1
|
Toan NK, Kim S, Ahn S. Neuropeptides regulate embryonic salivary gland branching through the FGF/FGFR pathway in aging klotho-deficient mice. Aging Cell 2024; 23:e14329. [PMID: 39239870 PMCID: PMC11634708 DOI: 10.1111/acel.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 09/07/2024] Open
Abstract
Salivary gland branching morphogenesis is regulated by the functional integration of neuronal signaling, but the underlying mechanisms are not fully understood in aging accelerated klotho-deficient (Kl-/-) mice. Here, we investigated whether the neuropeptides substance P (SP) and neuropeptide Y (NPY) affect the branching morphogenesis of embryonic salivary glands in aging Kl-/- mice. In the salivary glands of embryonic Kl-/- mice, morphological analysis and immunostaining revealed that epithelial bud formation, neuronal cell proliferation/differentiation, and the expression of the salivary gland functional marker ZO-1 were decreased in embryonic ductal cells. Incubation with SP/NPY at E12-E13d promoted branching morphogenesis, parasympathetic innervation, and epithelial proliferation in salivary glands of embryonic Kl-/- mice. The ERK inhibitor U0126 specifically inhibited neuronal substance-induced epithelial bud formation in the embryonic salivary gland. RNA-seq profiling analysis revealed that the expression of fibroblast growth factors/fibroblast growth factors (FGFs/FGFRs) and their receptors was significantly regulated by SP/NPY treatment in the embryonic salivary gland (E15). The FGFR inhibitor BGJ389 inhibited new branching formation induced by SP and NPY treatment and ERK1/2 expression. These results showed that aging may affect virtually the development of salivary gland by neuronal dysfunction. The neuropeptides SP/NPY induced embryonic salivary gland development through FGF/FGFR/ERK1/2-mediated signaling.
Collapse
Affiliation(s)
- Nguyen Khanh Toan
- Department of Pathology, School of DentistryChosun UniversityGwangjuRepublic of Korea
| | - Soo‐A Kim
- Department of Biochemistry, School of Oriental MedicineDongguk UniversityGyeongjuRepublic of Korea
| | - Sang‐Gun Ahn
- Department of Pathology, School of DentistryChosun UniversityGwangjuRepublic of Korea
| |
Collapse
|
2
|
Boi M, Demontis R, Isola M, Isola R, Loy F, Serra MP, Trucas M, Ekström J, Quartu M. The human major sublingual gland and its neuropeptidergic and nitrergic innervations. Ann Anat 2024; 255:152291. [PMID: 38821428 DOI: 10.1016/j.aanat.2024.152291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND What textbooks usually call the sublingual gland in humans is in reality a tissue mass of two types of salivary glands, the anteriorly located consisting of a cluster of minor sublingual glands and the posteriorly located major sublingual gland with its outlet via Bartholin's duct. Only recently, the adrenergic and cholinergic innervations of the major sublingual gland was reported, while information regarding the neuropeptidergic and nitrergic innervations is still lacking. METHODS Bioptic and autoptic specimens of the human major sublingual gland were examined by means of immunohistochemistry for the presence of vasoactive intestinal peptide (VIP)-, neuropeptide Y (NPY)-, substance P (SP)-, calcitonin gene related-peptide (CGRP)-, and neuronal nitric oxide synthase (nNOS)-labeled neuronal structures. RESULTS As to the neuropeptidergic innervation of secretory cells (here in the form of mucous tubular and seromucous cells), the findings showed many VIP-containing nerves, few NPY- and SP-containing nerves and a lack of CGRP-labeled nerves. As to the neuropeptidergic innervation of vessels, the number of VIP-containing nerves was modest, while, of the other neuropeptide-containing nerves under study, only few (SP and CGRP) to very few (NPY) nerves were observed. As to the nitrergic innervation, nNOS-containing nerves were very few close to secretory cells and even absent around vessels. CONCLUSION The various innervation patterns may suggest potential transmission mechanisms involved in secretory and vascular responses of the major sublingual gland.
Collapse
Affiliation(s)
- Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Legal Medicine Division ARNAS Brotzu, Cagliari, Italy
| | - Michela Isola
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Raffaella Isola
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy
| | - Jörgen Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 13, Box 431, Göteborg 40530, Sweden
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA) 09042, Italy.
| |
Collapse
|
3
|
Shang YF, Shen YY, Zhang MC, Lv MC, Wang TY, Chen XQ, Lin J. Progress in salivary glands: Endocrine glands with immune functions. Front Endocrinol (Lausanne) 2023; 14:1061235. [PMID: 36817607 PMCID: PMC9935576 DOI: 10.3389/fendo.2023.1061235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
The production and secretion of saliva is an essential function of the salivary glands. Saliva is a complicated liquid with different functions, including moistening, digestion, mineralization, lubrication, and mucosal protection. This review focuses on the mechanism and neural regulation of salivary secretion, and saliva is secreted in response to various stimuli, including odor, taste, vision, and mastication. The chemical and physical properties of saliva change dynamically during physiological and pathophysiological processes. Moreover, the central nervous system modulates salivary secretion and function via various neurotransmitters and neuroreceptors. Smell, vision, and taste have been investigated for the connection between salivation and brain function. The immune and endocrine functions of the salivary glands have been explored recently. Salivary glands play an essential role in innate and adaptive immunity and protection. Various immune cells such as B cells, T cells, macrophages, and dendritic cells, as well as immunoglobins like IgA and IgG have been found in salivary glands. Evidence supports the synthesis of corticosterone, testosterone, and melatonin in salivary glands. Saliva contains many potential biomarkers derived from epithelial cells, gingival crevicular fluid, and serum. High level of matrix metalloproteinases and cytokines are potential markers for oral carcinoma, infectious disease in the oral cavity, and systemic disease. Further research is required to monitor and predict potential salivary biomarkers for health and disease in clinical practice and precision medicine.
Collapse
Affiliation(s)
- Yu Feng Shang
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yi Yang Shen
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Meng Chen Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tong Ying Wang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xue Qun Chen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
- *Correspondence: Jun Lin,
| |
Collapse
|
4
|
Muacevic A, Adler JR, Chaiyamoon A, Iwanaga J, Tubbs RS. The Parasympathetic Root of the Submandibular Ganglion: A Review. Cureus 2023; 15:e33775. [PMID: 36798624 PMCID: PMC9925356 DOI: 10.7759/cureus.33775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
The submandibular ganglion is a small fusiform-shaped cluster of cell bodies of the parasympathetic nervous system. Parasympathetic innervation of the submandibular gland is not only responsible for the secretion of saliva, but it also plays a main role in the development and regeneration of the gland. The parasympathetic root of the submandibular ganglion or the posterior branch of the lingual nerve to the submandibular ganglion is one of three roots of the submandibular ganglion. Using standard search engines (PubMed, Google), papers in English discussing the anatomy, embryology, variations, and clinical significance of the parasympathetic root of the submandibular ganglion were reviewed.
Collapse
|
5
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Kawashima M, Yajima T, Tachiya D, Kokubun S, Ichikawa H, Sato T. Parasympathetic neurons in the human submandibular ganglion. Tissue Cell 2021; 70:101496. [PMID: 33517097 DOI: 10.1016/j.tice.2021.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
The submandibular ganglion (SMG) contains parasympathetic neurons which innervate the submandibular gland. In this study, immunohistochemistry for vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), choline acetyltransferase (ChAT), dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2) was performed on the human SMG. In the SMG, 17.5 % and 8.9 % of parasympathetic neurons were immunoreactive for VIP and TRPV2, respectively. SMG neurons mostly contained ChAT- and DBH-immunoreactivity. In addition, subpopulations of SMG neurons were surrounded by VIP (69.6 %)-, TRPV2 (54.4 %)- and DBH (9.5 %)-immunoreactive (-ir) nerve fibers. SMG neurons with pericellular VIP- and TRPV2-ir nerve fibers were significantly larger than VIP- and TRPV2-ir SMG neurons, respectively. Other neurochemical substances were rare in the SMG. In the human submandibular gland, TRPV1- and TRPV2-ir nerve fiber profiles were seen around blood vessels. Double fluorescence method also demonstrated that TRPV2-ir nerve fiber profiles were located around myoepithelial and acinar cells in the submandibular gland. VIP and TRPV2 are probably expressed by both pre- and post-ganglionic neurons innervating the submandibular and sublingual glands. VIP, DBH and TRPV2 may have functions about regulation of salivary components in the salivary glands and neuronal activity in the SMG.
Collapse
Affiliation(s)
- Mutsuko Kawashima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
7
|
Ishikawa Y, Pieczonka TD, Bragiel-Pieczonka AM, Seta H, Ohkuri T, Sasanuma Y, Nonaka Y. Long-Term Oral Administration of LLHK, LHK, and HK Alters Gene Expression Profile and Restores Age-Dependent Atrophy and Dysfunction of Rat Salivary Glands. Biomedicines 2020; 8:biomedicines8020038. [PMID: 32093221 PMCID: PMC7168239 DOI: 10.3390/biomedicines8020038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Xerostomia, also known as dry mouth, is caused by a reduction in salivary secretion and by changes in the composition of saliva associated with the malfunction of salivary glands. Xerostomia decreases quality of life. In the present study, we investigated the effects of peptides derived from β-lactoglobulin C on age-dependent atrophy, gene expression profiles, and the dysfunction of salivary glands. Long-term oral administration of Leu57-Leu58-His59-Lys60 (LLHK), Leu58-His59-Lys60 (LHK) and His59-Lys60 (HK) peptides induced salivary secretion and prevented and/or reversed the age-dependent atrophy of salivary glands in older rats. The transcripts of 78 genes were upregulated and those of 81 genes were downregulated by more than 2.0-fold (p ≤ 0.05) after LHK treatment. LHK upregulated major salivary protein genes such as proline-rich proteins (Prpmp5, Prb3, Prp2, Prb1, Prp15), cystatins (Cst5, Cyss, Vegp2), amylases (Amy1a, Amy2a3), and lysozyme (Lyzl1), suggesting that LLHK, LHK, and HK restored normal salivary function. The AP-2 transcription factor gene (Tcfap2b) was also induced significantly by LHK treatment. These results suggest that LLHK, LHK, and HK-administration may prevent and/or reverse the age-dependent atrophy and functional decline of salivary glands by affecting gene expression.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan; (T.D.P.); (A.M.B.-P.)
- Correspondence: or ; Tel.: +80-3928-9628
| | - Tomasz D Pieczonka
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan; (T.D.P.); (A.M.B.-P.)
| | - Aneta M Bragiel-Pieczonka
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan; (T.D.P.); (A.M.B.-P.)
| | - Harumichi Seta
- Suntory Global Innovation Center Ltd., Suntory World Research Center, 8-1-1 Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (H.S.); (T.O.); (Y.S.); (Y.N.)
| | - Tadahiro Ohkuri
- Suntory Global Innovation Center Ltd., Suntory World Research Center, 8-1-1 Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (H.S.); (T.O.); (Y.S.); (Y.N.)
| | - Yumi Sasanuma
- Suntory Global Innovation Center Ltd., Suntory World Research Center, 8-1-1 Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (H.S.); (T.O.); (Y.S.); (Y.N.)
| | - Yuji Nonaka
- Suntory Global Innovation Center Ltd., Suntory World Research Center, 8-1-1 Seika-cho, Soraku-gun, Kyoto 619-0284, Japan; (H.S.); (T.O.); (Y.S.); (Y.N.)
| |
Collapse
|
8
|
Culp DJ, Zhang Z, Evans RL. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca 2+ pool. Pflugers Arch 2020; 472:385-403. [PMID: 31932898 DOI: 10.1007/s00424-020-02348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 μM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.
Collapse
Affiliation(s)
- David J Culp
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Oral Biology, UF College of Dentistry, P.O. Box 100424, Gainesville, FL, 32610-3003, USA.
| | - Z Zhang
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - R L Evans
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Unilever Research & Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| |
Collapse
|
9
|
Loy F, Serra MP, Boi M, Isola R, Ekström J, Quartu M. Tyrosine-hydroxylase, dopamine β-hydroxylase and choline acetyltransferase-like immunoreactive fibres in the human major sublingual gland. Arch Oral Biol 2019; 109:104571. [PMID: 31586907 DOI: 10.1016/j.archoralbio.2019.104571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the innervation of the major sublingual gland by means of immunohistochemistry. DESIGN Bioptic and autoptic specimens of the major sublingual gland of humans were examined for the presence of immunoreactivity to tyrosine hydroxylase and dopamine-β-hydroxylase, on one hand, and choline acetyltransferase, on the other, to indicate adrenergic and cholinergic nerves, respectively. RESULTS Acini and ducts were supplied by both divisions of the autonomic nervous system. CONCLUSIONS Mucous and seromucous cells of the human major sublingual glands may respond with secretion not only to parasympathetic activity but also to sympathetic activity. The major sublingual gland is therefore a potential contributor to the mucin secretion recently reported in the literature in response to high sympathetic activity during physical exercise.
Collapse
Affiliation(s)
- Francesco Loy
- Section of Cytomorphology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato CA, Italy.
| | - Maria Pina Serra
- Section of Cytomorphology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato CA, Italy.
| | - Marianna Boi
- Section of Cytomorphology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato CA, Italy.
| | - Raffaella Isola
- Section of Cytomorphology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato CA, Italy.
| | - Jörgen Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 13, Box 431, 405 30 Göteborg, Sweden.
| | - Marina Quartu
- Section of Cytomorphology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato CA, Italy.
| |
Collapse
|
10
|
Mohandoss AA, Thavarajah R. Salivary Flow Alteration in Patients Undergoing Treatment for Schizophrenia: Disease-Drug-Target Gene/Protein Association Study for Side-effects. J Oral Biol Craniofac Res 2019; 9:286-293. [PMID: 31289718 PMCID: PMC6593211 DOI: 10.1016/j.jobcr.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salivary flow alteration (SA), is a known unwarranted effect of schizophrenic medications. It manifest either as reduced (xerostomia) or increased (sialorrhea) SA, among treated schizophrenic patients. It is believed that the SA is due to action of the drugs/disease process involving the muscarinic receptor-3 to process acetyl choline, the common neurotransmitter. The genetic mediation behind the SA in such patients remains largely unexplored. We aimed to address the same by using curated literary databases to identify such relationship, if any existed. MATERIAL AND METHODS Curated databases of Gene-Disease Association, www.DisGeNet.org and www.networkanalyst.ca were effectively used to identify the probable genes, strength of association and the drug-genes pathway that could be possibly be involved. The genes associated with schizophrenia and SA were analyzed in detail. Protein-Protein interaction (PPI) network proven experimentally in humans were used to identify the missing or unreported links. RESULTS In all 28 genes associated with schizophrenia were linked to SA. The genetic network of schizophrenia and xerostomia involved FGFR2 gene prominently and network module was statistically significant (P = 9.87*10-8) was achieved that had xerostomia as a node, while schizophrenia (P = 0.025) had statistical significance. Sialorrhea had no statistical significance (P = 0.555). When schizophrenia and sialorrhea connections were analyzed for genetic interaction, only gene GCH1 emerged. On combining the three disease entities, the association of TAC1 gene with sialorrhea was also identified. Using PPI, the coordination of CHRM3, TAC1 and GPRASP1 gene were identified. This network involved several genes that has significant influence on calcium signaling pathway (P = 7.74*10-16), cholingeric synapse(P = 6 × 10-4), salivary secretion(P = 4.38*10-3), endocytosis(P = 8.23*10-4), TGFβ signaling pathway(P = 0.0031), gap junction (P = 4.08*10-3) and glutamergic synapse(P = 6.4*10-3). The involvement of G-receptor signaling protein product, GNAQ was established. DISCUSSION AND CONCLUSION The possible genetic pathway of SA in schizophrenic patients are discussed in light of pharmacotherapeutics. Using the knowledge effectively would help to increase the quality of life of schizophrenic besides increasing the understanding to use saliva as a biomarker of prognosis of schizophrenia and its drug effects.
Collapse
Affiliation(s)
- Anusa Arunachalam Mohandoss
- Dept of Psychiatry, Shri Satya Sai Medical College and Research Institute, Affiliated to Shri Balaji Vidyapeeth, Ammapettai, Kanchipuram, India
| | - Rooban Thavarajah
- Marundeeshwara Oral Pathology Services and Analytics, B-1, Mistral Apartments, Wipro Street, Shollinganallur, Chennai, 600 119, India
| |
Collapse
|
11
|
Kondo Y, Melvin JE, Catalan MA. Physiological cAMP-elevating secretagogues differentially regulate fluid and protein secretions in mouse submandibular and sublingual glands. Am J Physiol Cell Physiol 2019; 316:C690-C697. [PMID: 30840492 DOI: 10.1152/ajpcell.00421.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying the functional differences in sympathetic and parasympathetic regulation of the major salivary glands have received little attention. The acute effects of parasympathetic muscarinic (carbachol)-dependent and combined parasympathetic-dependent plus cAMP-dependent pathways on fluid secretion rates, ion composition, and protein content were assessed using a newly developed ex vivo preparation that allows the simultaneous perfusion of the mouse submandibular (SMGs) and sublingual glands (SLGs). Our results confirm that the muscarinic-dependent pathway accounts for the bulk of salivation in SMGs and SLGs, whereas costimulation with a cAMP-increasing agent (forskolin, isoproterenol, or vasoactive intestinal peptide) did not increase the flow rate. Costimulation with carbachol plus the β-adrenergic agonist isoproterenol decreased the concentration of NaCl and produced a substantial increase in the protein and Ca2+ content of SMG but not SLG saliva, consistent with a sparse sympathetic innervation of the SLGs. On the other hand, forskolin, which bypasses receptors to increase intracellular cAMP by directly activating the enzyme adenylate cyclase, enhanced the secretion of protein and Ca2+ by both the SMGs and SLGs. In contrast, isoproterenol and vasoactive intestinal peptide specifically stimulated protein secretion in SMG and SLG salivas, respectively. In summary, cAMP-dependent signaling does not play a major role in the stimulation of fluid secretion in SMGs and SLGs, whereas each cAMP-increasing agonist behaves differently in a gland-specific manner suggesting differential expression of G protein-coupled receptors in the epithelial cells of SMGs and SLGs.
Collapse
Affiliation(s)
- Yusuke Kondo
- Secretory Mechanisms and Dysfunction Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland.,Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University , Fukuoka , Japan
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| | - Marcelo A Catalan
- Secretory Mechanisms and Dysfunction Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland.,Facultad de Ciencias de la Salud, Universidad Arturo Prat , Iquique , Chile
| |
Collapse
|
12
|
Isola M, Ekström J, Isola R, Loy F. Melatonin release by exocytosis in the rat parotid gland. J Anat 2019; 234:338-345. [PMID: 30536666 PMCID: PMC6365479 DOI: 10.1111/joa.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
- Institute of Neuroscience and PhysiologyDepartment of PharmacologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| |
Collapse
|
13
|
Pedersen AML, Sørensen CE, Proctor GB, Carpenter GH, Ekström J. Salivary secretion in health and disease. J Oral Rehabil 2018; 45:730-746. [PMID: 29878444 DOI: 10.1111/joor.12664] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Saliva is a complex fluid produced by 3 pairs of major salivary glands and by hundreds of minor salivary glands. It comprises a large variety of constituents and physicochemical properties, which are important for the maintenance of oral health. Saliva not only protects the teeth and the oropharyngeal mucosa, it also facilitates articulation of speech, and is imperative for mastication and swallowing. Furthermore, saliva plays an important role in maintaining a balanced microbiota. Thus, the multiple functions provided by saliva are essential for proper protection and functioning of the body as a whole and for the general health. A large number of diseases and medications can affect salivary secretion through different mechanisms, leading to salivary gland dysfunction and associated oral problems, including xerostomia, dental caries and fungal infections. The first part of this review article provides an updated insight into our understanding of salivary gland structure, the neural regulation of salivary gland secretion, the mechanisms underlying the formation of saliva, the various functions of saliva and factors that influence salivary secretion under normal physiological conditions. The second part focuses on how various diseases and medical treatment including commonly prescribed medications and cancer therapies can affect salivary gland structure and function. We also provide a brief insight into how to diagnose salivary gland dysfunction.
Collapse
Affiliation(s)
- A M L Pedersen
- Oral Medicine, Oral Pathology & Clinical Oral Physiology, University of Copenhagen, Copenhagen, Denmark
| | - C E Sørensen
- Oral Biochemistry, Cariology & Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G B Proctor
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, UK
| | - G H Carpenter
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, UK
| | - J Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Martin J, Kagerbauer SM, Gempt J, Podtschaske A, Hapfelmeier A, Schneider G. Oxytocin levels in saliva correlate better than plasma levels with concentrations in the cerebrospinal fluid of patients in neurocritical care. J Neuroendocrinol 2018; 30:e12596. [PMID: 29611254 DOI: 10.1111/jne.12596] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/26/2018] [Indexed: 01/25/2023]
Abstract
In the converging fields of neuroendocrinology and behavioural neuroscience, the interaction between peripheral secretion and central release of oxytocin in humans has not yet been comprehensively assessed. As the human brain is not directly accessible and as the collection of human cerebrospinal fluid (CSF) usually requires invasive procedures, easier accessible compartments such as blood or saliva attract increasing attention. In this study, we prospectively determined oxytocin concentrations in the three compartments plasma, CSF and saliva of fifty critically ill patients with neurological and neurosurgical diseases. All samples per patient were collected concomitantly. Oxytocin was measured by a highly sensitive and specific radioimmunoassay. Strength of correlation was assessed by the Spearman rank correlation coefficient. Correlation analyses revealed modest to strong correlations for oxytocin between the saliva and CSF compartments while predominantly weak correlations were found between the CSF and plasma as well as between the plasma and saliva compartments. In conclusion, we demonstrated modest to strong correlations between the saliva and CSF compartment suggesting that saliva oxytocin may help to assess CSF oxytocin levels. In contrast, plasma oxytocin failed to correspond well with CSF oxytocin levels as predominantly weak correlations were found between the CSF and plasma as well as between the plasma and saliva compartments which are unlikely to have a biological relevance. Further research is needed to clarify to what extent saliva oxytocin may serve as a biomarker reflecting brain oxytocin activity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jan Martin
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Simone M Kagerbauer
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Armin Podtschaske
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Informatics, Statistics und Epidemiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Gerhard Schneider
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
15
|
Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the Control of Its Secretion. Dysphagia 2017. [DOI: 10.1007/174_2017_143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|