1
|
Zhang F, Wang H, He H, Hou P. STAT6 promotes innate immunity against BEFV and VSV by inhibiting STUB1 and NIX-mediated MAVS degradation. Vet Microbiol 2024; 298:110290. [PMID: 39471658 DOI: 10.1016/j.vetmic.2024.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Signal transducers and activators of transcription 6 (STAT6), an essential member of the STAT protein family, plays vital roles in innate immunity, however, its function in regulating innate immunity through the degradation of MAVS has not been described. In this study, we found that STAT6 suppresses the replication of both bovine ephemeral fever virus (BEFV) and vesicular stomatitis virus (VSV). Further investigations revealed that STAT6 promotes the type I IFN (IFN-I) signaling pathway in the context of BEFV and VSV infection. Moreover, the knockout of STAT6 leads to the degradation of MAVS through both the ubiquitin-proteasome and autophagolysosomal pathways. Mechanistically, STAT6 results in the downregulation of E3 ubiquitin ligase STIP1 homology and Ubox-containing protein 1 (STUB1), inhibits the interaction between STUB1 and MAVS, and reduces STUB1- mediated K48-linked MAVS ubiquitination, thereby inhibiting the MAVS degradation through the ubiquitin-proteasome pathway. Furthermore, STAT6 also suppresses MAVS degradation through the autophagy receptor Bcl2 interacting protein 3 like (NIX)-mediated autophagy pathway. Taken together, our study unveils a novel mechanism by which STAT6 acts as a positive regulator of the type I IFN signaling pathway during BEFV and VSV infection, predominantly by inhibiting MAVS degradation and ultimately suppressing BEFV and VSV infection. These findings provide valuable insights into the regulation of MAVS degradation by STAT6, which may serve as a basis for the design of novel antiviral agents.
Collapse
Affiliation(s)
- Fuzhen Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Peili Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Tundo GR, Cavaterra D, Pandino I, Zingale GA, Giammaria S, Boccaccini A, Michelessi M, Roberti G, Tanga L, Carnevale C, Figus M, Grasso G, Coletta M, Bocedi A, Oddone F, Sbardella D. The Delayed Turnover of Proteasome Processing of Myocilin upon Dexamethasone Stimulation Introduces the Profiling of Trabecular Meshwork Cells' Ubiquitylome. Int J Mol Sci 2024; 25:10017. [PMID: 39337505 PMCID: PMC11432723 DOI: 10.3390/ijms251810017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, β-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Dario Cavaterra
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | - Irene Pandino
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Sara Giammaria
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | | | - Gloria Roberti
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | - Lucia Tanga
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Michele Figus
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | | | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | | | | |
Collapse
|
3
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Mukhopadhyay U, Levantovsky S, Carusone TM, Gharbi S, Stein F, Behrends C, Bhogaraju S. A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates. SCIENCE ADVANCES 2024; 10:eadp3000. [PMID: 39121224 PMCID: PMC11313854 DOI: 10.1126/sciadv.adp3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teresa Maria Carusone
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
5
|
Liu X, Liu Y, Su X, Jiang L, Tang G, Wang Y. Geranylgeranylacetone mitigates sepsis-associated intestinal injury through CHIP-dependent anti-inflammation and anti-oxidative effect. Int Immunopharmacol 2024; 135:112263. [PMID: 38788444 DOI: 10.1016/j.intimp.2024.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Geranylgeranylacetone (GGA), an isoprenoid compound widely utilized as an antiulcer agent in Asia, confers protection against ischemia, anoxia, and oxidative stress by rapidly enhancing the expression of HSP70. Nevertheless, the impact of GGA on sepsis-associated intestinal injury remains unexplored. Thus, this study is crafted to elucidate the protective efficacy and underlying mechanisms of GGA against septic intestinal damage. Our findings revealed that GGA significantly extended the survival duration of septic mice, and mitigated lipopolysaccharide (LPS)-induced alterations in intestinal permeability and tissue damage. Furthermore, GGA effectively suppressed LPS-induced cytokine release, attenuated levels of reactive oxygen species (ROS) and malondialdehyde, and bolstered antioxidant-related parameters within the intestinal tissue of LPS-stimulated mice. Mechanistically, GGA significantly increased HSP70 expression and promoted E3 ubiquitin ligase CHIP to play the role in ubiquitination and degradation of karyopherin-α2 (KPNA2), resulting in inhibition of nuclear translocation of NF-κB and reduced NOX1, NOX2 and NOX4 expression. The inhibitory action of GGA on cytokine release and ROS generation was abolished by CHIP knockdown in IEC-6 cells treated with LPS. Simultaneously, the downregulation of CHIP reversed the suppressive role of GGA in the LPS-induced NF-κB activation and the expression of NOX1, NOX2 and NOX4 in IEC-6 cells. The effects of GGA on mitigating intestinal damage, inflammation and oxidative stress caused by LPS were eliminated in CHIP knockout mice. Our results demonstrate that the protective effect of GGA against LPS-caused intestinal injury of mice is dependent on CHIP activation, which promotes KPNA2 degradation and restrains translocation of NF-κB into nucleus, leading to suppressing LPS-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Yingwen Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xingyu Su
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Guoqing Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
7
|
Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr) 2024; 47:851-865. [PMID: 37982961 DOI: 10.1007/s13402-023-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE Cancer cells are characterized as the uncontrolled proliferation, which demands high levels of nucleotides that are building blocks for DNA synthesis and replication. CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) is a trifunctional enzyme that initiates the de novo pyrimidine synthesis, which is normally enhanced in cancer cells to preserve the pyrimidine pool for cell division. Glioma, representing most brain cancer, is highly addicted to nucleotides like pyrimidine to sustain the abnormal growth and proliferation of cells. CAD is previously reported to be dysregulated in glioma, but the underlying mechanism remains unclear. METHODS The expression of CAD and CHIP (carboxyl terminus of Hsc70-interacting protein) protein in normal brain cells and three glioblastoma (GBM) cell lines were measured by immunoblots. Lentiviruses-mediated expression of target proteins or shRNAs were used to specifically overexpress or knock down CAD and CHIP. Cell counting, colony formation, apoptosis and cell cycle assays were used to assess the roles of CAD and CHIP in GBM cell proliferation and survival. Co-immunoprecipitation and ubiquitination assays were used to examine the interaction of CHIP with CAD and the ubiquitination of CAD. The correlation of CAD and CHIP expression with GBM patients' survival was obtained by analyzing the GlioVis database. RESULTS In this study, we showed that the expression of CAD was upregulated in glioma, which was positively correlated with the tumor grade and survival of glioma patients. Knockdown of CAD robustly inhibited the cell proliferation and colony formation of GBM cells, indicating the essential role of CAD in the pathogenesis of GBM. Mechanistically, we firstly identified that CAD was modified by the K29-linked polyubiquitination, which was mediated by the E3 ubiquitin ligase CHIP. By interacting with and ubiquitinating CAD, CHIP enhanced its proteasomal and lysosomal degradation, which accounted for the anti-proliferative role of CHIP in GBM cells. To sustain the expression of CAD, CHIP is significantly downregulated, which is correlated with the poor prognosis and survival of GBM patients. Notably, the low level of CHIP and high level of CAD overall predict the short survival of GBM patients. CONCLUSION Altogether, these results illustrated the essential role of CAD in GBM and revealed a novel therapeutic strategy for CAD-positive and CHIP-negative cancer.
Collapse
Affiliation(s)
- Guanya Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Kai Xiao
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianfang Gao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Guo J, Yan Y, Sun J, Ji K, Hei Z, Zeng L, Xu H, Ren X, Sun Y. Chaperones Hsc70 and Hsp70 play distinct roles in the replication of bocaparvovirus minute virus of canines. Mol Microbiol 2024; 121:1127-1147. [PMID: 38629786 DOI: 10.1111/mmi.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 06/14/2024]
Abstract
Minute virus of canines (MVC) belongs to the genus Bocaparvovirus (formerly Bocavirus) within the Parvoviridae family and causes serious respiratory and gastrointestinal symptoms in neonatal canines worldwide. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. However, little is known about the MVC-host cell interactions. In this study, we identified that two cellular proteins (Hsc70 and Hsp70) interacted with NS1 and VP2 proteins of MVC, and both two domains of Hsc70/Hsp70 were mediated for their interactions. Functional studies revealed that Hsp70 was induced by MVC infection, knockdown of Hsc70 considerably suppressed MVC replication, whereas the replication was dramatically promoted by Hsp70 knockdown. It is interesting that low amounts of overexpressed Hsp70 enhanced viral protein expression and virus production, but high amounts of Hsp70 overexpression weakened them. Upon Hsp70 overexpressing, we observed that the ubiquitination of viral proteins changed with Hsp70 overexpression, and proteasome inhibitor (MG132) restored an accumulation of viral proteins. In addition, we verified that Hsp70 family inhibitors remarkably decreased MVC replication. Overall, we identified Hsc70 and Hsp70 as interactors of MVC NS1 and VP2 proteins and were involved in MVC replication, which may provide novel targets for anti-MVC approach.
Collapse
Affiliation(s)
- Jianhui Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Yan Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Jinhan Sun
- Department of Clinical Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Kai Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Zhiping Hei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Liang Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Huanzhou Xu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Yuning Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Wang M, Liao J, Lin W, Jiang L, Peng K, Su X, Li H, Wang H, Wang Y. YL-109 attenuates sepsis-associated multiple organ injury through inhibiting the ERK/AP-1 axis and pyroptosis by upregulating CHIP. Biomed Pharmacother 2024; 175:116633. [PMID: 38670049 DOI: 10.1016/j.biopha.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a severe inflammatory disorder that can lead to life-threatening multiple organ injury. Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. This study aimed to explore the effect of a novel agent, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole (YL-109), on LPS-induced multiple organ injury and the molecular mechanisms underlying these processes. The results showed that YL-109 protected against LPS-induced high mortality, cardiac dysfunction, pulmonary and intestinal injury through inhibiting the proinflammatory response, NLRP3 expression and pyroptosis-associated indicators in mouse tissues. YL-109 suppressed LPS-initiated cytokine release, pyroptosis and pyroptosis-related protein expression in HL-1, IEC-6 and MLE-12 cells, which was consistent with the results of the in vivo experiments. Mechanistically, YL-109 reduces phosphorylated ERK (extracellular signal-regulated kinase) levels and NF-κB activation, which are achieved through upregulating CHIP (carboxy terminus of Hsc70-interacting protein) expression, thereby inhibiting c-Jun and c-Fos activation as well as NLRP3 expression. As an E3 ligase, CHIP overexpression obviously promoted the degradation of phosphorylated ERK and inhibited the expression of NF-κB-mediated NLRP3 in cells stimulated with LPS. The protective effects of YL-109 against cardiac, pulmonary and intestinal damage, inflammation and pyroptosis caused by LPS were eliminated in CHIP knockout mice. Our results not only reveal the protective effect and molecular mechanism of YL-109 against LPS-mediated organs damage but also provide additional insights into the effect of CHIP on negatively regulating pyroptosis and inflammatory pathways.
Collapse
Affiliation(s)
- Miao Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Liao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wan Lin
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kangli Peng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyu Su
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hang Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Sahu M, Rani N, Kumar P. Simulation and Computational Study of RING Domain Mutants of BRCA1 and Ube2k in AD/PD Pathophysiology. Mol Biotechnol 2024; 66:1095-1115. [PMID: 38172369 DOI: 10.1007/s12033-023-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Lysine-based post-translational modification (PTM) such as acylation, acetylation, deamination, methylation, SUMOylation, and ubiquitination has proven to be a major regulator of gene expression, chromatin structure, protein stability, protein-protein interaction, protein degradation, and cellular localization. However, besides all the PTMs, ubiquitination stands as the second most common PTM after phosphorylation that is involved in the etiology of neurodegenerative diseases (NDDs) namely, Alzheimer's disease (AD) and Parkinson's disease (PD). NDDs are characterized by the accumulation of misfolded protein aggregates in the brain that lead to disease-related gene mutation and irregular protein homeostasis. The ubiquitin-proteasome system (UPS) is in charge of degrading these misfolded proteins, which involve an interplay of E1, E2, E3, and deubiquitinase enzymes. Impaired UPS has been commonly observed in NDDs and E3 ligases are the key members of the UPS, thus, dysfunction of the same can accelerate the neurodegeneration process. Therefore, the aim of this study is firstly, to find E3 ligases that are common in both AD and PD through data mining. Secondly, to study the impact of mutation on its structure and function. The study deciphered 74 E3 ligases that were common in both AD and PD. Later, 10 hub genes were calculated of which protein-protein interaction, pathway enrichment, lysine site prediction, domain, and motif analysis were performed. The results predicted BRCA1, PML, and TRIM33 as the top three putative lysine-modified E3 ligases involved in AD and PD pathogenesis. However, based on structural characterization, BRCA1 was taken further to study RING domain mutation that inferred K32Y, K32L, K32C, K45V, K45Y, and K45G as potential mutants that alter the structural and functional ability of BRCA1 to interact with Ube2k, E2-conjugating enzyme. The most probable mutant observed after molecular dynamics simulation of 50 ns is K32L. Therefore, our study concludes BRCA1, a potential E3 ligase common in AD and PD, and RING domain mutation at sites K32 and K45 possibly disturbs its interaction with its E2, Ube2k.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
11
|
Hou Y, Huang C, Huang Z, Huang J, Zhu B. STUB1 exacerbates calcium oxalate-induced kidney injury by modulating reactive oxygen species-mediated cellular autophagy via regulating CFTR ubiquitination. Urolithiasis 2024; 52:55. [PMID: 38564006 DOI: 10.1007/s00240-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
The formation of calcium oxalate (CaOx) crystals in the kidneys leads to renal epithelial damage and the progression of crystalline nephropathy. This study investigated the role of STIP1 homology and U-box protein 1 (STUB1), an E3 ubiquitin ligase, and cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel, in CaOx-related renal damage and autophagy regulation. HK-2 cells were treated with various doses of CaOx monohydrate (COM) to simulate kidney injury in vitro. Cell viability, reactive oxygen species (ROS) production, and apoptosis were assessed. The regulation of CFTR ubiquitination by STUB1 was confirmed by immunoprecipitation. An in vivo model was established by injecting mice with glyoxylate. COM treatment dose-dependently decreased cell viability, increased TNF-α and ROS production, and induced apoptotic cell death in HK-2 cells. COM-treated cells also showed decreased CFTR protein expression. CFTR overexpression improved cell viability and reduced ROS production in COM-stimulated HK-2 cells. Bioinformatics analysis predicted CFTR's ubiquitination binding site for STUB1. Further analysis confirmed the role of STUB1 as a ubiquitin ligase in CFTR degradation. Knockdown of STUB1 upregulated CFTR expression, while STUB1 overexpression had the opposite effect. Knockdown of CFTR reversed the impact of STUB1 deficiency on autophagy. The in vivo experiments showed that CFTR overexpression attenuated kidney tissue damage and CaOx deposition in mice. STUB1-mediated CFTR ubiquitination plays a crucial role in mitigating calcium oxalate-related renal damage by regulating autophagy. Targeting the STUB1/CFTR axis may hold therapeutic potential for treating kidney injury associated with calcium oxalate deposition.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Changkun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Jun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Bin Zhu
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Ji C, Zhang J, Shi L, Shi H, Xu W, Jin J, Qian H. Engineered extracellular vesicle-encapsulated CHIP as novel nanotherapeutics for treatment of renal fibrosis. NPJ Regen Med 2024; 9:3. [PMID: 38218925 PMCID: PMC10787844 DOI: 10.1038/s41536-024-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a fundamental pathological feature of chronic kidney disease (CKD). However, toxicity and poor renal enrichment of fibrosis inhibitors limit their further applications. In this study, a platform for CKD therapy is developed using superparamagnetic iron oxide nanoparticles (SPION) decorated mesenchymal stem cells derived extracellular vesicles with carboxyl terminus of Hsc70-interacting protein (CHIP) high expression (SPION-EVs) to achieve higher renal-targeting antifibrotic therapeutic effect. SPION-EVs selectively accumulate at the injury renal sites under an external magnetic field. Moreover, SPION-EVs deliver CHIP to induce Smad2/3 degradation in renal tubular cells which alleviates Smad2/3 activation-mediated fibrosis-like changes and collagen deposition. The extracellular vesicle engineering technology provides a potential nanoplatform for RIF therapy through CHIP-mediated Smad2/3 degradation.
Collapse
Affiliation(s)
- Cheng Ji
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Department of laboratory Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Guo F, Ye Y, Zhu K, Lin S, Wang Y, Dong Z, Yao R, Li H, Wang W, Liao Z, Guo B, Yan X. Genetic Diversity, Population Structure, and Environmental Adaptation Signatures of Chinese Coastal Hard-Shell Mussel Mytilus coruscus Revealed by Whole-Genome Sequencing. Int J Mol Sci 2023; 24:13641. [PMID: 37686445 PMCID: PMC10488143 DOI: 10.3390/ijms241713641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The hard-shell mussel (Mytilus coruscus) is widespread in the temperate coastal areas of the northwest Pacific and holds a significant position in the shellfish aquaculture market in China. However, the natural resources of this species have been declining, and population genetic studies of M. coruscus are also lacking. In this study, we conducted whole-genome resequencing (WGR) of M. coruscus from eight different latitudes along the Chinese coast and identified a total of 25,859,986 single nucleotide polymorphism (SNP) markers. Our findings indicated that the genetic diversity of M. coruscus from the Zhoushan region was lower compared with populations from other regions. Furthermore, we observed that the evolutionary tree clustered into two primary branches, and the Zhangzhou (ZZ) population was in a separate branch. The ZZ population was partly isolated from populations in other regions, but the distribution of branches was not geographically homogeneous, and a nested pattern emerged, consistent with the population differentiation index (FST) results. To investigate the selection characteristics, we utilized the northern M. coruscus populations (Dalian and Qingdao) and the central populations (Zhoushan and Xiangshan) as reference populations and the southern ZZ population as the target population. Our selection scan analysis identified several genes associated with thermal responses, including Hsp70 and CYP450. These genes may play important roles in the adaptation of M. coruscus to different living environments. Overall, our study provides a comprehensive understanding of the genomic diversity of coastal M. coruscus in China and is a valuable resource for future studies on genetic breeding and the evolutionary adaptation of this species.
Collapse
Affiliation(s)
- Feng Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yuxia Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhenyu Dong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| |
Collapse
|
14
|
Pan B, Kong F, Ju X, Song J, Wang L, Niu Q, Lu X. Molecular mechanism of the carboxyl terminus of Hsc70-interacting protein in TAU hyperphosphorylation induced by AlCl 3 in N2a cells. Toxicology 2023; 495:153610. [PMID: 37541565 DOI: 10.1016/j.tox.2023.153610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Aluminum (Al) is recognized as a neurotoxin. Studies have confirmed that the neurotoxicity induced by Al may be related to tau hyperphosphorylation. Phosphorylated tau is degraded through the ubiquitin-proteasome pathway (UPP), in which the carboxyl terminus of Hsc70-interacting protein (CHIP) plays an important role. However, whether the CHIP plays a role in regulating tau hyperphosphorylation induced by Al is yet to be determined. The purpose of this study was to explore the molecular mechanism of the CHIP in tau hyperphosphorylation induced by AlCl3 in N2a cells. Mouse neuroblastoma cells (N2a) were exposed to different concentrations of AlCl3 (0, 0.5, 1, and 2 mM) and treated with CHIP/CHIP shRNA/CHIP (ΔU-box)/CHIP (ΔTPR) plasmid transfection. The cell viability was determined by the CCK-8 kit. Protein expression was detected by Western blot. The interaction between CHIP and AlCl3 exposure on the proteins was analyzed by factorial design ANOVA. The results showed that Al can cause tau hyperphosphorylation, mainly affecting the pThr231, pSer262, and pSer396 sites of tau in N2a cells. UPP is involved in the degradation of tau hyperphosphorylation induced by Al in N2a cells, of which CHIP may be the main regulatory target. Both the U-box and TPR domains of CHIP are indispensable and play an important role in the regulation of tau hyperphosphorylation induced by AlCl3 in N2a cells.
Collapse
Affiliation(s)
- Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan 030001, China
| | - Fanpeng Kong
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Xiaofen Ju
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| |
Collapse
|
15
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
17
|
Sun Y, Wang Q, Wang M, Sun F, Qiao P, Jiang A, Ren C, Yu Z, Yang T. CHIP induces ubiquitination and degradation of HMGB1 to regulate glycolysis in ovarian endometriosis. Cell Mol Life Sci 2022; 80:13. [PMID: 36536161 PMCID: PMC11073454 DOI: 10.1007/s00018-022-04637-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Ovarian endometriosis is a common gynecological condition that can cause infertility in women of childbearing age. However, the pathogenesis is still unknown. We demonstrate that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a negative regulator in the development of endometriosis and reduces HMGB1 expression in endometriotic cells. Meanwhile, CHIP interacts with HMGB1 and promotes its ubiquitinated degradation, thereby inhibiting aerobic glycolysis and the progression of endometriosis. Furthermore, the CHIP agonist YL-109 effectively suppresses the growth of ectopic endometrium in endometriosis mouse model, which could be a potential therapeutic approach for endometriosis. In conclusion, our data suggest that CHIP may inhibit the development of endometriosis by suppressing the HMGB1-related glycolysis.
Collapse
Affiliation(s)
- Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qian Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Mengxue Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fangyuan Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Tan B, Zhang J, Wang W, Ma H, Yang Y. Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer. Apoptosis 2022; 28:397-413. [PMID: 36436119 DOI: 10.1007/s10495-022-01789-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Recently, radioresistant cancer cells surviving radiotherapy have been suggested to show more aggressive phenotypes than parental cells, and the underlying mechanisms may be associated with cancer stem cells. This study provided novel mechanistic insights for E3 ubiquitin ligase CHIP in stem cell properties and radioresistance of non-small cell lung cancer (NSCLC). After bioinformatic prediction for key genes involved, NSCLC tissues and cells were collected to measure the expression of CHIP and PBK. E3 ubiquitin ligase CHIP was poorly expressed, while PBK was highly expressed in NSCLC tissues and cells. CHIP reduced the protein stability of PBK through the ubiquitin-protease pathway to repress the activation of ERK pathway. Based on the gain- or loss-of-function experiments, it was noted that restoration of CHIP curtailed stem cell properties and radioresistance in NSCLC, as manifested by inhibited sphere formation and cell proliferation, decreased number of CD133+CD44+ cells and expression of OCT4, SOX2, and NANOG, as well as facilitated apoptosis of NSCLC cells. Besides, in vivo animal experiments further confirmed that CHIP restrained tumorigenic ability and improved radiosensitivity of NSCLC cells by inhibiting PBK/ERK axis. Collectively, CHIP suppressed stem cell properties and radioresistance of NSCLC cells by inhibiting PBK/ERK axis, therefore offering a potential therapeutic target for enhancing efficacy of radiotherapy.
Collapse
Affiliation(s)
- Bo Tan
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China.
| | - Jingwei Zhang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Wen Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yuanyuan Yang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| |
Collapse
|
19
|
Liao J, Su X, Wang M, Jiang L, Chen X, Liu Z, Tang G, Zhou L, Li H, Lv X, Yin J, Wang H, Wang Y. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res 2022; 255:50-65. [PMID: 36400309 DOI: 10.1016/j.trsl.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiac dysfunction has been recognized as a major contributor to mortality in sepsis, which is closely associated with inflammatory reactions. The carboxy terminus of Hsc70-interacting protein (CHIP), a U-box E3 ubiquitin ligase, defends against cardiac injury caused by other factors, but its role in sepsis-induced cardiac dysfunction has yet to be determined. The present study was designed to investigate the effects of CHIP on cardiac dysfunction caused by sepsis and the molecular mechanisms underlying these processes. We discovered that the CHIP level decreased gradually in the heart at different time points after septic model construction. The decline in CHIP expression of lipopolysaccharide (LPS)-stimulated cardiomyocytes was related to c-Jun activation that inhibited the transcription of CHIP. Functional biology experiments indicated that CHIP bound directly to karyopherin-α 2 (KPNA2) and promoted its degradation through polyubiquitination in cardiomyocytes. CHIP overexpression in cardiomyocytes obviously inhibited LPS-initiated release of TNF-α and IL-6 by promoting KPNA2 degradation, reducing NF-κB translocation into the nucleus. Consistent with the in vitro results, data obtained from animal experiments indicated that septic transgenic mice with heart-specific CHIP overexpression showed a weaker proinflammatory response and reduced cardiac dysfunction than septic control mice. Furthermore, we found that the therapeutic effect of compound YL-109 on cardiac dysfunction in septic mice was due to the upregulation of myocardial CHIP expression. These findings demonstrated that sepsis-initiated the activation of c-Jun suppressed CHIP transcription. CHIP directly promoted ubiquitin-mediated degradation of KPNA2, which reduced the production of proinflammatory cytokines by inhibiting the translocation of NF-κB from the cytoplasm into the nucleus in myocardium, thereby attenuating sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingyu Su
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Miao Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Zixi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guoqing Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
21
|
Moll A, Ramirez LM, Ninov M, Schwarz J, Urlaub H, Zweckstetter M. Hsp multichaperone complex buffers pathologically modified Tau. Nat Commun 2022; 13:3668. [PMID: 35760815 PMCID: PMC9237115 DOI: 10.1038/s41467-022-31396-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder in which misfolding and aggregation of pathologically modified Tau is critical for neuronal dysfunction and degeneration. The two central chaperones Hsp70 and Hsp90 coordinate protein homeostasis, but the nature of the interaction of Tau with the Hsp70/Hsp90 machinery has remained enigmatic. Here we show that Tau is a high-affinity substrate of the human Hsp70/Hsp90 machinery. Complex formation involves extensive intermolecular contacts, blocks Tau aggregation and depends on Tau’s aggregation-prone repeat region. The Hsp90 co-chaperone p23 directly binds Tau and stabilizes the multichaperone/substrate complex, whereas the E3 ubiquitin-protein ligase CHIP efficiently disassembles the machinery targeting Tau to proteasomal degradation. Because phosphorylated Tau binds the Hsp70/Hsp90 machinery but is not recognized by Hsp90 alone, the data establish the Hsp70/Hsp90 multichaperone complex as a critical regulator of Tau in neurodegenerative diseases. Alzheimer’s disease is characterized by the accumulation of aggregated tau protein. Here the authors find that Hsp chaperones, which normally protect cell homeostasis, can assemble with co-chaperones in a “multichaperone machinery” to target tau aggregation.
Collapse
Affiliation(s)
- Antonia Moll
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Lisa Marie Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077, Göttingen, Germany.,University Medical Center Goettingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077, Göttingen, Germany.,University Medical Center Goettingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077, Göttingen, Germany.,University Medical Center Goettingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
22
|
Mamun MMA, Khan MR, Zhu Y, Zhang Y, Zhou S, Xu R, Bukhari I, Thorne RF, Li J, Zhang XD, Liu G, Chen S, Wu M, Song X. Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep 2022; 39:110919. [PMID: 35675767 DOI: 10.1016/j.celrep.2022.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The pluripotency and differentiation states of embryonic stem cells (ESCs) are regulated by a set of core transcription factors, primarily Sox2, Oct4, and Nanog. Although their transcriptional regulation has been studied extensively, the contribution of posttranslational modifications in Sox2, Oct4, and Nanog are poorly understood. Here, using a CRISPR-Cas9 knockout library screen in murine ESCs, we identify the E3 ubiquitin ligase Stub1 as a negative regulator of pluripotency. Manipulation of Stub1 expression in murine ESCs shows that ectopic Stub1 expression significantly reduces the protein half-life of Sox2, Oct4, and Nanog. Mechanistic investigations reveal Stub1 catalyzes the polyubiquitination and 26S proteasomal degradation of Sox2 and Nanog through K48-linked ubiquitin chains and Oct4 via K63 linkage. Stub1 deficiency positively enhances somatic cell reprogramming and delays differentiation, whereas its enforced expression triggers ESC differentiation. The discovery of Stub1 as an integral pluripotency regulator strengthens our understanding of ESC regulation beyond conventional transcriptional control mechanisms.
Collapse
Affiliation(s)
- Md Mahfuz Al Mamun
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Muhammad Riaz Khan
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| | - Yifu Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ihtisham Bukhari
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Xiaoyuan Song
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
23
|
Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 2021; 13:25564-25577. [PMID: 34905731 PMCID: PMC8714161 DOI: 10.18632/aging.203774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (CIR) injury. Necroptosis and inflammation have been demonstrated to be involved in the disease-related process of CIR injury. The E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein (CHIP) can modulate multiple cellular signaling processes, including necroptosis and inflammation. Numerous studies have demonstrated the neuroprotective effects of CHIP on multiple central nervous system (CNS) diseases. However, the effects of CHIP on CIR injury have not been fully explored. We hypothesize that CHIP can exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury. In the present study, adult wild-type (WT) C57BL/6 mice and CHIP knock-in (KI) mice with a C57BL/6 background and CHIP overexpression in neural tissue underwent middle cerebral artery occlusion (MCAO) surgery to simulate CIR onset. Our data indicated that CHIP expression in the peri-infarct tissue was markedly increased after MCAO surgery. Compared with WT mice, CHIP KI mice significantly improved neurological deficit scores, decreased cerebral infarct volume, and attenuated brain edema and neuronal damage. Meanwhile, CHIP overexpression attenuated necroptosis and inflammation induced by MCAO surgery. These findings indicated that overexpression of CHIP might exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury, and increasing CHIP levels may be a potential strategy in cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
24
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
25
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
CHIP promotes the activation of NF-κB signaling through enhancing the K63-linked ubiquitination of TAK1. Cell Death Discov 2021; 7:246. [PMID: 34535633 PMCID: PMC8448743 DOI: 10.1038/s41420-021-00637-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/15/2023] Open
Abstract
Transcriptional factor nuclear factor κB (NF-κB) can be activated by various intracellular or extracellular stimuli and its dysregulation leads to pathological conditions, such as neurodegenerative disorders, infection, and cancer. The carboxyl terminus of HSC70-interacting protein (CHIP), a pathogenic gene of spinocerebellar autosomal recessive 16 (SCAR16), plays an important roles in protein degradation, trafficking, and multiple signaling transductions. It has been reported that CHIP participates in the regulation of NF-κB signaling, and the mutant of CHIP (p.T246M) leads to the occurrence of SCAR16. However, the detailed mechanism of CHIP and CHIP (p.T246M) in the regulation of NF-κB signaling in neurological disorders remains unclear. Here, we found that CHIP promoted the activation of NF-κB signaling, while the knockdown had the opposite effect. Furthermore, CHIP interacted with TAK1 and targeted it for K63-linked ubiquitination. Finally, CHIP enhanced the interaction between TAK1 and NEMO. However, CHIP (p.T246M) couldn't upregulate NF-κB signaling, potentiate the ubiquitination of TAK1, and enhance the interactions. Taken together, our study demonstrated for the first time that CHIP positively regulates NF-κB signaling by targeting TAK1 and enhancing its K63-linked ubiquitination.
Collapse
|
27
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
28
|
Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699756. [PMID: 34305988 PMCID: PMC8299108 DOI: 10.3389/fpls.2021.699756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
Protein quality control (PQC) is essential for maintaining cellular homeostasis by reducing protein misfolding and aggregation. Major PQC mechanisms include protein refolding assisted by molecular chaperones and the degradation of misfolded and aggregated proteins using the proteasome and autophagy. A C-terminus of heat shock protein (Hsp) 70-interacting protein [carboxy-terminal Hsp70-interacting protein (CHIP)] is a chaperone-dependent and U-box-containing E3 ligase. CHIP is a key molecule in PQC by recognizing misfolded proteins through its interacting chaperones and targeting their degradation. CHIP also ubiquitinates native proteins and plays a regulatory role in other cellular processes, including signaling, development, DNA repair, immunity, and aging in metazoans. As a highly conserved ubiquitin ligase, plant CHIP plays an important role in response to a broad spectrum of biotic and abiotic stresses. CHIP protects chloroplasts by coordinating chloroplast PQC both outside and inside the important photosynthetic organelle of plant cells. CHIP also modulates the activity of protein phosphatase 2A (PP2A), a crucial component in a network of plant signaling, including abscisic acid (ABA) signaling. In this review, we discuss the structure, cofactors, activities, and biological function of CHIP with an emphasis on both its conserved and unique roles in PQC, stress responses, and signaling in plants.
Collapse
Affiliation(s)
| | | | - Qianggen Zhu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| |
Collapse
|
29
|
Hickey CM, Breckel C, Zhang M, Theune WC, Hochstrasser M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 2021; 217:1-19. [PMID: 33683364 PMCID: PMC8045714 DOI: 10.1093/genetics/iyaa031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Intracellular proteolysis by the ubiquitin-proteasome system regulates numerous processes and contributes to protein quality control (PQC) in all eukaryotes. Covalent attachment of ubiquitin to other proteins is specified by the many ubiquitin ligases (E3s) expressed in cells. Here we determine the E3s in Saccharomyces cerevisiae that function in degradation of proteins bearing various PQC degradation signals (degrons). The E3 Ubr1 can function redundantly with several E3s, including nuclear-localized San1, endoplasmic reticulum/nuclear membrane-embedded Doa10, and chromatin-associated Slx5/Slx8. Notably, multiple degrons are targeted by more ubiquitylation pathways if directed to the nucleus. Degrons initially assigned as exclusive substrates of Doa10 were targeted by Doa10, San1, and Ubr1 when directed to the nucleus. By contrast, very short hydrophobic degrons-typical targets of San1-are shown here to be targeted by Ubr1 and/or San1, but not Doa10. Thus, distinct types of PQC substrates are differentially recognized by the ubiquitin system in a compartment-specific manner. In human cells, a representative short hydrophobic degron appended to the C-terminus of GFP-reduced protein levels compared with GFP alone, consistent with a recent study that found numerous natural hydrophobic C-termini of human proteins can act as degrons. We also report results of bioinformatic analyses of potential human C-terminal degrons, which reveal that most peptide substrates of Cullin-RING ligases (CRLs) are of low hydrophobicity, consistent with previous data showing CRLs target degrons with specific sequences. These studies expand our understanding of PQC in yeast and human cells, including the distinct but overlapping PQC E3 substrate specificity of the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Mengwen Zhang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - William C Theune
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
30
|
Seo HR, Jeong D, Lee S, Lee HS, Lee SA, Kang SW, Kwon J. CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication. Mol Cells 2021; 44:101-115. [PMID: 33658435 PMCID: PMC7941006 DOI: 10.14348/molcells.2021.2258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its halflife. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.
Collapse
Affiliation(s)
- Hye-Ran Seo
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Daun Jeong
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sunmi Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Han-Sae Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Present address: Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
32
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|