1
|
Hou LS, Zhai XP, Zhang YW, Xing JH, Li C, Zhou SY, Zhu XH, Zhang BL. Targeted inhibition of autophagy in hepatic stellate cells by hydroxychloroquine: An effective therapeutic approach for the treatment of liver fibrosis. Liver Int 2024; 44:1937-1951. [PMID: 38606676 DOI: 10.1111/liv.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-β-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.
Collapse
Affiliation(s)
- Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-Pei Zhai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jie-Hua Xing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hong Zhu
- Department of Drug Quality Management, Shannxi Institute for Food and Drug Control, Xi'an, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Yan T, Yan N, Xia Y, Sawaswong V, Zhu X, Dias HB, Aibara D, Takahashi S, Hamada K, Saito Y, Li G, Liu H, Yan H, Velenosi TJ, Krausz KW, Huang J, Kimura S, Rotman Y, Qu A, Hao H, Gonzalez FJ. Hepatocyte-specific CCAAT/enhancer binding protein α restricts liver fibrosis progression. J Clin Invest 2024; 134:e166731. [PMID: 38557493 PMCID: PMC10977981 DOI: 10.1172/jci166731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Henrique Bregolin Dias
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Hamada
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshifumi Saito
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Hui Liu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Thomas J. Velenosi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
De Muynck K, Devisscher L. Targeting osteopontin to treat primary sclerosing cholangitis. Curr Opin Gastroenterol 2024; 40:77-84. [PMID: 38190383 DOI: 10.1097/mog.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Primary sclerosing cholangitis is a chronic cholestatic liver disease for which no pharmacological treatment options are available. It is an immune-mediated disease and macrophages have been implicated in disease pathogenesis. However, which specific macrophage populations contribute to disease, and how we can apply this as therapeutic strategy is still unclear. RECENT FINDINGS Recent studies have shown that fibrous tissue is characterized by osteopontin-positive macrophages, including in patients with primary sclerosing cholangitis. Experimental models indicate that intracellular osteopontin in macrophages confers protection, while secreted osteopontin contributes to disease. Serum osteopontin is increased in different liver diseases, including primary sclerosing cholangitis, and might thus serve as therapeutic target. SUMMARY Although several studies report on the role of osteopontin in liver disease, only a minority of the studies have focused on isoform-specific functions, and the importance of the cellular source of secreted osteopontin. Future studies investigating these aspects, and how this can be translated to therapies for primary sclerosing cholangitis, and other chronic liver diseases, are required.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver ImmunoPharmacology unit, Basic and Applied Medical Sciences, Ghent University; Liver Research Center Ghent, Ghent University, University Hostpital Ghent, Belgium
| | | |
Collapse
|
4
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
5
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
Guo T, Wantono C, Tan Y, Deng F, Duan T, Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front Physiol 2023; 14:1098129. [PMID: 36711017 PMCID: PMC9878334 DOI: 10.3389/fphys.2023.1098129] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) provides physical support and imparts significant biochemical and mechanical cues to cells. Matrix stiffening is a hallmark of liver fibrosis and is associated with many hepatic diseases, especially liver cirrhosis and carcinoma. Increased matrix stiffness is not only a consequence of liver fibrosis but is also recognized as an active driver in the progression of fibrotic hepatic disease. In this article, we provide a comprehensive view of the role of matrix stiffness in the pathological progression of hepatic disease. The regulators that modulate matrix stiffness including ECM components, MMPs, and crosslinking modifications are discussed. The latest advances of the research on the matrix mechanics in regulating intercellular signaling and cell phenotype are classified, especially for hepatic stellate cells, hepatocytes, and immunocytes. The molecular mechanism that sensing and transducing mechanical signaling is highlighted. The current progress of ECM stiffness's role in hepatic cirrhosis and liver cancer is introduced and summarized. Finally, the recent trials targeting ECM stiffness for the treatment of liver disease are detailed.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Cindy Wantono
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Tianying Duan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu,
| |
Collapse
|
7
|
Canadas RF, Costa JB, Mao Z, Gao C, Demirci U, Reis RL, Marques AP, Oliveira JM. 3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. Biomaterials 2021; 277:121112. [PMID: 34488122 DOI: 10.1016/j.biomaterials.2021.121112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022]
Abstract
Natural extracellular matrix governs cells providing biomechanical and biofunctional outstanding properties, despite being porous and mostly made of soft materials. Among organs, specific tissues present specialized macro-architectures. For instance, hepatic lobules present radial organization, while vascular sinusoids are branched from vertical veins, providing specific biofunctional features. Therefore, it is imperative to mimic such structures while modeling tissues. So far, there is limited capability of coupling oriented macro-structures with interconnected micro-channels in programmable long-range vertical and radial sequential orientations. Herein, a three-directional ice crystal elongation (3DICE) system is presented to code geometries in cryogels. Using 3DICE, guided ice crystals growth templates vertical and radial pores through bulky cryogels. Translucent isotropic and anisotropic architectures of radial or vertical pores are fabricated with tunable mechanical response. Furthermore, 3D combinations of vertical and radial pore orientations are coded at the centimeter scale. Cell morphological response to macro-architectures is demonstrated. The formation of endothelial segments, CYP450 activity, and osteopontin expression, as liver fibrosis biomarkers, present direct response and specific cellular organization within radial, linear, and random architectures. These results unlock the potential of ice-templating demonstrating the relevance of macro-architectures to model tissues, and broad possibilities for drug testing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Raphaël F Canadas
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Tech4MED™, UPTEC, ASPRELA I, Office-Lab 0.16, Business Campus, n.° 455/461, 4200-135 Porto, Portugal.
| | - João B Costa
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA; Electrical Engineering Department by Courtesy, Stanford University, Stanford, CA, 94305, USA
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
8
|
Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev 2021; 70:101393. [PMID: 34139337 DOI: 10.1016/j.arr.2021.101393] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Ageing is a multifactorial biological process leading to a progressive decline of physiological functions. The process of ageing includes numerous changes in the cells and the interactions between cell-cell and cell-microenvironment remaining as a critical risk factor for the development of chronic degenerative diseases. Systemic inflammation, known as inflammageing, increases as a consequence of ageing contributing to age-related morbidities. But also, persistent and uncontrolled activation of fibrotic pathways, with excessive accumulation of extracellular matrix (ECM) and organ dysfunction is markedly more frequent in the elderly. In this context, we introduce here the concept of Fibroageing, that is, the propensity to develop tissue fibrosis associated with ageing, and propose that ECM is a key player underlying this process. During ageing, molecules of the ECM become damaged through many modifications including glycation, crosslinking, and accumulation, leading to matrix stiffness which intensifies ageing-associated alterations. We provide a framework with some mechanistic hypotheses proposing that stiff ECM, in addition to the well-known activation of fibrotic positive feedback loops, affect several of the hallmarks of ageing, such as cell senescence and mitochondrial dysfunction, and in this context, is a key mechanism and a driver thread of Fibroageing.
Collapse
|
9
|
Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Tavilani H. Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients. Mol Biol Rep 2021; 48:4253-4262. [PMID: 34086159 DOI: 10.1007/s11033-021-06440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Cells translate the mechanosensing of extracellular matrix component dysregulation and stiffness into the signal transduction including Osteopontin (OPN) through the Hippo pathway. But how extracellular matrix (ECM) component dysregulation and stiffness are ultimately linked to transitional cell carcinoma (TCC) development remains poorly understood. This study was aimed to evaluate the possible links between ECM component alteration after cancer surgery and OPN and Yes-associated protein (YAP) expression in TCC and adjacent tissues. In this study, we used 50 TCC (25 newly diagnosed and 25 recurrent) and 50 adjacent tissues to determine the tissue stiffness using atomic force microscopy. The mRNA expression of SPP1, Indian hedgehog (IHH), and YAP was also determined using qRT-PCR. Western blotting and ELISA were performed to assess the tissue and serum levels of OPN, respectively. To assess the glycoproteins and elastic fibers content, Periodic Acid Schiff, and Verhoeff-Van Gieson Staining were performed, respectively. Matrix stiffness was markedly higher in TCCs than adjacent tissues (p < 0.05). Gene expression analysis showed that YAP, SPP1, and IHH genes were upregulated in TCC tissues (p < 0.05). Additionally, the OPN protein overexpression was observed in the tissue and the serum of TCC patients (p < 0.05). We also found that glycoproteins, elastic fibers content of recurrent TCC tissues was remarkably higher as compared to adjacent tissues (p < 0.05). Our results suggest that glycoproteins and elastic fibers content modulation and ECM stiffness may upregulates the expression of YAP, SPP1 and IHH genes, and possibly contribute to the TCC development and relapse.
Collapse
Affiliation(s)
- Hadi Ghasemi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|