1
|
Jimenez AM, Green MF. Disturbance at the self-other boundary in schizophrenia: Linking phenomenology to clinical neuroscience. Schizophr Res 2024; 272:51-60. [PMID: 39190982 DOI: 10.1016/j.schres.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In this selective review, we describe the current neuroscientific literature on disturbances of the self-other boundary in schizophrenia as they relate to structural and experiential aspects of the self. Within these two broad categories, the structural self includes body ownership and agency, and the experiential self includes self-reflection, source monitoring, and self-referential and autobiographical memory. Further, we consider how disturbances in these domains link to the phenomenology of schizophrenia. We identify faulty internal predictive coding as a potential mechanism of disturbance in body ownership and agency, which results in susceptibility to bias (over- or under-attributing outcomes to one's own actions or intentions). This is reflected in reduced activity in the temporoparietal junction (TPJ), a heteromodal association area implicated in several aspects of self-other processing, as well as reduced fronto-parietal functional connectivity. Deficits of the experiential self in schizophrenia may stem from a lack of salience of self-related information, whereby the mental representation of self is not as rich as in healthy controls and therefore does not result in the same level of privileged processing. As a result, memory for self-referential material and autobiographical memory processes is impaired, which hinders creation of a cohesive life narrative. Impairments of the experiential self implicate abnormal activation patterns along the cortical midline, including medial prefrontal cortex and posterior cingulate/precuneus, as well as TPJ. In fact, TPJ appears to be involved in all the reviewed aspects of the self-other disturbance. We conclude with suggestions for future work, including implications for interventions with critical timing considerations.
Collapse
Affiliation(s)
- Amy M Jimenez
- Department of Veterans Affairs, Desert Pacific Mental Illness Research, Education, and Clinical Center, USA; VA Rehabilitation R&D Center on Enhancing Community Integration for Homeless Veterans, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Michael F Green
- Department of Veterans Affairs, Desert Pacific Mental Illness Research, Education, and Clinical Center, USA; VA Rehabilitation R&D Center on Enhancing Community Integration for Homeless Veterans, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
2
|
Limanowski J, Adams RA, Kilner J, Parr T. The Many Roles of Precision in Action. ENTROPY (BASEL, SWITZERLAND) 2024; 26:790. [PMID: 39330123 PMCID: PMC11431491 DOI: 10.3390/e26090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
Active inference describes (Bayes-optimal) behaviour as being motivated by the minimisation of surprise of one's sensory observations, through the optimisation of a generative model (of the hidden causes of one's sensory data) in the brain. One of active inference's key appeals is its conceptualisation of precision as biasing neuronal communication and, thus, inference within generative models. The importance of precision in perceptual inference is evident-many studies have demonstrated the importance of ensuring precision estimates are correct for normal (healthy) sensation and perception. Here, we highlight the many roles precision plays in action, i.e., the key processes that rely on adequate estimates of precision, from decision making and action planning to the initiation and control of muscle movement itself. Thereby, we focus on the recent development of hierarchical, "mixed" models-generative models spanning multiple levels of discrete and continuous inference. These kinds of models open up new perspectives on the unified description of hierarchical computation, and its implementation, in action. Here, we highlight how these models reflect the many roles of precision in action-from planning to execution-and the associated pathologies if precision estimation goes wrong. We also discuss the potential biological implementation of the associated message passing, focusing on the role of neuromodulatory systems in mediating different kinds of precision.
Collapse
Affiliation(s)
- Jakub Limanowski
- Institute of Psychology, University of Greifswald, 17487 Greifswald, Germany
| | - Rick A. Adams
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; (R.A.A.); (J.K.)
- Centre for Medical Image Computing, University College London, London WC1N 6LJ, UK
| | - James Kilner
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; (R.A.A.); (J.K.)
| | - Thomas Parr
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 4AL, UK;
| |
Collapse
|
3
|
Eck J, Pfister R. Bound by Experience: Updating the Body Representation When Using Virtual Objects. HUMAN FACTORS 2024:187208241258315. [PMID: 38876982 DOI: 10.1177/00187208241258315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
OBJECTIVE Four web-based experiments investigated flexibility of disembodiment of a virtual object that is no longer actively controlled. Emphasis was on possibilities to modify the timescale of this process. BACKGROUND Interactions with virtual objects are commonplace in settings like teleoperation, rehabilitation, and computer-aided design. These objects are quickly integrated into the operator's body schema (embodiment). Less is known about how long such embodiment lasts. Understanding the dynamics of this process is crucial because different applied settings either profit from fast or slow disembodiment. METHOD To induce embodiment, participants moved a 2D virtual hand through operating a computer mouse or touchpad. After initial embodiment, participants either stopped or continued moving for a fixed period of time. Embodiment ratings were collected continuously during each trial. RESULTS Results across all experiments indicated that embodiment for the virtual hand gradually increased during active use and gradually decreased after stopping to use it. Disembodiment unfolded nearly twice as fast as embodiment and showed a curved decay pattern. These dynamics remained unaffected by anticipation of active control that would be required in an upcoming task. CONCLUSION The results highlight the importance of continuously experiencing active control in virtual interactions if aiming at inducing stable embodiment of a virtual object. APPLICATION Our findings suggest that applications of virtual disembodiment such as virtual tools or interventions to affect a person's body representation critically depend on continuous updating of sensorimotor experience. However, if switching between virtual objects, for example, during teleoperation or video gaming, after-effects are unlikely to affect performance.
Collapse
|
4
|
Scheller M, Fang H, Sui J. Self as a prior: The malleability of Bayesian multisensory integration to social salience. Br J Psychol 2024; 115:185-205. [PMID: 37747452 DOI: 10.1111/bjop.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Our everyday perceptual experiences are grounded in the integration of information within and across our senses. Due to this direct behavioural relevance, cross-modal integration retains a certain degree of contextual flexibility, even to social relevance. However, how social relevance modulates cross-modal integration remains unclear. To investigate possible mechanisms, Experiment 1 tested the principles of audio-visual integration for numerosity estimation by deriving a Bayesian optimal observer model with perceptual prior from empirical data to explain perceptual biases. Such perceptual priors may shift towards locations of high salience in the stimulus space. Our results showed that the tendency to over- or underestimate numerosity, expressed in the frequency and strength of fission and fusion illusions, depended on the actual event numerosity. Experiment 2 replicated the effects of social relevance on multisensory integration from Scheller & Sui, 2022 JEP:HPP, using a lower number of events, thereby favouring the opposite illusion through enhanced influences of the prior. In line with the idea that the self acts like a prior, the more frequently observed illusion (more malleable to prior influences) was modulated by self-relevance. Our findings suggest that the self can influence perception by acting like a prior in cue integration, biasing perceptual estimates towards areas of high self-relevance.
Collapse
Affiliation(s)
- Meike Scheller
- Department of Psychology, University of Aberdeen, Aberdeen, UK
- Department of Psychology, Durham University, Durham, UK
| | - Huilin Fang
- Department of Psychology, University of Aberdeen, Aberdeen, UK
| | - Jie Sui
- Department of Psychology, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
Fang W, Liu Y, Wang L. Multisensory Integration in Body Representation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:77-89. [PMID: 38270854 DOI: 10.1007/978-981-99-7611-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To be aware of and to move one's body, the brain must maintain a coherent representation of the body. While the body and the brain are connected by dense ascending and descending sensory and motor pathways, representation of the body is not hardwired. This is demonstrated by the well-known rubber hand illusion in which a visible fake hand is erroneously felt as one's own hand when it is stroked in synchrony with the viewer's unseen actual hand. Thus, body representation in the brain is not mere maps of tactile and proprioceptive inputs, but a construct resulting from the interpretation and integration of inputs across sensory modalities.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuqi Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Bertoni T, Mastria G, Akulenko N, Perrin H, Zbinden B, Bassolino M, Serino A. The self and the Bayesian brain: Testing probabilistic models of body ownership through a self-localization task. Cortex 2023; 167:247-272. [PMID: 37586137 DOI: 10.1016/j.cortex.2023.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 08/18/2023]
Abstract
Simple multisensory manipulations can induce the illusory misattribution of external objects to one's own body, allowing to experimentally investigate body ownership. In this context, body ownership has been conceptualized as the result of the online Bayesian optimal estimation of the probability that one object belongs to the body from the congruence of multisensory inputs. This idea has been highly influential, as it provided a quantitative basis to bottom-up accounts of self-consciousness. However, empirical evidence fully supporting this view is scarce, as the optimality of the putative inference process has not been assessed rigorously. This pre-registered study aimed at filling this gap by testing a Bayesian model of hand ownership based on spatial and temporal visuo-proprioceptive congruences. Model predictions were compared to data from a virtual-reality reaching task, whereby reaching errors induced by a spatio-temporally mismatching virtual hand have been used as an implicit proxy of hand ownership. To rigorously test optimality, we compared the Bayesian model versus alternative non-Bayesian models of multisensory integration, and independently assess unisensory components and compare them to model estimates. We found that individually measured values of proprioceptive precision correlated with those fitted from our reaching task, providing compelling evidence that the underlying visuo-proprioceptive integration process approximates Bayesian optimality. Furthermore, reaching errors correlated with explicit ownership ratings at the single individual and trial level. Taken together, these results provide novel evidence that body ownership, a key component of self-consciousness, can be truly described as the bottom-up, behaviourally optimal processing of multisensory inputs.
Collapse
Affiliation(s)
- Tommaso Bertoni
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Giulio Mastria
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Nikita Akulenko
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Henri Perrin
- School of Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Boris Zbinden
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | | | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Lanfranco RC, Chancel M, Ehrsson HH. Quantifying body ownership information processing and perceptual bias in the rubber hand illusion. Cognition 2023; 238:105491. [PMID: 37178590 DOI: 10.1016/j.cognition.2023.105491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Bodily illusions have fascinated humankind for centuries, and researchers have studied them to learn about the perceptual and neural processes that underpin multisensory channels of bodily awareness. The influential rubber hand illusion (RHI) has been used to study changes in the sense of body ownership - that is, how a limb is perceived to belong to one's body, which is a fundamental building block in many theories of bodily awareness, self-consciousness, embodiment, and self-representation. However, the methods used to quantify perceptual changes in bodily illusions, including the RHI, have mainly relied on subjective questionnaires and rating scales, and the degree to which such illusory sensations depend on sensory information processing has been difficult to test directly. Here, we introduce a signal detection theory (SDT) framework to study the sense of body ownership in the RHI. We provide evidence that the illusion is associated with changes in body ownership sensitivity that depend on the information carried in the degree of asynchrony of correlated visual and tactile signals, as well as with perceptual bias and sensitivity that reflect the distance between the rubber hand and the participant's body. We found that the illusion's sensitivity to asynchrony is remarkably precise; even a 50 ms visuotactile delay significantly affected body ownership information processing. Our findings conclusively link changes in a complex bodily experience such as body ownership to basic sensory information processing and provide a proof of concept that SDT can be used to study bodily illusions.
Collapse
Affiliation(s)
- Renzo C Lanfranco
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Chancel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Psychology and Neurocognition Lab, Université Grenoble-Alpes, Grenoble, France
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Erdeniz B, Tekgün E, Lenggenhager B, Lopez C. Visual perspective, distance, and felt presence of others in dreams. Conscious Cogn 2023; 113:103547. [PMID: 37390767 DOI: 10.1016/j.concog.2023.103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The peripersonal space, that is, the limited space surrounding the body, involves multisensory coding and representation of the self in space. Previous studies have shown that peripersonal space representation and the visual perspective on the environment can be dramatically altered when neurotypical individuals self-identify with a distant avatar (i.e., in virtual reality) or during clinical conditions (i.e., out-of-body experience, heautoscopy, depersonalization). Despite its role in many cognitive/social functions, the perception of peripersonal space in dreams, and its relationship with the perception of other characters (interpersonal distance in dreams), remain largely uncharted. The present study aimed to explore the visuospatial properties of this space, which is likely to underlie self-location as well as self/other distinction in dreams. 530 healthy volunteers answered a web-based questionnaire to measure their dominant visuo-spatial perspective in dreams, the frequency of recall for felt distances between their dream self and other dream characters, and the dreamers' viewing angle of other dream characters. Most participants reported dream experiences from a first-person perspective (1PP) (82%) compared to a third-person perspective (3PP) (18%). Independent of their dream perspective, participants reported that they generally perceived other dream characters in their close space, that is, at distance of either between 0 and 90 cm, or 90-180 cm, than in further spaces (180-270 cm). Regardless of the perspective (1PP or 3PP), both groups also reported more frequently seeing other dream characters from eye level (0° angle of viewing) than from above (30° and 60°) or below eye level (-30° and -60°). Moreover, the intensity of sensory experiences in dreams, as measured by the Bodily Self-Consciousness in Dreams Questionnaire, was higher in individuals who habitually see other dream characters closer to their personal dream self (i.e., within 0-90 cm and 90-180 cm). These preliminary findings offer a new, phenomenological account of space representation in dreams with regards to the felt presence of others. They might provide insights not only to our understanding of how dreams are formed, but also to the type of neurocomputations involved in self/other distinction.
Collapse
Affiliation(s)
- Burak Erdeniz
- İzmir University of Economics, Department of Psychology, İzmir, Turkey
| | - Ege Tekgün
- İzmir University of Economics, Department of Psychology, İzmir, Turkey
| | | | | |
Collapse
|
9
|
Najafabadi AJ, Küster D, Putze F, Godde B. Emergence of sense of body ownership but not agency during virtual tool-use training is associated with an altered body schema. Exp Brain Res 2023:10.1007/s00221-023-06644-3. [PMID: 37306754 DOI: 10.1007/s00221-023-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
In this study we examined if training with a virtual tool in augmented reality (AR) affects the emergence of ownership and agency over the tool and whether this relates to changes in body schema (BS). 34 young adults learned controlling a virtual gripper to grasp a virtual object. In the visuo-tactile (VT) but not the vision-only (V) condition, vibro-tactile feedback was applied to the palm, thumb and index fingers through a CyberTouch II glove when the tool touched the object. Changes in the forearm BS were assessed with a tactile distance judgement task (TDJ) where participants judged distances between two tactile stimuli applied to their right forearm either in proximodistal or mediolateral orientation. Participants further rated their perceived ownership and agency after training. TDJ estimation errors were reduced after training for proximodistal orientations, suggesting that stimuli oriented along the arm axis were perceived as closer together. Higher ratings for ownership were associated with increasing performance level and more BS plasticity, i.e., stronger reduction in TDJ estimation error, and after training in the VT as compared to the V feedback condition, respectively. Agency over the tool was achieved independent of BS plasticity. We conclude that the emergence of a sense of ownership but not agency depends on performance level and the integration of the virtual tool into the arm representation.
Collapse
Affiliation(s)
- Amir Jahanian Najafabadi
- Department of Cognitive Neuroscience, Bielefeld University, 33501, Bielefeld, Germany.
- School of Business, Social and Decision Sciences, Constructor University Bremen, 28759, Bremen, Germany.
| | - Dennis Küster
- Department of Computer Science, University of Bremen, 28359, Bremen, Germany
| | - Felix Putze
- Department of Computer Science, University of Bremen, 28359, Bremen, Germany
| | - Ben Godde
- School of Business, Social and Decision Sciences, Constructor University Bremen, 28759, Bremen, Germany
| |
Collapse
|
10
|
Dapor C, Sperandio I, Meconi F. Fading boundaries between the physical and the social world: Insights and novel techniques from the intersection of these two fields. Front Psychol 2023; 13:1028150. [PMID: 36861005 PMCID: PMC9969107 DOI: 10.3389/fpsyg.2022.1028150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 02/15/2023] Open
Abstract
This review focuses on the subtle interactions between sensory input and social cognition in visual perception. We suggest that body indices, such as gait and posture, can mediate such interactions. Recent trends in cognitive research are trying to overcome approaches that define perception as stimulus-centered and are pointing toward a more embodied agent-dependent perspective. According to this view, perception is a constructive process in which sensory inputs and motivational systems contribute to building an image of the external world. A key notion emerging from new theories on perception is that the body plays a critical role in shaping our perception. Depending on our arm's length, height and capacity of movement, we create our own image of the world based on a continuous compromise between sensory inputs and expected behavior. We use our bodies as natural "rulers" to measure both the physical and the social world around us. We point out the necessity of an integrative approach in cognitive research that takes into account the interplay between social and perceptual dimensions. To this end, we review long-established and novel techniques aimed at measuring bodily states and movements, and their perception, with the assumption that only by combining the study of visual perception and social cognition can we deepen our understanding of both fields.
Collapse
Affiliation(s)
- Cecilia Dapor
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | | |
Collapse
|
11
|
Wu T, Li S, Du D, Li R, Liu P, Yin Z, Zhang H, Qiao Y, Li A. Olfactory-auditory sensory integration in the lateral entorhinal cortex. Prog Neurobiol 2023; 221:102399. [PMID: 36581184 DOI: 10.1016/j.pneurobio.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Multisensory integration plays an important role in animal cognition. Although many studies have focused on visual-auditory integration, studies on olfactory-auditory integration are rare. Here, we investigated neural activity patterns and odor decoding in the lateral entorhinal cortex (LEC) under uni-sensory and multisensory stimuli in awake, head-fixed mice. Using specific retrograde tracing, we verified that the LEC receives direct inputs from the primary auditory cortex (AC) and the medial geniculate body (MGB). Strikingly, we found that mitral/tufted cells (M/Ts) in the olfactory bulb (OB) and neurons in the LEC respond to both olfactory and auditory stimuli. Sound decreased the neural responses evoked by odors in both the OB and LEC, for both excitatory and inhibitory responses. Interestingly, significant changes in odor decoding performance and modulation of odor-evoked local field potentials (LFPs) were observed only in the LEC. These data indicate that the LEC is a critical center for olfactory-auditory multisensory integration, with direct projections from both olfactory and auditory centers.
Collapse
Affiliation(s)
- Tingting Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, China; Clinical Hearing Center, Department of Otorhinolaryngology - Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Deliang Du
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, China; Clinical Hearing Center, Department of Otorhinolaryngology - Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Ruochen Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhaoyang Yin
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, China; Clinical Hearing Center, Department of Otorhinolaryngology - Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
12
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
13
|
Multisensory-driven facilitation within the peripersonal space is modulated by the expectations about stimulus location on the body. Sci Rep 2022; 12:20061. [PMID: 36414633 PMCID: PMC9681840 DOI: 10.1038/s41598-022-21469-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Compelling evidence from human and non-human studies suggests that responses to multisensory events are fastened when stimuli occur within the space surrounding the bodily self (i.e., peripersonal space; PPS). However, some human studies did not find such effect. We propose that these dissonant voices might actually uncover a specific mechanism, modulating PPS boundaries according to sensory regularities. We exploited a visuo-tactile paradigm, wherein participants provided speeded responses to tactile stimuli and rated their perceived intensity while ignoring simultaneous visual stimuli, appearing near the stimulated hand (VTNear) or far from it (VTFar; near the non-stimulated hand). Tactile stimuli could be delivered only to one hand (unilateral task) or to both hands randomly (bilateral task). Results revealed that a space-dependent multisensory enhancement (i.e., faster responses and higher perceived intensity in VTNear than VTFar) was present when highly predictable tactile stimulation induced PPS to be circumscribed around the stimulated hand (unilateral task). Conversely, when stimulus location was unpredictable (bilateral task), participants showed a comparable multisensory enhancement in both bimodal conditions, suggesting a PPS widening to include both hands. We propose that the detection of environmental regularities actively shapes PPS boundaries, thus optimizing the detection and reaction to incoming sensory stimuli.
Collapse
|
14
|
Paredes R, Ferri F, Seriès P. Influence of E/I balance and pruning in peri-personal space differences in schizophrenia: A computational approach. Schizophr Res 2022; 248:368-377. [PMID: 34509334 DOI: 10.1016/j.schres.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
The encoding of the space close to the body, named peri-personal space (PPS), is thought to play a crucial role in the unusual experiences of the self observed in schizophrenia (SCZ). However, it is unclear why SCZ patients and high schizotypal (H-SPQ) individuals present a narrower PPS and why the boundaries of the PPS are more sharply defined in patients. We hypothesise that the unusual PPS representation observed in SCZ is caused by an imbalance of excitation and inhibition (E/I) in recurrent synapses of unisensory neurons or an impairment of bottom-up and top-down connectivity between unisensory and multisensory neurons. These hypotheses were tested computationally by manipulating the effects of E/I imbalance, feedback weights and synaptic density in the network. Using simulations we explored the effects of such impairments in the PPS representation generated by the network and fitted the model to behavioural data. We found that increased excitation of sensory neurons could account for the smaller PPS observed in SCZ and H-SPQ, whereas a decrease of synaptic density caused the sharp definition of the PPS observed in SCZ. We propose a novel conceptual model of PPS representation in the SCZ spectrum that can account for alterations in self-world demarcation, failures in tactile discrimination and symptoms observed in patients.
Collapse
Affiliation(s)
- Renato Paredes
- The University of Edinburgh, School of Informatics, 10 Crichton Street, Edinburgh, United Kingdom; Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina; Department of Psychology, Pontifical Catholic University of Peru, Lima, Peru
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Peggy Seriès
- The University of Edinburgh, School of Informatics, 10 Crichton Street, Edinburgh, United Kingdom.
| |
Collapse
|
15
|
Multisensory Integration in Bionics: Relevance and Perspectives. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00350-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of review
The goal of the review is to highlight the growing importance of multisensory integration processes connected to bionic limbs and somatosensory feedback restoration.
Recent findings
Restoring quasi-realistic sensations by means of neurostimulation has been shown to provide functional and motor benefits in limb amputees. In the recent past, cognitive processes linked to the artificial sense of touch seemed to play a crucial role for a full prosthesis integration and acceptance.
Summary
Artificial sensory feedback implemented in bionic limbs enhances the cognitive integration of the prosthetic device in amputees. The multisensory experience can be measured and must be considered in the design of novel somatosensory neural prostheses where the goal is to provide a realistic sensory experience to the prosthetic user. The correct integration of these sensory signals will guarantee higher-level cognitive benefits as a better prosthesis embodiment and a reduction of perceived limb distortions.
Collapse
|
16
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
17
|
Multiple representations of the body schema for the same body part. Proc Natl Acad Sci U S A 2022; 119:2112318119. [PMID: 35046030 PMCID: PMC8795559 DOI: 10.1073/pnas.2112318119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Accurate motor control depends on maps of the body in the brain, called the body schema. Disorders of the body schema cause motor deficits. Although we often execute actions with different motor systems such as the eye and hand, how the body schema operates during such actions is unknown. In this study, participants simultaneously directed eye and hand movements to the same body part. These two movements were found to be guided by different body maps. This finding demonstrates multiple motor system–specific representations of the body schema, suggesting that the choice of motor system toward one’s body can determine which of the brain’s body maps is observed. This may offer a new way to visualize patients’ body schema. Purposeful motor actions depend on the brain’s representation of the body, called the body schema, and disorders of the body schema have been reported to show motor deficits. The body schema has been assumed for almost a century to be a common body representation supporting all types of motor actions, and previous studies have considered only a single motor action. Although we often execute multiple motor actions, how the body schema operates during such actions is unknown. To address this issue, I developed a technique to measure the body schema during multiple motor actions. Participants made simultaneous eye and reach movements to the same location of 10 landmarks on their hand. By analyzing the internal configuration of the locations of these points for each of the eye and reach movements, I produced maps of the mental representation of hand shape. Despite these two movements being simultaneously directed to the same bodily location, the resulting hand map (i.e., a part of the body schema) was much more distorted for reach movements than for eye movements. Furthermore, the weighting of visual and proprioceptive bodily cues to build up this part of the body schema differed for each effector. These results demonstrate that the body schema is organized as multiple effector-specific body representations. I propose that the choice of effector toward one’s body can determine which body representation in the brain is observed and that this visualization approach may offer a new way to understand patients’ body schema.
Collapse
|
18
|
Forch V, Hamker FH. Building and Understanding the Minimal Self. Front Psychol 2021; 12:716982. [PMID: 34899463 PMCID: PMC8660690 DOI: 10.3389/fpsyg.2021.716982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Within the methodologically diverse interdisciplinary research on the minimal self, we identify two movements with seemingly disparate research agendas - cognitive science and cognitive (developmental) robotics. Cognitive science, on the one hand, devises rather abstract models which can predict and explain human experimental data related to the minimal self. Incorporating the established models of cognitive science and ideas from artificial intelligence, cognitive robotics, on the other hand, aims to build embodied learning machines capable of developing a self "from scratch" similar to human infants. The epistemic promise of the latter approach is that, at some point, robotic models can serve as a testbed for directly investigating the mechanisms that lead to the emergence of the minimal self. While both approaches can be productive for creating causal mechanistic models of the minimal self, we argue that building a minimal self is different from understanding the human minimal self. Thus, one should be cautious when drawing conclusions about the human minimal self based on robotic model implementations and vice versa. We further point out that incorporating constraints arising from different levels of analysis will be crucial for creating models that can predict, generate, and causally explain behavior in the real world.
Collapse
Affiliation(s)
| | - Fred H. Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
19
|
Ronga I, Galigani M, Bruno V, Castellani N, Rossi Sebastiano A, Valentini E, Fossataro C, Neppi-Modona M, Garbarini F. Seeming confines: Electrophysiological evidence of peripersonal space remapping following tool-use in humans. Cortex 2021; 144:133-150. [PMID: 34666298 DOI: 10.1016/j.cortex.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
The peripersonal space (PPS) is a special portion of space immediately surrounding the body, where the integration between tactile stimuli delivered on the body and auditory or visual events emanating from the environment occurs. Interestingly, PPS can widen if a tool is employed to interact with objects in the far space. However, electrophysiological evidence of such tool-use dependent plasticity in the human brain is scarce. Here, in a series of three experiments, participants were asked to respond to tactile stimuli, delivered to their right hand, either in isolation (unimodal condition) or combined with auditory stimulation, which could occur near (bimodal-near) or far from the stimulated hand (bimodal-far). According to multisensory integration spatial rule, when bimodal stimuli are presented at the same location, we expected a response enhancement (response time - RT - facilitation and event-related potential - ERP - super-additivity). In Experiment 1, we verified that RT facilitation was driven by bimodal input spatial congruency, independently from auditory stimulus intensity. In Experiment 2, we showed that our bimodal task was effective in eliciting the magnification of ERPs in bimodal conditions, with significantly larger responses in the near as compared to far condition. In Experiment 3 (main experiment), we explored tool-use driven PPS plasticity. Our audio-tactile task was performed either following tool-use (a 20-min reaching task, performed using a 145 cm-long rake) or after a control cognitive training (a 20-min visual discrimination task) performed in the far space. Following the control training, faster RTs and greater super-additive ERPs were found in bimodal-near as compared to bimodal-far condition (replicating Experiment 2 results). Crucially, this far-near differential response was significantly reduced after tool-use. Altogether our results indicate a selective effect of tool-use remapping in extending the boundaries of PPS. The present finding might be considered as an electrophysiological evidence of tool-use dependent plasticity in the human brain.
Collapse
Affiliation(s)
- Irene Ronga
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Mattia Galigani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Valentina Bruno
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Nicolò Castellani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy; Molecular Mind Lab, IMT School for Advanced Studies, Lucca, Italy
| | | | - Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, UK
| | - Carlotta Fossataro
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Marco Neppi-Modona
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Francesca Garbarini
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy.
| |
Collapse
|
20
|
Larrivee D. Values Evolution in Human Machine Relations: Grounding Computationalism and Neural Dynamics in a Physical a Priorism of Nature. Front Hum Neurosci 2021; 15:649544. [PMID: 34045948 PMCID: PMC8148575 DOI: 10.3389/fnhum.2021.649544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Denis Larrivee
- Mind and Brain Institute, School of Medicine, University of Navarra, Pamplona, Spain.,Department of Arts and Sciences, Loyola University, Chicago, IL, United States
| |
Collapse
|
21
|
Chancel M, Hasenack B, Ehrsson HH. Integration of predictions and afferent signals in body ownership. Cognition 2021; 212:104722. [PMID: 33865046 DOI: 10.1016/j.cognition.2021.104722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
We aimed at investigating the contribution of sensory predictions triggered by the sight of an object moving towards the body for the sense of body ownership. We used a recently developed psychophysical discrimination task to assess body ownership in the rubber hand illusion. In this task, the participants had to choose which of the two right rubber hands in view felt most like their own, and the ownership discriminations were fitted to psychometric curves. In the current study, we occluded the visual impressions of the object moving towards one of the rubber hands (during the first two-thirds of the path) and only revealed the final third of the object's movement trajectory when it touched the rubber hand (approach-occluded condition). Alternatively, we occluded only the final part so that the main part of the movement towards the model hand was visible (touch-occluded). We compared these two conditions to an illusion baseline condition where the object was visible during the entire trajectory and contact (no-occlusion). The touch-occluded condition produced equally strong hand ownership as the baseline condition with no occlusion, while ownership perception was significantly reduced when vision of the object approaching the rubber hand was occluded (approach-occluded). Our results show that tactile predictions generated from seeing an object moving towards the body are temporally exact, and they contribute to the rubber hand illusion by integrating with temporally congruent afferent sensory signals. This finding highlights the importance of multisensory predictions in peripersonal space, object permanence, and the interplay between bottom-up sensory signals and top-down predictions in body ownership.
Collapse
Affiliation(s)
- Marie Chancel
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institutet, Sweden.
| | - Birgit Hasenack
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institutet, Sweden; Departement of Psychology, University of Amsterdam, the Netherlands
| | - H Henrik Ehrsson
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institutet, Sweden
| |
Collapse
|
22
|
When two worlds collide: the influence of an obstacle in peripersonal space on multisensory encoding. Exp Brain Res 2021; 239:1715-1726. [PMID: 33779791 PMCID: PMC8277606 DOI: 10.1007/s00221-021-06072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/02/2021] [Indexed: 11/06/2022]
Abstract
Multisensory coding of the space surrounding our body, the peripersonal space, is crucial for motor control. Recently, it has been proposed that an important function of multisensory coding is that it allows anticipation of the tactile consequences of contact with a nearby object. Indeed, performing goal-directed actions (i.e. pointing and grasping) induces a continuous visuotactile remapping as a function of on-line sensorimotor requirements. Here, we investigated whether visuotactile remapping can be induced by obstacles, e.g. objects that are not the target of the grasping movement. In the current experiment, we used a cross-modal obstacle avoidance paradigm, in which participants reached past an obstacle to grasp a second object. Participants indicated the location of tactile targets delivered to the hand during the grasping movement, while a visual cue was sometimes presented simultaneously on the to-be-avoided object. The tactile and visual stimulation was triggered when the reaching hand passed a position that was drawn randomly from a continuous set of predetermined locations (between 0 and 200 mm depth at 5 mm intervals). We observed differences in visuotactile interaction during obstacle avoidance dependent on the location of the stimulation trigger: visual interference was enhanced for tactile stimulation that occurred when the hand was near the to-be-avoided object. We show that to-be-avoided obstacles, which are relevant for action but are not to-be-interacted with (as the terminus of an action), automatically evoke the tactile consequences of interaction. This shows that visuotactile remapping extends to obstacle avoidance and that this process is flexible.
Collapse
|
23
|
Masson C, van der Westhuizen D, Noel JP, Prevost A, van Honk J, Fotopoulou A, Solms M, Serino A. Testosterone administration in women increases the size of their peripersonal space. Exp Brain Res 2021; 239:1639-1649. [PMID: 33770219 DOI: 10.1007/s00221-021-06080-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/08/2021] [Indexed: 01/08/2023]
Abstract
Peripersonal space (PPS) is the space immediately surrounding the body, conceptualised as a sensory-motor interface between body and environment. PPS size differs between individuals and contexts, with intrapersonal traits and states, as well as social factors having a determining role on the size of PPS. Testosterone plays an important role in regulating social-motivational behaviour and is known to enhance dominance motivation in an implicit and unconscious manner. We investigated whether the dominance-enhancing effects of testosterone reflect as changes in the representation of PPS in a within-subjects testosterone administration study in women (N = 19). Participants performed a visuo-tactile integration task in a mixed-reality setup. Results indicated that the administration of testosterone caused a significant enlargement of participants' PPS, suggesting that testosterone caused participants to implicitly appropriate a larger space as their own. These findings suggest that the dominance-enhancing effects of testosterone reflect at the level of sensory-motor processing in PPS.
Collapse
Affiliation(s)
| | | | - Jean-Paul Noel
- Center for Neural Science, New York University, New York, USA
| | | | - Jack van Honk
- University of Cape Town, Cape Town, South Africa.,Utrecht University, Utrecht, The Netherlands
| | | | - Mark Solms
- University of Cape Town, Cape Town, South Africa
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, Center Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
25
|
Sorrentino G, Franza M, Zuber C, Blanke O, Serino A, Bassolino M. How ageing shapes body and space representations: A comparison study between healthy young and older adults. Cortex 2020; 136:56-76. [PMID: 33460913 DOI: 10.1016/j.cortex.2020.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
To efficiently interact with the external world, the brain needs to represent the size of the involved body parts - body representations (BR) - and the space around the body in which the interactions with the environment take place - peripersonal space representation (PPS). BR and PPS are both highly flexible, being updated by the continuous flow of sensorimotor signals between the brain and the body, as observed for example after tool-use or immobilization. The progressive decline of sensorimotor abilities typically described in ageing could thus influence BR and PPS representations in the older adults. To explore this hypothesis, we compared BR and PPS in healthy young and older participants. By focusing on the upper limb, we adapted tasks previously used to evaluate BR and PPS plasticity, i.e., the body-landmarks localization task and audio-tactile interaction task, together with a new task targeting explicit BR (avatar adjustment task, AAT). Results show significantly higher distortions in the older rather than young participants in the perceived metric characteristic of the upper limbs. We found significant modifications in the implicit BR of the global shape (length and width) of both upper limbs, together with an underestimation in the arm length. Similar effects were also observed in the AAT task. Finally, both young and older adults showed equivalent multisensory facilitation in the space close to the hand, suggesting an intact PPS representation. Together, these findings demonstrated significant alterations of implicit and explicit BR in the older participants, probably associated with a less efficient contribution of bodily information typically subjected to age-related decline, whereas the comparable PPS representation in both groups could be supported by preserved multisensory abilities in older participants. These results provide novel empirical insight on how multiple representations of the body in space, subserving actions and perception, are shaped by the normal course of life.
Collapse
Affiliation(s)
- Giuliana Sorrentino
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland
| | - Matteo Franza
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland
| | - Charlène Zuber
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; Master of Science, University of Applied Sciences of Western, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; Department of Neurology, University Hospital Geneva, Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; MySpace Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland
| | - Michela Bassolino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland.
| |
Collapse
|
26
|
Rabellino D, Frewen PA, McKinnon MC, Lanius RA. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front Neurosci 2020; 14:586605. [PMID: 33362457 PMCID: PMC7758430 DOI: 10.3389/fnins.2020.586605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peripersonal space (PPS) is defined as the space surrounding the body where we can reach or be reached by external entities, including objects or other individuals. PPS is an essential component of bodily self-consciousness that allows us to perform actions in the world (e.g., grasping and manipulating objects) and protect our body while interacting with the surrounding environment. Multisensory processing plays a critical role in PPS representation, facilitating not only to situate ourselves in space but also assisting in the localization of external entities at a close distance from our bodies. Such abilities appear especially crucial when an external entity (a sound, an object, or a person) is approaching us, thereby allowing the assessment of the salience of a potential incoming threat. Accordingly, PPS represents a key aspect of social cognitive processes operational when we interact with other people (for example, in a dynamic dyad). The underpinnings of PPS have been investigated largely in human models and in animals and include the operation of dedicated multimodal neurons (neurons that respond specifically to co-occurring stimuli from different perceptive modalities, e.g., auditory and tactile stimuli) within brain regions involved in sensorimotor processing (ventral intraparietal sulcus, ventral premotor cortex), interoception (insula), and visual recognition (lateral occipital cortex). Although the defensive role of the PPS has been observed in psychopathology (e.g., in phobias) the relation between PPS and altered states of bodily consciousness remains largely unexplored. Specifically, PPS representation in trauma-related disorders, where altered states of consciousness can involve dissociation from the body and its surroundings, have not been investigated. Accordingly, we review here: (1) the behavioral and neurobiological literature surrounding trauma-related disorders and its relevance to PPS; and (2) outline future research directions aimed at examining altered states of bodily self-consciousness in trauma related-disorders.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Paul A. Frewen
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
27
|
Guterstam A, Larsson DEO, Szczotka J, Ehrsson HH. Duplication of the bodily self: a perceptual illusion of dual full-body ownership and dual self-location. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201911. [PMID: 33489299 PMCID: PMC7813251 DOI: 10.1098/rsos.201911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Previous research has shown that it is possible to use multisensory stimulation to induce the perceptual illusion of owning supernumerary limbs, such as two right arms. However, it remains unclear whether the coherent feeling of owning a full-body may be duplicated in the same manner and whether such a dual full-body illusion could be used to split the unitary sense of self-location into two. Here, we examined whether healthy human participants can experience simultaneous ownership of two full-bodies, located either close in parallel or in two separate spatial locations. A previously described full-body illusion, based on visuo-tactile stimulation of an artificial body viewed from the first-person perspective (1PP) via head-mounted displays, was adapted to a dual-body setting and quantified in five experiments using questionnaires, a behavioural self-location task and threat-evoked skin conductance responses. The results of experiments 1-3 showed that synchronous visuo-tactile stimulation of two bodies viewed from the 1PP lying in parallel next to each other induced a significant illusion of dual full-body ownership. In experiment 4, we failed to find support for our working hypothesis that splitting the visual scene into two, so that each of the two illusory bodies was placed in distinct spatial environments, would lead to dual self-location. In a final exploratory experiment (no. 5), we found preliminary support for an illusion of dual self-location and dual body ownership by using dynamic changes between the 1PPs of two artificial bodies and/or a common third-person perspective in the ceiling of the testing room. These findings suggest that healthy people, under certain conditions of multisensory perceptual ambiguity, may experience dual body ownership and dual self-location. These findings suggest that the coherent sense of the bodily self located at a single place in space is the result of an active and dynamic perceptual integration process.
Collapse
Affiliation(s)
- Arvid Guterstam
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Joanna Szczotka
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - H. Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Opposing force fields induce direction-specific sensorimotor adaptation but a non-specific perceptual shift consistent with a contraction of peripersonal space representation. Exp Brain Res 2020; 239:31-46. [PMID: 33097985 DOI: 10.1007/s00221-020-05945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Most of our daily interactions with objects occur in the space immediately surrounding the body, i.e. the peripersonal space. The peripersonal space is characterized by multisensory processing of objects which are coded in terms of potential actions, specifying for instance whether objects are within reach or not. Our recent work suggested a link between exposure to a new force field, which changed the effector dynamics, and the representation of peripersonal space. To better understand the interplay between the plasticity of the motor system and peripersonal space representation, the present study examined whether changing the direction of the force field specifically modified the perception of action boundaries. Participants seated at the centre of an experimental platform estimated visual targets' reachability before and after adapting upper-limb reaching movements to the Coriolis force generated by either clockwise or counter clockwise rotation of the platform (120°/s). Opposite spatial after-effects were observed, showing that force-field adaptation depends on the direction of the rotation. In contrast, perceived action boundaries shifted leftward following exposure to the new force field, regardless of the direction of the rotation. Overall, these findings support the idea that abrupt exposure to a new force field results in a direction-specific updating of the central sensorimotor representations underlying the control of arm movements. Abrupt exposure to a new force field also results in a nonspecific shift in the perception of action boundaries, which is consistent with a contraction of the peripersonal space. Such effect, which does not appear to be related to state anxiety, could be related to the protective role of the peripersonal space in response to the uncertainty of the sensorimotor system induced by the abrupt modification of the environment.
Collapse
|
29
|
Galigani M, Castellani N, Donno B, Franza M, Zuber C, Allet L, Garbarini F, Bassolino M. Effect of tool-use observation on metric body representation and peripersonal space. Neuropsychologia 2020; 148:107622. [PMID: 32905815 DOI: 10.1016/j.neuropsychologia.2020.107622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023]
Abstract
In everyday life, we constantly act and interact with objects and with others' people through our body. To properly perform actions, the representations of the dimension of body-parts (metric body representation, BR) and of the space surrounding the body (peripersonal space, PPS) need to be constantly updated. Previous evidence has shown that BR and PPS representation are highly flexible, being modulated by sensorimotor experiences, such as the active use of tools to reach objects in the far space. In this study, we investigate whether the observation of another person using a tool to interact with objects located in the far space is sufficient to influence the plasticity of BR and PPS representation in a similar way to active tool-use. With this aim, two groups of young healthy participants were asked to perform 20 min trainings based on the active use of a tool to retrieve far cubes (active tool-use) and on the first-person observation of an experimenter doing the same tool-use training (observational tool-use). Behavioural tasks adapted from literature were used to evaluate the effects of the active and observational tool-use on BR (body-landmarks localization task-group 1), and PPS (audio-tactile interaction task - group 2). Results show that after active tool-use, participants perceived the length of their arm as longer than at baseline, while no significant differences appear after observation. Similarly, significant modifications in PPS representation, with comparable multisensory facilitation on tactile responses due to near and far sounds, were seen only after active tool-use, while this did not occur after observation. Together these results suggest that a mere observational training could not be sufficient to significantly modulate BR or PPS. The dissociation found in the active and observational tool-use points out differences between action execution and action observation, by suggesting a fundamental role of the motor planning, the motor intention, and the related sensorimotor feedback in driving BR and PPS plasticity.
Collapse
Affiliation(s)
- M Galigani
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - N Castellani
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - B Donno
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland
| | - M Franza
- Center for Neuroprosthetics, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva and Campus SUVA, Sion, Switzerland
| | - C Zuber
- University of Applied Sciences of Western Switzerland, Switzerland
| | - L Allet
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland; Department of Community Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | - F Garbarini
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - M Bassolino
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland; Center for Neuroprosthetics, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva and Campus SUVA, Sion, Switzerland.
| |
Collapse
|
30
|
Salami A, Andreu-Perez J, Gillmeister H. Symptoms of depersonalisation/derealisation disorder as measured by brain electrical activity: A systematic review. Neurosci Biobehav Rev 2020; 118:524-537. [PMID: 32846163 DOI: 10.1016/j.neubiorev.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
Abstract
Depersonalisation/derealisation disorder (DPD) refers to frequent and persistent detachment from bodily self and disengagement from the outside world. As a dissociative disorder, DPD affects 1-2 % of the population, but takes 7-12 years on average to be accurately diagnosed. In this systematic review, we comprehensively describe research targeting the neural correlates of core DPD symptoms, covering publications between 1992 and 2020 that have used electrophysiological techniques. The aim was to investigate the diagnostic potential of these relatively inexpensive and convenient neuroimaging tools. We review the EEG power spectrum, components of the event-related potential (ERP), as well as vestibular and heartbeat evoked potentials as likely electrophysiological biomarkers to study DPD symptoms. We argue that acute anxiety- or trauma-related impairments in the integration of interoceptive and exteroceptive signals play a key role in the formation of DPD symptoms, and that future research needs analysis methods that can take this integration into account. We suggest tools for prospective studies of electrophysiological DPD biomarkers, which are urgently needed to fully develop their diagnostic potential.
Collapse
Affiliation(s)
- Abbas Salami
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Javier Andreu-Perez
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Helge Gillmeister
- Department of Psychology and Centre for Brain Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
31
|
Noel JP, Serino A. High Action Values Occur Near Our Body. Trends Cogn Sci 2020; 23:269-270. [PMID: 30824226 DOI: 10.1016/j.tics.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York, NY, USA
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.
| |
Collapse
|
32
|
Abstract
How humans and potentially other animals construct the experience of ”being a self" remains one of the most intriguing questions in neuroscience. Over the past years, substantial advances have been made in understanding psychological mechanisms of bodily self through experimental manipulations in humans, such as rubber-hand illusion in which arbitrary objects may be ascribed with ownership and perceived as part of the self. The present study provides a demonstration in macaque monkeys and establishes objective and quantitative signatures of body representation at a single-trial level. Furthermore, we show that neural signals in macaque’s premotor cortex reflect the strength of illusion and the likelihood of misattributing the illusory arm to oneself, thus, revealing a cortical representation of bodily self-consciousness. The sense of one’s own body is a pillar of self-consciousness and could be investigated by inducing human illusions of artificial objects as part of the self. Here, we present a nonhuman primate version of a rubber-hand illusion that allowed us to determine its computational and neuronal mechanisms. We implemented a video-based system in a reaching task in monkeys and combined a casual inference model to establish an objective and quantitative signature for the monkey’s body representation. Similar to humans, monkeys were more likely to perceive an external object as part of the self when the dynamics (spatial disparity) and the features (shape and structure) of visual (V) input was closer to proprioceptive (P) signals. Neural signals in the monkey’s premotor cortex reflected the strength of illusion and the likelihood of misattributing the illusory hand to oneself, thus, revealing a cortical representation of body ownership.
Collapse
|
33
|
Noel JP, Serino A, Wallace MT. Increased Neural Strength and Reliability to Audiovisual Stimuli at the Boundary of Peripersonal Space. J Cogn Neurosci 2019; 31:1155-1172. [DOI: 10.1162/jocn_a_01334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The actionable space surrounding the body, referred to as peripersonal space (PPS), has been the subject of significant interest of late within the broader framework of embodied cognition. Neurophysiological and neuroimaging studies have shown the representation of PPS to be built from visuotactile and audiotactile neurons within a frontoparietal network and whose activity is modulated by the presence of stimuli in proximity to the body. In contrast to single-unit and fMRI studies, an area of inquiry that has received little attention is the EEG characterization associated with PPS processing. Furthermore, although PPS is encoded by multisensory neurons, to date there has been no EEG study systematically examining neural responses to unisensory and multisensory stimuli, as these are presented outside, near, and within the boundary of PPS. Similarly, it remains poorly understood whether multisensory integration is generally more likely at certain spatial locations (e.g., near the body) or whether the cross-modal tactile facilitation that occurs within PPS is simply due to a reduction in the distance between sensory stimuli when close to the body and in line with the spatial principle of multisensory integration. In the current study, to examine the neural dynamics of multisensory processing within and beyond the PPS boundary, we present auditory, visual, and audiovisual stimuli at various distances relative to participants' reaching limit—an approximation of PPS—while recording continuous high-density EEG. We question whether multisensory (vs. unisensory) processing varies as a function of stimulus–observer distance. Results demonstrate a significant increase of global field power (i.e., overall strength of response across the entire electrode montage) for stimuli presented at the PPS boundary—an increase that is largest under multisensory (i.e., audiovisual) conditions. Source localization of the major contributors to this global field power difference suggests neural generators in the intraparietal sulcus and insular cortex, hubs for visuotactile and audiotactile PPS processing. Furthermore, when neural dynamics are examined in more detail, changes in the reliability of evoked potentials in centroparietal electrodes are predictive on a subject-by-subject basis of the later changes in estimated current strength at the intraparietal sulcus linked to stimulus proximity to the PPS boundary. Together, these results provide a previously unrealized view into the neural dynamics and temporal code associated with the encoding of nontactile multisensory around the PPS boundary.
Collapse
Affiliation(s)
| | - Andrea Serino
- University of Lausanne
- Ecole Polytechnique Federale de Lausanne
| | | |
Collapse
|
34
|
Noel JP, Chatelle C, Perdikis S, Jöhr J, Lopes Da Silva M, Ryvlin P, De Lucia M, Millán JDR, Diserens K, Serino A. Peri-personal space encoding in patients with disorders of consciousness and cognitive-motor dissociation. NEUROIMAGE-CLINICAL 2019; 24:101940. [PMID: 31357147 PMCID: PMC6664240 DOI: 10.1016/j.nicl.2019.101940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023]
Abstract
Behavioral assessments of consciousness based on overt command following cannot differentiate patients with disorders of consciousness (DOC) from those who demonstrate a dissociation between intent/awareness and motor capacity: cognitive motor dissociation (CMD). We argue that delineation of peri-personal space (PPS) – the multisensory-motor space immediately surrounding the body – may differentiate these patients due to its central role in mediating human-environment interactions, and putatively in scaffolding a minimal form of selfhood. In Experiment 1, we determined a normative physiological index of PPS by recording electrophysiological (EEG) responses to tactile, auditory, or audio-tactile stimulation at different distances (5 vs. 75 cm) in healthy volunteers (N = 19). Contrasts between paired (AT) and summed (A + T) responses demonstrated multisensory supra-additivity when AT stimuli were presented near, i.e., within the PPS, and highlighted somatosensory-motor sensors as electrodes of interest. In Experiment 2, we recorded EEG in patients behaviorally diagnosed as DOC or putative CMD (N = 17, 30 sessions). The PPS-measure developed in Experiment 1 was analyzed in relation with both standard clinical diagnosis (i.e., Coma Recovery Scale; CRS-R) and a measure of neural complexity associated with consciousness. Results demonstrated a significant correlation between the PPS measure and neural complexity, but not with the CRS-R, highlighting the added value of the physiological recordings. Further, multisensory processing in PPS was preserved in putative CMD but not in DOC patients. Together, the findings suggest that indexing PPS allows differentiating between groups of patients whom both show overt motor impairments (DOC and CMD) but putatively distinct levels of awareness or motor intent. Behavioral assessments confound consciousness and motor output. We suggest that multisensory coding of actionable space may dissociate these two. We develop an electrophysiological marker of peri-personal space. Then use this marker to distinguish impairments in consciousness and motor output.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Camille Chatelle
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - Serafeim Perdikis
- Center for Neuroprosthetics, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Geneva, Switzerland; Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, UK
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marina Lopes Da Silva
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Ryvlin
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - José Del R Millán
- Center for Neuroprosthetics, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Geneva, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
35
|
Abstract
Recent studies have shown how embodiment induced by multisensory bodily interactions between individuals can positively change social attitudes (closeness, empathy, racial biases). Here we use a simple neuroscience-inspired procedure to beam our human subjects into one of two distinct robots and demonstrate how this can readily increase acceptability and social closeness to that robot. Participants wore a Head Mounted Display tracking their head movements and displaying the 3D visual scene taken from the eyes of a robot which was positioned in front of a mirror and piloted by the subjects’ head movements. As a result, participants saw themselves as a robot. When participant’ and robot’s head movements were correlated, participants felt that they were incorporated into the robot with a sense of agency. Critically, the robot they embodied was judged more likeable and socially closer. Remarkably, we found that the beaming experience with correlated head movements and corresponding sensation of embodiment and social proximity, was independent of robots’ humanoid’s appearance. These findings not only reveal the ease of body-swapping, via visual-motor synchrony, into robots that do not share any clear human resemblance, but they may also pave a new way to make our future robotic helpers socially acceptable.
Collapse
|
36
|
Orioli G, Santoni A, Dragovic D, Farroni T. Identifying peripersonal space boundaries in newborns. Sci Rep 2019; 9:9370. [PMID: 31253816 PMCID: PMC6598985 DOI: 10.1038/s41598-019-45084-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Peripersonal space immediately surrounds the body and can be represented in the brain as a multisensory and sensorimotor interface mediating physical and social interactions between body and environment. Very little consideration has been given to the ontogeny of peripersonal spatial representations in early postnatal life, despite the crucial roles of peripersonal space and its adaptive relevance as the space where infants' earliest interactions take place. Here, we investigated whether peripersonal space could be considered a delimited portion of space with defined boundaries soon after birth. Our findings showed for the first time that newborns' saccadic reaction times to a tactile stimulus simultaneous to sounds with different intensities changed based on the sound intensity. In particular, they were significantly faster when the sound was lounder than a critical intensity, in a pattern that closely resembled that showed by adults. Therefore, provided that sound intensity on its own can cue newborns' sound distance perception, we speculate that this critical distance could be considered the boundary of newborns' rudimentary peripersonal space. Altogether, our findings suggest that soon after birth peripersonal space may be already considered as a bounded portion of space, perhaps instrumental to drive newborns' attention towards events and people within it.
Collapse
Affiliation(s)
- Giulia Orioli
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy.
| | - Alessandro Santoni
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Danica Dragovic
- Paediatric Unit, Hospital of Monfalcone, Monfalcone, GO, Italy
| | - Teresa Farroni
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| |
Collapse
|
37
|
Abstract
Our ability to maintain a coherent bodily self despite continuous changes within and outside our body relies on the highly flexible multisensory representation of the body, and of the space surrounding it: the peripersonal space (PPS). The aim of our study was to investigate whether during pregnancy - when extremely rapid changes in body size and shape occur - a likewise rapid plastic reorganization of the neural representation of the PPS occurs. We used an audio-tactile integration task to measure the PPS boundary at different stages of pregnancy. We found that in the second trimester of pregnancy and postpartum women did not show differences in their PPS size as compared to the control group (non-pregnant women). However, in the third trimester the PPS was larger than the controls’ PPS and the shift between representation of near and far space was more gradual. We therefore conclude that during pregnancy the brain adapts to the sudden bodily changes, by expanding the representation of the space around the body. This may represent a mechanism to protect the vulnerable abdomen from injury from surrounding objects.
Collapse
|
38
|
Coupling Inner and Outer Body for Self-Consciousness. Trends Cogn Sci 2019; 23:377-388. [DOI: 10.1016/j.tics.2019.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 02/04/2023]
|
39
|
Serino A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci Biobehav Rev 2019; 99:138-159. [DOI: 10.1016/j.neubiorev.2019.01.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
40
|
The Effect of Visual Capture Towards Subjective Embodiment Within the Full Body Illusion. Sci Rep 2019; 9:2889. [PMID: 30814561 PMCID: PMC6393432 DOI: 10.1038/s41598-019-39168-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Typically, multisensory illusion paradigms emphasise the importance of synchronous visuotactile integration to induce subjective embodiment towards another body. However, the extent to which embodiment is due to the 'visual capture' of congruent visuoproprioceptive information alone remains unclear. Thus, across two experiments (total N = 80), we investigated how mere visual observation of a mannequin body, viewed from a first-person perspective, influenced subjective embodiment independently from concomitant visuotactile integration. Moreover, we investigated whether slow, affective touch on participants' own, unseen body (without concomitant touch on the seen mannequin) disrupted visual capture effects to a greater degree than fast, non-affective touch. In total, 40% of participants experienced subjective embodiment towards the mannequin body following mere visual observation, and this effect was significantly higher than conditions which included touch to participants own, unseen body. The velocity of the touch that participants received (affective/non-affective) did not differ in modulating visual capture effects. Furthermore, the effects of visual capture and perceived pleasantness of touch was not modulated by subthreshold eating disorder psychopathology. Overall, this study suggests that congruent visuoproprioceptive cues can be sufficient to induce subjective embodiment of a whole body, in the absence of visuotactile integration and beyond mere confabulatory responses.
Collapse
|
41
|
Separate multisensory integration processes for ownership and localization of body parts. Sci Rep 2019; 9:652. [PMID: 30679685 PMCID: PMC6345910 DOI: 10.1038/s41598-018-37375-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022] Open
Abstract
The experiences that body parts are owned and localized in space are two key aspects of body awareness. Although initial work assumed that the perceived location of one’s body part can be used as a behavioral measure to assess the feeling of owning a body part, recent studies call into question the relationship between localization and ownership of body parts. Yet, little is known about the processes underlying these two aspects of body-part awareness. Here, I applied a statistically optimal cue combination paradigm to a perceptual illusion in which ownership over an artificial hand is experienced, and found that variances predicted by a model of optimal cue combination are similar to those observed in localization of the participant’s hand, but systematically diverge from those observed in ownership of the artificial hand. These findings provide strong evidence for separate processes between ownership and localization of body parts, and indicate a need to revise current models of body part ownership. Results from this study suggest that the neural substrates for perceptual identification of one’s body parts—such as body ownership—are distinct from those underlying spatial localization of the body parts, thus implying a functional distinction between “who” and “where” in the processing of body part information.
Collapse
|
42
|
Fossataro C, Bruno V, Gindri P, Garbarini F. Defending the Body Without Sensing the Body Position: Physiological Evidence in a Brain-Damaged Patient With a Proprioceptive Deficit. Front Psychol 2018; 9:2458. [PMID: 30564182 PMCID: PMC6288365 DOI: 10.3389/fpsyg.2018.02458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023] Open
Abstract
The ability to know where our body parts are located in space (proprioception) is fundamental for both successfully interacting with the external world and monitoring potential threats. In this case-control study, we investigated whether the absence of proprioceptive signals may affect physiological defensive responses. To this aim, a right brain-damaged patient with a left upper-limb proprioceptive deficit (P+ patient) and age-matched healthy controls, underwent the recording of the Hand-Blink Reflex (HBR). This defensive response, elicited by electrical stimulation of the median nerve and recorded from the orbicularis oculi, is modulated by the hand position: it is enhanced when the threatened hand is near to the face, inside the defensive peripersonal-space (DPPS). According to the classical neuropsychological perspective, we used P+ patient as a model to investigate the role of proprioception in HBR modulation, by manipulating the congruity/incongruity between the intended and actual positions of the stimulated hand. P+ patient, with his eyes closed, had to voluntarily place his left hand either far from or near to his face and to relieve the arm's weight over a supporting device. Then, in congruent conditions, the hand was stimulated in the actual (intended) position. In incongruent conditions, the patient's hand was moved by the examiner from the intended to the opposite (not-intended) position and then stimulated. We observed an inverse response pattern between congruent and incongruent conditions. In congruent conditions, P+ patient showed an HBR enhancement in near compared to far position, comparable to that found in healthy controls. This suggests that, even in absence of proprioceptive and visual information, the HBR modulation was still present. Conversely, in incongruent conditions, P+ patient showed a greater HBR magnitude for far position (when the hand was actually far, but the patient intended it to be near) than for near position (when the hand was actually near, but the patient intended it to be far). This result suggests that proprioceptive signals are not necessary for HBR modulation to occur. It relies more on the intended than on the actual position of the hand. The role of motor intention and planning in shaping the DPPS is discussed.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - Valentina Bruno
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - Patrizia Gindri
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
- San Camillo Hospital of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
- San Camillo Hospital of Turin, Turin, Italy
| |
Collapse
|
43
|
Bufacchi RJ, Iannetti GD. An Action Field Theory of Peripersonal Space. Trends Cogn Sci 2018; 22:1076-1090. [PMID: 30337061 PMCID: PMC6237614 DOI: 10.1016/j.tics.2018.09.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
Predominant conceptual frameworks often describe peripersonal space (PPS) as a single, distance-based, in-or-out zone within which stimuli elicit enhanced neural and behavioural responses. Here we argue that this intuitive framework is contradicted by neurophysiological and behavioural data. First, PPS-related measures are not binary, but graded with proximity. Second, they are strongly influenced by factors other than proximity, such as walking, tool use, stimulus valence, and social cues. Third, many different PPS-related responses exist, and each can be used to describe a different space. Here, we reconceptualise PPS as a set of graded fields describing behavioural relevance of actions aiming to create or avoid contact between objects and the body. This reconceptualisation incorporates PPS into mainstream theories of action selection and behaviour.
Collapse
Affiliation(s)
- Rory J Bufacchi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
44
|
Noel JP, Samad M, Doxon A, Clark J, Keller S, Di Luca M. Peri-personal space as a prior in coupling visual and proprioceptive signals. Sci Rep 2018; 8:15819. [PMID: 30361477 PMCID: PMC6202371 DOI: 10.1038/s41598-018-33961-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the integration of multiple body-related sources of information within the peri-personal space (PPS) scaffolds body ownership. However, a normative computational framework detailing the functional role of PPS is still missing. Here we cast PPS as a visuo-proprioceptive Bayesian inference problem whereby objects we see in our environment are more likely to engender sensations as they come near to the body. We propose that PPS is the reflection of such an increased a priori probability of visuo-proprioceptive coupling that surrounds the body. To test this prediction, we immersed participants in a highly realistic virtual reality (VR) simulation of their right arm and surrounding environment. We asked participants to perform target-directed reaches toward visual, proprioceptive, and visuo-proprioceptive targets while visually displaying their reaching arm (body visible condition) or not (body invisible condition). Reach end-points are analyzed in light of the coupling prior framework, where the extension of PPS is taken to be represented by the spatial dispersion of the coupling prior between visual and proprioceptive estimates of arm location. Results demonstrate that if the body is not visible, the spatial dispersion of the visuo-proprioceptive coupling relaxes, whereas the strength of coupling remains stable. By demonstrating a distance-dependent alteration in visual and proprioceptive localization attractive pull toward one another (stronger pull at small spatial discrepancies) when the body is rendered invisible - an effect that is well accounted for by the visuo-proprioceptive coupling prior - the results suggest that the visible body grounds visuo-proprioceptive coupling preferentially in the near vs. far space.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Majed Samad
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew Doxon
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Justin Clark
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Sean Keller
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Massimiliano Di Luca
- Oculus Research, Facebook Inc., Redmond, WA, USA. .,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.
| |
Collapse
|