, while the ClO4- was completely removed by AnGSFH by day 6. The AnGS immobilised with the Fe-HA complex significantly increased the ClO4- bioreduction. The acceleration of ClO4- bioreduction was also explained by the mixed liquor volatile suspended solids (MLVSS), MLVSS/mixed liquor suspended solids (MLSS), EPS composition, and microbial community structure. Compared with AnGSCON, the MLVSS and MLVSS/MLSS of the AnGSFH increased 1.4- and 1.2-fold, respectively. Humic substances in the EPS were stimulated by the Fe-HA complex. The microbial community structure analysis indicated that perchlorate and quinone reducing bacteria were enriched by the Fe-HA complex. Based on the analysis, the ClO4- bioreduction mechanism of the AnGSFH was revealed because the Fe-HA complex in the AnGS increased the biomass concentration, biological activity, and redox-active mediator and shifted the microbial community structure.
Collapse
Affiliation(s)
- Weilong Liu
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China; China Nuclear Power Engineering Co., Ltd. Hebei Branch, Yuhua East Road 56#, Shijiazhuang, 050019, PR China
| | - Jing Lian
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China.
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin, 300384, PR China.
| | - Yankai Guo
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Lin Yue
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Yanyan Niu
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Lili Duan
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| |
Collapse
|
14
|
Torres-Rojas F, Muñoz D, Tapia N, Canales C, Vargas IT. Bioelectrochemical chlorate reduction by Dechloromonas agitata CKB. BIORESOURCE TECHNOLOGY 2020; 315:123818. [PMID: 32688253 DOI: 10.1016/j.biortech.2020.123818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Chlorate has been described as an emerging pollutant that compromises water sources. In this study, bioelectrochemical reactors (BERs) using Dechloromonas agitata CKB, were evaluated as a sustainable alternative for chlorate removal. BERs were operated under flow-recirculation and batch modes with an applied cell-voltage of 0.44 V over a resistance of 1 kΩ. Results show chlorate removal up to 607.288 mg/L. After 115 days, scanning electron microscopy showed biofilm development over the electrodes, and electrochemical impedance spectroscopy confirmed the biocatalytic effect of CKB. The theoretical chlorate bioreduction potential (ε° = 0.792 V) was proven, and a kinetic study indicated that 6 electrons were involved in the reduction mechanism. Finally, a hypothetical bioelectrochemical mechanism for chlorate reduction in a BER was proposed. This research expands upon current knowledge of novel electrochemically active microorganisms and widens the scope of BER applications for chlorate removal.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Natalia Tapia
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107 Reykjavík, Iceland
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
15
|
Bhattacharya S, Roy C, Mandal S, Sarkar J, Rameez MJ, Mondal N, Mapder T, Chatterjee S, Pyne P, Alam M, Haldar PK, Roy R, Fernandes S, Peketi A, Chakraborty R, Mazumdar A, Ghosh W. Aerobic microbial communities in the sediments of a marine oxygen minimum zone. FEMS Microbiol Lett 2020; 367:5911577. [PMID: 32975580 PMCID: PMC7568448 DOI: 10.1093/femsle/fnaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
The ecology of aerobic microorganisms is never explored in marine oxygen minimum zone (OMZ) sediments. Here we reveal aerobic bacterial communities along ∼3 m sediment-horizons of the eastern Arabian Sea OMZ. Sulfide-containing sediment-cores retrieved from 530 mbsl (meters beneath the sea-level) and 580 mbsl were explored at 15–30 cm intervals, using metagenomics, pure-culture-isolation, genomics and metatranscriptomics. Genes for aerobic respiration, and oxidation of methane/ammonia/alcohols/thiosulfate/sulfite/organosulfur-compounds, were detected in the metagenomes from all 25 sediment-samples explored. Most probable numbers for aerobic chemolithoautotrophs and chemoorganoheterotrophs at individual sample-sites were up to 1.1 × 107 (g sediment)-1. The sediment-sample collected from 275 cmbsf (centimeters beneath the seafloor) of the 530-mbsl-core yielded many such obligately aerobic isolates belonging to Cereibacter, Guyparkeria, Halomonas, Methylophaga, Pseudomonas and Sulfitobacter which died upon anaerobic incubation, despite being provided with all possible electron acceptors and fermentative substrates. High percentages of metatranscriptomic reads from the 275 cmbsf sediment-sample, and metagenomic reads from all 25 sediment-samples, matched the isolates’ genomic sequences including those for aerobic metabolisms, genetic/environmental information processing and cell division, thereby illustrating the bacteria's in-situ activity, and ubiquity across the sediment-horizons, respectively. The findings hold critical implications for organic carbon sequestration/remineralization, and inorganic compounds oxidation, within the sediment realm of global marine OMZs.
Collapse
Affiliation(s)
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Tarunendu Mapder
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Prabir Kumar Haldar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Rimi Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Svetlana Fernandes
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Aditya Peketi
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, District - Darjeeling, West Bengal 734013, India
| | - Aninda Mazumdar
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
16
|
Barnum TP, Cheng Y, Hill KA, Lucas LN, Carlson HK, Coates JD. Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. THE ISME JOURNAL 2020; 14:1194-1206. [PMID: 32024948 PMCID: PMC7174294 DOI: 10.1038/s41396-020-0599-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
A key step in the chlorine cycle is the reduction of perchlorate (ClO4-) and chlorate (ClO3-) to chloride by microbial respiratory pathways. Perchlorate-reducing bacteria and chlorate-reducing bacteria differ in that the latter cannot use perchlorate, the most oxidized chlorine compound. However, a recent study identified a bacterium with the chlorate reduction pathway dominating a community provided only perchlorate. Here we confirm a metabolic interaction between perchlorate- and chlorate-reducing bacteria and define its mechanism. Perchlorate-reducing bacteria supported the growth of chlorate-reducing bacteria to up to 90% of total cells in communities and co-cultures. Chlorate-reducing bacteria required the gene for chlorate reductase to grow in co-culture with perchlorate-reducing bacteria, demonstrating that chlorate is responsible for the interaction, not the subsequent intermediates chlorite and oxygen. Modeling of the interaction suggested that cells specialized for chlorate reduction have a competitive advantage for consuming chlorate produced from perchlorate, especially at high concentrations of perchlorate, because perchlorate and chlorate compete for a single enzyme in perchlorate-reducing cells. We conclude that perchlorate-reducing bacteria inadvertently support large populations of chlorate-reducing bacteria in a parasitic relationship through the release of the intermediate chlorate. An implication of these findings is that undetected chlorate-reducing bacteria have likely negatively impacted efforts to bioremediate perchlorate pollution for decades.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaisle A Hill
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Lauren N Lucas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Liu W, Lian J, Guo J, Zhang C, Guo Y, Niu Y, Duan L. Perchlorate reduction by anaerobic granular sludge under different operation strategies: Performance, extracellular polymeric substances and microbial community. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Lynch KL, Jackson WA, Rey K, Spear JR, Rosenzweig F, Munakata-Marr J. Evidence for Biotic Perchlorate Reduction in Naturally Perchlorate-Rich Sediments of Pilot Valley Basin, Utah. ASTROBIOLOGY 2019; 19:629-641. [PMID: 30822097 DOI: 10.1089/ast.2018.1864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The presence of perchlorate on Mars suggests a possible energy source for sustaining microbial life. Perchlorate-reducing microbes have been isolated from perchlorate-contaminated soils and sediments on the Earth, but to date, never from an environment that is naturally enriched in perchlorate. The arid Pilot Valley paleolake basin in Utah is a Mars analog environment whose sediments are naturally enriched with up to ∼6.5 μg kg-1 perchlorate oxyanions. Here, we present results of field and laboratory studies indicating that perchlorate-reducing microorganisms co-occur with this potential electron acceptor. Biogeochemical data suggest ongoing perchlorate reduction; phylogenetic data indicate the presence of diverse microbial communities; and laboratory enrichments using Pilot Valley sediments show that resident microbes can reduce perchlorate. This is the first article of the co-existence of perchlorate-reducing microbes in an environment where perchlorate occurs naturally, arguing for Pilot Valley's utility as an analog for studying biogeochemical processes that may have occurred, and may yet still be occurring, in ancient martian lacustrine sediments.
Collapse
Affiliation(s)
- Kennda L Lynch
- 1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
- 2 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - W Andrew Jackson
- 3 Department of Civil Engineering, Texas Tech University, Lubbock, Texas
| | - Kevin Rey
- 4 Department of Geological Sciences, Brigham Young University, Provo, Utah
| | - John R Spear
- 5 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Frank Rosenzweig
- 1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Junko Munakata-Marr
- 5 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| |
Collapse
|
19
|
Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. Int J Microbiol 2019; 2019:6981865. [PMID: 30906324 PMCID: PMC6398020 DOI: 10.1155/2019/6981865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022] Open
Abstract
Perchlorate (ClO4 -) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted sites. The aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia. Isolates grew at concentrations up to 30% sodium chloride. The isolates tolerated pH variations ranging from 6.5 to 12.0 and perchlorate concentrations up to 10000 mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S rRNA gene sequence analysis indicated that the strains were phylogenetically related to Vibrio, Bacillus, Salinovibrio, Staphylococcus, and Nesiotobacter genera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean are promising resources for the bioremediation of perchlorate contamination.
Collapse
|
20
|
Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X. Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process. BIORESOURCE TECHNOLOGY 2019; 276:260-268. [PMID: 30640020 DOI: 10.1016/j.biortech.2018.12.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
To remove high-strength perchlorate, dissimilatory perchlorate reducing granular sludge (DPR-GS) was first cultivated. Three identical UASB reactors were set up under different seed sludge and up-flow velocities (RAS: active sludge (AS) and constant up-flow velocities; RDGS: denitrifying granular sludge (DGS) and constant up-flow velocities; RDGS-f: DGS and fluctuating up-flow velocities). The AS in the RAS was completely granulated by day 117, while the DGS in the RDGS and RDGS-f were both shortened the granulation time to 99 days. In addition, the fluctuating up-flow velocity can better ensure rapid cultivation of DPR-GS. Removal of ClO4- loading rate with 7.20 kg/(m3·d) occurred in all three reactors. The results of extracellular polymeric substances (EPS) composition analysis indicated the polysaccharose (PS) promoted the formation of bio-aggregates, while the protein (PN) benefited the granulation of sludge. The analyses of the microbial communities indicated that Sulfurospirillum and Acinetobacter were the dominant dissimilatory perchlorate reducing bacteria.
Collapse
Affiliation(s)
- Pengna Yin
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
| | - Shumin Xiao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec, Canada
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Xiaoning Ren
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec, Canada
| |
Collapse
|
21
|
Atashgahi S, Shetty SA, Smidt H, de Vos WM. Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. Front Physiol 2018; 9:888. [PMID: 30042695 PMCID: PMC6048469 DOI: 10.3389/fphys.2018.00888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Humans and their associated microbiomes are exposed to numerous xenobiotics through drugs, dietary components, personal care products as well as environmental chemicals. Most of the reciprocal interactions between the microbiota and xenobiotics, such as halogenated compounds, occur within the human gut harboring diverse and dense microbial communities. Here, we provide an overview of the flux of halogenated compounds in the environment, and diverse exposure routes of human microbiota to these compounds. Subsequently, we review the impact of halogenated compounds in perturbing the structure and function of gut microbiota and host cells. In turn, cultivation-dependent and metagenomic surveys of dehalogenating genes revealed the potential of the gut microbiota to chemically alter halogenated xenobiotics and impact their fate. Finally, we provide an outlook for future research to draw attention and attract interest to study the bidirectional impact of halogenated and other xenobiotic compounds and the gut microbiota.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| |
Collapse
|
22
|
Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-Contaminated Site. WATER 2018. [DOI: 10.3390/w10070842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
24
|
Lambertz M, Perry SF. Respiratory Science. Ann N Y Acad Sci 2016; 1365:3-4. [DOI: 10.1111/nyas.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| | - Steven F. Perry
- Institut für Zoologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| |
Collapse
|