1
|
Zhang D, Wang Q, Li D, Chen S, Chen J, Zhu X, Bai F. Gut microbiome composition and metabolic activity in metabolic-associated fatty liver disease. Virulence 2025; 16:2482158. [PMID: 40122128 PMCID: PMC11959907 DOI: 10.1080/21505594.2025.2482158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Metabolic Associated Fatty Liver Disease (MAFLD) impacts approximately 25% of the global population. Between April 2023 and July 2023, 60 patients with MAFLD, along with 60 age, ethnicity, and sex-matched healthy controls (HCs), were enrolled from the Inner Mongolia Autonomous Region, China. Analysis of gut microbiota composition and plasma metabolic profiles was conducted using metagenome sequencing and LC-MS. LEfSe analysis identified five pivotal species: Eubacterium rectale, Dialister invisus, Pseudoruminococcus massiliensis, GGB3278 SGB4328, and Ruminococcaceae bacteria. In subgroup analysis, Eubacterium rectale tended to increase by more than 2 times and more than double in the non-obese MAFLD group, and MAFLD with moderate hepatic steatosis (HS), respectively. Plasma samples identified 172 metabolites mainly composed of fatty acid metabolites such as propionic acid and butyric acid analogues. Ruminococcaceae bacteria have a strong positive correlation with β-alanine, uric acid, and L-valine. Pseudoruminococcus massiliensis has a strong positive correlation with β-alanine. Combinations of phenomics and metabolomics yielded the highest accuracy (AUC = 0.97) in the MAFLD diagnosis. Combinations of phenomics and metagenomics yielded the highest accuracy (AUC = 0.94) in the prediction of the MAFLD HS progress. Increases in Eubacterium rectale and decreases in Dialister invisus seem to be indicative of MAFLD patients. Eubacterium rectale may predict HS degree of MAFLD and play an important role in the development of non-obese MAFLD. Eubacterium rectale can generate more propionic acid and butyric acid analogues to absorb energy and increase lipid synthesis and ultimately cause MAFLD.
Collapse
Affiliation(s)
- Daya Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Qi Wang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Da Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Shiju Chen
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Jinrun Chen
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Xuli Zhu
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
2
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Li D, Meng K, Liu G, Wen Z, Han Y, Liu W, Xu X, Song L, Cai H, Yang P. Lactiplantibacillus plantarum FRT4 protects against fatty liver hemorrhage syndrome: regulating gut microbiota and FoxO/TLR-4/NF-κB signaling pathway in laying hens. MICROBIOME 2025; 13:88. [PMID: 40158133 PMCID: PMC11954192 DOI: 10.1186/s40168-025-02083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Fatty liver hemorrhage syndrome (FLHS) has become one of the major factors leading to the death of laying hen in caged egg production. FLHS is commonly associated with lipid peroxidation, hepatocyte injury, decreased antioxidant capacity, and inflammation. However, there are limited evidences regarding the preventive effect of Lactiplantibacillus plantarum on FLHS in laying hens and its mechanisms. Our previous results showed that Lp. plantarum FRT4 alleviated FLHS by regulating lipid metabolism, but did not focus on its antioxidant and anti-inflammatory functions and mechanisms. Therefore, this study aimed to investigate the preventive mechanisms of Lp. plantarum FRT4 in alleviating FLHS, with a focus on its role in antioxidant activity and inflammation regulation. RESULTS Supplementation with Lp. plantarum FRT4 enhanced the levels of T-AOC, T-SOD, and GSH-Px, while reducing the levels of TNF-α, IL-1β, IL-8, and NLRP3 in the liver and ovary of laying hens. Additionally, Lp. plantarum FRT4 upregulated the mRNA expressions of SOD1, SOD2, CAT, and GPX1, downregulated the mRNA expressions of pro-inflammatory factors IL-1β, IL-6, and NLRP3, and upregulated the mRNA expressions of anti-inflammatory factors IL-4 and IL-10. Lp. plantarum FRT4 improved the structure and metabolic functions of gut microbiota, and regulated the relative abundances of dominant phyla (Bacteroidetes, Firmicute, and Proteobacteria) and genera (Prevotella and Alistipes). Additionally, it influenced key KEGG pathways, including tryptophan metabolism, amino sugar and nucleotide sugar metabolism, insulin signaling pathway, FoxO signaling pathway. Spearman analysis revealed that the abundance of microbiota at different taxonomic levels was closely related to antioxidant enzymes and inflammatory factors. Furthermore, Lp. plantarum FRT4 modulated the mRNA expressions of related factors in the FoxO/TLR-4/NF-κB signaling pathway by regulating gut microbiota. Moreover, the levels of E2, FSH, and VTG were significantly increased in the ovary after Lp. plantarum FRT4 intervention. CONCLUSIONS Lp. plantarum FRT4 effectively ameliorates FLHS in laying hens. This efficacy is attributed to its antioxidant and anti-inflammatory properties, which are mediated by modulating the structure and function of gut microbiota, and further intervening in the FoxO/TLR-4/NF-κB signaling pathway. These actions enhance hepatic and ovarian function and increase estrogen levels. Video Abstract.
Collapse
Affiliation(s)
- Daojie Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Wen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunsheng Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liye Song
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Liu S, Li F, Cai Y, Sun L, Ren L, Yin M, Cui H, Pan Y, Gang X, Wang G. Gout drives metabolic dysfunction-associated steatotic liver disease through gut microbiota and inflammatory mediators. Sci Rep 2025; 15:9395. [PMID: 40102566 PMCID: PMC11920238 DOI: 10.1038/s41598-025-94118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
This study explores the relationship between gout and metabolic dysfunction-associated steatotic liver disease (MASLD), two metabolic conditions linked to worsening health outcomes. While hyperuricemia's association with MASLD is established, the specific connection between gout and MASLD remains less explored. Using data from the UK Biobank, the study employs COX proportional hazard models, multi-state survival analysis, and Mendelian randomization to assess the independent and mutual risks of gout and MASLD. Findings indicate a mutual risk increase: male gout patients, those younger than 60, and those with high BMI are particularly susceptible to MASLD, while female MASLD patients are at heightened risk for gout. Shared risk factors for both conditions include high BMI, hypertension, diabetes, and hyperuricemia. The study further identifies a bidirectional causal link, with gout leading to MASLD, mediated by gut microbiota Ruminococcaceae and proteins like IL-2 and GDF11, implicating specific metabolic pathways. The findings highlight a clinical and mechanistic correlation, emphasizing the need for targeted interventions to address these overlapping metabolic pathways in future treatments.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Fan Li
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Linan Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mengsha Yin
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Ang TL, Koo SH, Ang D, Tan CK, Wang LM, Wong SH, Chow PKH. Postcholecystectomy Gut Microbiome Changes and the Clinical Impact: A Systematic Review With Narrative Synthesis. J Gastroenterol Hepatol 2025; 40:574-583. [PMID: 39675817 DOI: 10.1111/jgh.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Cholecystectomy (CCE) can affect the enterohepatic circulation of bile acids and result in gut microbiome changes. This systematic review aimed to clarify the effect of CCE on gut microbiome composition and its clinical impact. METHOD A systematic search was conducted in PubMed, Web of Science, and Scopus, combining keywords such as "cholecystectomy" or "post-cholecystectomy" with "gut microbiome," "stool microbiome," or "gut dysbiosis." Data were extracted and synthesized using narrative review. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS A total of 1373 articles were screened and 14 studies were selected. Significant but inconsistent microbiome changes were reported. Changes were observed in alpha and beta diversity. At phylum level, an increase in Bacteroides and Ascomycota, decrease in Firmicutes, Actinomycetes, and Basidiomycota, and both increase and decrease in Fusobacteria were reported. At genus level, an increase in Prevotella and a decrease in Faecalibacterium were reported. In post-CCE diarrhea, decreased beta diversity, a decreased F/B ratio, an increase in Prevotella, an increase in Phocaeicola vulgatus, and a decrease in Prevotella copri were noted. For post-CCE syndrome, a higher abundance of Proteobacteria and decreased Firmicutes/Bacteroides (F/B) ratio were reported. A decreased relative abundance of Bifidobacterium longum subsp. longum from controls to CCE without colonic neoplasia to CCE with colonic neoplasia, and an increased abundance of Candida glabrata from controls, to CCE without colonic neoplasia and CCE with colonic neoplasia, were reported. CONCLUSION Patients who underwent CCE had significant gut dysbiosis. However, current studies could not clarify the detailed gut microbial structural and functional changes associated with CCE.
Collapse
Affiliation(s)
- Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Seok Hwee Koo
- Research Laboratory, Clinical Trials and Research Unit, Changi General Hospital, Singapore
| | - Daphne Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
| | - Chin Kimg Tan
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lai Mun Wang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Department of Pathology, Parkway Laboratory Services Ltd, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, National Cancer Center and Singapore General Hospital, Singapore
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore
| |
Collapse
|
6
|
Mitsinikos T, Aw MM, Bandsma R, Godoy M, Ibrahim SH, Mann JP, Memon I, Mohan N, Mouane N, Porta G, Verduci E, Xanthakos S. FISPGHAN statement on the global public health impact of metabolic dysfunction-associated steatotic liver disease. J Pediatr Gastroenterol Nutr 2025; 80:397-407. [PMID: 39727048 DOI: 10.1002/jpn3.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
As rates of obesity rise worldwide, incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly referred to as nonalcoholic fatty liver disease, is increasing, worsening the burden of healthcare systems. The council of the Federation of International Societies for Pediatric Gastroenterology, Hepatology, and Nutrition (FISPGHAN) identified the topic of MASLD epidemiology, treatment, and prevention as a global priority issue to be addressed by an expert team, with the goal to describe feasible and evidence-based actions that may contribute to reducing MASLD risk. The FISPGHAN member societies nominated experts in the field. The FISPGHAN council selected and appointed members of the expert team and a chair. The subtopics included in this manuscript were chosen through a consensus of the experts involved. We review the epidemiology, natural history, and screening and management. We further expand to relevant public health measures aimed at MASLD prevention, including identifying interventions that could reduce risk factors (environmental and iatrogenic), optimize maternal and newborn health, and support healthier lifestyles for older children and adolescents on a local, national, and international scale. While recognizing that various aspects of population health and public policy can shape MASLD risk, we also review what we can do on an individual level to support our patients to reduce the significant burden of this ever rising disease in pediatrics.
Collapse
Affiliation(s)
- Tania Mitsinikos
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Marion M Aw
- Division of Paediatric Gastroenterology, Nutrition, Hepatology and Liver Transplantation, National University of Singapore, Singapore
- Department of Paediatrics, National University Health System, Singapore
| | - Robert Bandsma
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcela Godoy
- Division of Pediatric Gastroenterology, Hospital Clinico San Borja Arriaran, Santiago, Chile
- Department of Pediatrics, University of Chile, Santiago, Chile
| | - Samar H Ibrahim
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jake P Mann
- Department of Immunology and immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Iqbal Memon
- Division of Gastroenterology, Hepatology, and Nutrition, Sir Syed College of Medical Sciences for Girls, Karachi, Pakistan
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta The Medicity, Gurugram, Haryana, India
| | - Nezha Mouane
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Academic Children's Hospital, Mohammed V University, Rabat, Morocco
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, São Paulo, Brazil
| | - Elvira Verduci
- Department of Pediatrics, Ospedale dei Bambini Vittore Buzzi, University of Milan, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Tian Y, Zhou Y, Liao W, Xia J, Hu Q, Zhao Q, Zhang R, Sun G, Yang L, Li L. Flaxseed powder supplementation in non-alcoholic fatty liver disease: a randomized controlled clinical trial. Food Funct 2025; 16:1389-1406. [PMID: 39878023 DOI: 10.1039/d4fo05847j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. Objectives: Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD. Methods: In this 12-week randomized controlled clinical trial, 50 patients were randomly assigned to the flaxseed group (n = 25) and the control group (n = 25). The flaxseed group received 30 g d-1 flaxseed powder orally before lunch or dinner along with health education, while the control group received only health education. The primary outcome was the intrahepatic lipid content assessed by the proton density fat fraction estimated by magnetic resonance imaging, and secondary outcomes were body composition measurements, liver function, and glucolipid metabolism. Results: Patients in the flaxseed group showed significantly lower liver fat content, body fat percentage, obesity index, visceral fat area, serum total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG) levels after a 12-week intervention compared to pre-intervention levels, while serum apolipoprotein A1 (Apo A1) and high-density lipoprotein cholesterol (HDL-C) levels were significantly increased, with all differences being statistically significant (P < 0.05). Analysis of the gut microbiota showed that, at the phylum level, flaxseed intervention significantly increased the abundance of Bacteroides and Actinobacteria, while decreasing the ratio of Firmicutes to Bacteroidetes. At the genus level, the relative abundance of Clostridium_sensu_stricto_1, Parasutterella, Lachnospiraceae_NK4A136_group, Eubacterium_xylanophilum_group, and Bifidobacterium in the gut microbiota of the flaxseed group was significantly higher than that of the control group (P < 0.05), whereas the relative abundance of Coriobacteriaceae_UCG-002 was significantly lower than that of the control group (P < 0.05). Conclusions: Flaxseed powder intervention for 12 weeks had the effect of improving liver lipid deposition, liver function, body composition indicators, and lipid metabolism in patients with NAFLD. It also regulated the gut microbiota in NAFLD patients, increasing the abundance of beneficial bacteria while reducing harmful bacteria. This suggested that flaxseed is one of the natural and effective foods for improving NAFLD.
Collapse
Affiliation(s)
- Yanyan Tian
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuhao Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Qiaosheng Hu
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Qing Zhao
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Rui Zhang
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| |
Collapse
|
8
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
9
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
10
|
Mogna-Peláez P, Riezu-Boj JI, Milagro FI, Clemente-Larramendi I, Esteban Echeverría S, Herrero JI, Elorz M, Benito-Boillos A, Tobaruela-Resola AL, González-Muniesa P, Tur JA, Martínez JA, Abete I, Zulet MA. Sex-Dependent Gut Microbiota Features and Functional Signatures in Metabolic Disfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:4198. [PMID: 39683591 DOI: 10.3390/nu16234198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This study investigates the gut microbiota's role in metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on microbial and functional signatures and sex-based differences. Methods: Using baseline data from 98 MASLD patients and 45 controls from the Fatty Liver in Obesity (FLiO) study, the gut microbiota was profiled with 16S gene sequencing, followed by statistical and machine learning analyses to identify disease-associated microbial signatures. Results: Notable alpha and beta diversity differences were observed between MASLD patients and the controls, varying by sex. Machine learning models highlighted specific microbial signatures for each sex, achieving high accuracy (area under the receiver operating characteristic curves of 0.91 for women and 0.72 for men). The key microbial taxa linked to MASLD included Christensenella and Limosilactobacillus in women and Beduinibacterium and Anaerotruncus in men. Functional profiling showed that MASLD patients had increased pathways for amine biosynthesis and amino acid degradation, while the controls exhibited enhanced fermentation pathways. These microbial features were associated with systemic inflammation, insulin resistance, and metabolite production linked to gut dysbiosis. Conclusions: The findings support the potential of gut microbiota signatures to be used as non-invasive indicators of MASLD and highlight sex-specific variations that could inform personalized diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iñigo Clemente-Larramendi
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Sergio Esteban Echeverría
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma, Spain
| | - J Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Dey P, Choubey S. An urgent need for longitudinal microbiome profiling coupled with machine learning interventions. Front Microbiol 2024; 15:1487841. [PMID: 39588102 PMCID: PMC11586336 DOI: 10.3389/fmicb.2024.1487841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Sandeep Choubey
- The Institute of Mathematical Sciences, Chennai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Alisi A, McCaughan G, Grønbæk H. Role of gut microbiota and immune cells in metabolic-associated fatty liver disease: clinical impact. Hepatol Int 2024; 18:861-872. [PMID: 38995341 DOI: 10.1007/s12072-024-10674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 07/13/2024]
Abstract
In 2020, a revised definition of fatty liver disease associated with metabolic dysfunction (MAFLD) was proposed to replace non-alcoholic fatty liver (NAFLD). Liver steatosis and at least one of the three metabolic risk factors, including type 2 diabetes, obesity, or signs of metabolic dysregulation, are used to diagnose MAFLD. MAFLD, similarly to NAFLD, is characterized by a spectrum of disease ranging from simple steatosis to advanced metabolic steatohepatitis with or without fibrosis, and may progress to cirrhosis and liver cancer, including increased risk of other critical extrahepatic diseases. Even though the pathophysiology of MAFLD and potential therapeutic targets have been explored in great detail, there is yet no Food and Drug Administration approved treatment. Recently, gut microbiome-derived products (e.g., endotoxins and metabolites) involved in intestinal barrier disruption, systemic inflammation, and modification of intrahepatic immunity have been associated with MAFLD development and progression. Therefore, different strategies could be adopted to modify the gut microbiome to improve outcomes in early and progressive MAFLD. Here, we provide an overview of mechanisms that may link the gut microbiome and immune response during the onset of liver steatosis and progression to steatohepatitis and fibrosis in patients with MAFLD. Finally, gut microbiota-based approaches are discussed as potential personalized treatments against MAFLD.
Collapse
Affiliation(s)
- Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesu' Children Hospital, IRCCS, Rome, Italy.
| | - Geoffrey McCaughan
- A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, University of Sydney, Sydney, Australia
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
El-Baz AM, Shata A, Nouh NA, Jamil L, Hafez MM, Negm S, El-Kott AF, AlShehri MA, Khalaf EM. Vinpocetine and Lactobacillus improve fatty liver in rats: role of adiponectin and gut microbiome. AMB Express 2024; 14:89. [PMID: 39095672 PMCID: PMC11297008 DOI: 10.1186/s13568-024-01731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Therapeutics that interfere with the damage/pathogen-associated molecular patterns (DAMPs/PAMPs) have evolved as promising candidates for hepatic inflammation like that occurring in non-alcoholic fatty liver disease (NAFLD). In the current study, we examined the therapeutic impact of the phosphodiesterase-1 inhibitor vinpocetine (Vinpo), alone or when combined with Lactobacillus, on hepatic abnormalities caused by a 13-week high-fat diet (HFD) and diabetes in rats. The results show that Vinpo (10 and 20 mg/kg/day) dose-dependently curbed HFD-induced elevation of liver injury parameters in serum (ALT, AST) and tissue histopathology. These effects were concordant with Vinpo's potential to ameliorate HFD-induced fibrosis (Histological fibrosis score, hydroxyproline, TGF-β1) and oxidative stress (MDA, NOx) alongside restoring the antioxidant-related parameters (GSH, SOD, Nrf-2, HO-1) in the liver. Mechanistically, Vinpo attenuated the hepatocellular release of DAMPs like high mobility group box (HMGB)1 alongside lowering the overactivation of the pattern recognition receptors including, toll-like receptor (TLR)4 and receptor for advanced glycation end-products (RAGE). Consequently, there was less activation of the transcription factor nuclear factor-kappa B that lowered production of the proinflammatory cytokines TNF-α and IL-6 in Vinpo-treated HFD/diabetes rats. Compared to Vinpo treatment alone, Lactobacillus probiotics as adjunctive therapy with Vinpo significantly improved the disease-associated inflammation and oxidative stress injury, as well as the insulin resistance and lipid profile abnormalities via enhancing the restoration of the symbiotic microbiota. In conclusion, combining Vinpo and Lactobacillus probiotics may be a successful approach for limiting NAFLD in humans.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nehal A Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospital, Mansoura, 35516, Egypt
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University (O6U), 6th of October City, Egypt
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman M Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
15
|
Satthawiwat N, Jinato T, Sutheeworapong S, Tanpowpong N, Chuaypen N, Tangkijvanich P. Distinct Gut Microbial Signature and Host Genetic Variants in Association with Liver Fibrosis Severity in Patients with MASLD. Nutrients 2024; 16:1800. [PMID: 38931155 PMCID: PMC11206871 DOI: 10.3390/nu16121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota might affect the severity and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to characterize gut dysbiosis and clinical parameters regarding fibrosis stages assessed by magnetic resonance elastography. This study included 156 patients with MASLD, stratified into no/mild fibrosis (F0-F1) and moderate/severe fibrosis (F2-F4). Fecal specimens were sequenced targeting the V4 region of the 16S rRNA gene and analyzed using bioinformatics. The genotyping of PNPLA3, TM6SF2, and HSD17B13 was assessed by allelic discrimination assays. Our data showed that gut microbial profiles between groups significantly differed in beta-diversity but not in alpha-diversity indices. Enriched Fusobacterium and Escherichia_Shigella, and depleted Lachnospira were found in the F2-F4 group versus the F0-F1 group. Compared to F0-F1, the F2-F4 group had elevated plasma surrogate markers of gut epithelial permeability and bacterial translocation. The bacterial genera, PNPLA3 polymorphisms, old age, and diabetes were independently associated with advanced fibrosis in multivariable analyses. Using the Random Forest classifier, the gut microbial signature of three genera could differentiate the groups with high diagnostic accuracy (AUC of 0.93). These results indicated that the imbalance of enriched pathogenic genera and decreased beneficial bacteria, in association with several clinical and genetic factors, were potential contributors to the pathogenesis and progression of MASLD.
Collapse
Affiliation(s)
- Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (T.J.); (N.C.)
- Doctor of Philosophy Program in Medical Biochemistry, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (T.J.); (N.C.)
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Research Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand;
| | - Natthaporn Tanpowpong
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (T.J.); (N.C.)
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (T.J.); (N.C.)
| |
Collapse
|
16
|
Lu K, Zhou Y, He L, Li Y, Shahzad M, Li D. Coprococcus protects against high-fat diet-induced nonalcoholic fatty liver disease in mice. J Appl Microbiol 2024; 135:lxae125. [PMID: 38830802 DOI: 10.1093/jambio/lxae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
AIMS The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Planned Immunization, Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Yanta District, Xi'an 710054 Shaanxi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing 100034, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| |
Collapse
|
17
|
Zeng F, Su X, Liang X, Liao M, Zhong H, Xu J, Gou W, Zhang X, Shen L, Zheng JS, Chen YM. Gut microbiome features and metabolites in non-alcoholic fatty liver disease among community-dwelling middle-aged and older adults. BMC Med 2024; 22:104. [PMID: 38454425 PMCID: PMC10921631 DOI: 10.1186/s12916-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The specific microbiota and associated metabolites linked to non-alcoholic fatty liver disease (NAFLD) are still controversial. Thus, we aimed to understand how the core gut microbiota and metabolites impact NAFLD. METHODS The data for the discovery cohort were collected from the Guangzhou Nutrition and Health Study (GNHS) follow-up conducted between 2014 and 2018. We collected 272 metadata points from 1546 individuals. The metadata were input into four interpretable machine learning models to identify important gut microbiota associated with NAFLD. These models were subsequently applied to two validation cohorts [the internal validation cohort (n = 377), and the prospective validation cohort (n = 749)] to assess generalizability. We constructed an individual microbiome risk score (MRS) based on the identified gut microbiota and conducted animal faecal microbiome transplantation experiment using faecal samples from individuals with different levels of MRS to determine the relationship between MRS and NAFLD. Additionally, we conducted targeted metabolomic sequencing of faecal samples to analyse potential metabolites. RESULTS Among the four machine learning models used, the lightGBM algorithm achieved the best performance. A total of 12 taxa-related features of the microbiota were selected by the lightGBM algorithm and further used to calculate the MRS. Increased MRS was positively associated with the presence of NAFLD, with odds ratio (OR) of 1.86 (1.72, 2.02) per 1-unit increase in MRS. An elevated abundance of the faecal microbiota (f__veillonellaceae) was associated with increased NAFLD risk, whereas f__rikenellaceae, f__barnesiellaceae, and s__adolescentis were associated with a decreased presence of NAFLD. Higher levels of specific gut microbiota-derived metabolites of bile acids (taurocholic acid) might be positively associated with both a higher MRS and NAFLD risk. FMT in mice further confirmed a causal association between a higher MRS and the development of NAFLD. CONCLUSIONS We confirmed that an alteration in the composition of the core gut microbiota might be biologically relevant to NAFLD development. Our work demonstrated the role of the microbiota in the development of NAFLD.
Collapse
Affiliation(s)
- Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China.
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China
| | - Xinxiu Liang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Minqi Liao
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Haili Zhong
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinjian Xu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wanglong Gou
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xiangzhou Zhang
- Big Data Decision Institute, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China
| | - Luqi Shen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, 310030, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Koutoukidis DA, Yen S, Gomez Castro P, Misheva M, Jebb SA, Aveyard P, Tomlinson JW, Mozes FE, Cobbold JF, Johnson JS, Marchesi JR. Changes in intestinal permeability and gut microbiota following diet-induced weight loss in patients with metabolic dysfunction-associated steatohepatitis and liver fibrosis. Gut Microbes 2024; 16:2392864. [PMID: 39340210 PMCID: PMC11444513 DOI: 10.1080/19490976.2024.2392864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024] Open
Abstract
Weight loss improves metabolic dysfunction-associated steatohepatitis (MASH). We investigated whether there were associated changes in intestinal permeability, short-chain fatty acids (SCFAs), and gut microbiota, which are implicated in the pathophysiology of MASH. Sixteen adults with MASH, moderate fibrosis, and obesity received a low-energy total diet replacement program for 12 weeks and stepped food re-introduction over the following 12 weeks (ISRCTN12900952). Intestinal permeability, fecal SCFAs, and fecal microbiota were assessed at 0, 12, and 24 weeks. Data were analyzed using mixed-effects linear regression and sparse partial least-squares regression. Fourteen participants completed the trial, lost 15% (95% CI: 11.2-18.6%) of their weight, and 93% had clinically relevant reductions in liver disease severity markers. Serum zonulin concentrations were reduced at both 12 and 24 weeks (152.0 ng/ml, 95% CI: 88.0-217.4, p < 0.001). Each percentage point of weight loss was associated with a 13.2 ng/mL (95% CI: 3.8-22.5, p < 0.001) reduction in zonulin. For every 10 ng/mL reduction in zonulin, there was a 6.8% (95% CI: 3.5%-10.2, p < 0.001) reduction in liver fat. There were reductions in SCFA and alpha diversity evenness as well as increases in beta diversity of the gut microbiota at 12 weeks, but the changes did not persist at 24 weeks. In conclusion, substantial dietary energy restriction is associated with significant improvement in MASH markers alongside reduction in intestinal permeability. Changes in gut microbiota and SCFA were not maintained with sustained reductions in weight and liver fat, suggesting that microbiome modulation may not explain the relationship between weight loss and improvements in MASH.
Collapse
Affiliation(s)
- Dimitrios A Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paula Gomez Castro
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariya Misheva
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
- Oxford and Thames Valley Applied Research Collaboration, University of Oxford, Oxford, UK
| | - Jeremy W Tomlinson
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ferenc E Mozes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy F Cobbold
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Gastroenterology and Hepatology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, St Mary's Hospital, Imperial College London, London, UK
| |
Collapse
|