1
|
Eisa EFM, Ezzeldein SAM, Mohammed HA, Abdallah AA, Ghonimi WAM, Abd El Raouf M. Comparison of the therapeutic effect of platelet-rich plasma and injectable platelet-rich fibrin on testicular torsion/detorsion injury in rats. Sci Rep 2024; 14:18045. [PMID: 39103420 PMCID: PMC11300838 DOI: 10.1038/s41598-024-67704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Testicular torsion is a common disorder in males and results in blockage of testicular circulation with subsequent damage of testicular germ cells. The current work aimed to compare the therapeutic effect of platelet-rich plasma (PRP) and injectable platelet-rich fibrin (i-PRF) on torsion/detorsion (T/D) injury in rats. Forty mature male Wister rats were arranged into 4 groups; (1) Control, (2) T/D, (3) T/D + PRP, and (4) T/D+ i-PRF. The right testis was twisting 1080° clockwise for 3 h in groups 2, 3 and 4, then 10 μl of PRP or i-PRF was injected intra-testicular 3 h after detorsion in groups 3 and 4, respectively. After 30 days postoperatively, the semen quality and hormonal assay were improved in PRP and i-PRF-treated groups with superiority of i-PRF (P < 0.001). High significance of Catalase, Glutathione Peroxidase (GPx), Superoxide Dismutase, Interleukin-1β (IL-1β), Caspase-3 and Tumor necrosis factor-α (TNF-α) was reported in treated rats with PRP and i-PRF (P < 0.001) with superiority to i-PRF-treated rats (P < 0.001). Testicular histoarchitectures were improved in PRP and i-PRF-treated rats with superiority of i-PRF-treated rats. It was concluded that PRP and i-PRF have regenerative efficacy on testicular damage after induced T/D injury with a superior efficacy of i-PRF.
Collapse
Affiliation(s)
- Eslam F M Eisa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Shimaa A M Ezzeldein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa A Abdallah
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A M Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mustafa Abd El Raouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Imani A, Panahipour L, dos Santos Sanches N, Wang L, Gruber R. Platelet-Rich Fibrin Increases CXCL8 Expression in Gingival Fibroblasts. Biomedicines 2024; 12:1326. [PMID: 38927533 PMCID: PMC11201793 DOI: 10.3390/biomedicines12061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Platelet-rich fibrin (PRF), the coagulated plasma of fractionated blood, is widely used to support tissue regeneration in dentistry, and the underlying cellular and molecular mechanisms are increasingly being understood. Periodontal connective tissues steadily express CXCL8, a chemokine that attracts granulocytes and lymphocytes, supporting homeostatic immunity. Even though PRF is considered to dampen inflammation, it should not be ruled out that PRF increases the expression of CXCL8 in gingival fibroblasts. To test this hypothesis, we conducted a bioassay where gingival fibroblasts were exposed to PRF lysates and the respective serum. We show here that PRF lysates and, to a lesser extent, PRF serum increased the expression of CXCL8 by the gingival fibroblasts, as confirmed by immunoassay. SB203580, the inhibitor of p38 mitogen-activated protein kinase, reduced CXCL8 expression. Consistently, PRF lysates and, to a weaker range, the PRF serum also caused phosphorylation of p38 in gingival fibroblasts. Assuming that PRF is a rich source of growth factors, the TGF-β receptor type I kinase inhibitor SB431542 decreased the PRF-induced expression and translation of CXCL8. The findings suggest that PRF lysates and the respective serum drive CXCL8 expression by activating TGF-β and p38 signaling in gingival fibroblasts.
Collapse
Affiliation(s)
- Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.I.); (L.P.); (N.d.S.S.); (L.W.)
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.I.); (L.P.); (N.d.S.S.); (L.W.)
| | - Natalia dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.I.); (L.P.); (N.d.S.S.); (L.W.)
- Department of Diagnosis and Surgery, Araçatuba Dental School of Sao Paulo, Sao Paulo 16015-050, Brazil
| | - Lei Wang
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.I.); (L.P.); (N.d.S.S.); (L.W.)
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.I.); (L.P.); (N.d.S.S.); (L.W.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Shah R, M G T, Thomas R, A B TK. Advanced platelet rich fibrin demonstrates improved osteogenic induction potential in human periodontal ligament cells, growth factor production and mechanical properties as compared to leukocyte and platelet fibrin and injectable platelet rich fibrin. Oral Maxillofac Surg 2024; 28:413-424. [PMID: 37269407 DOI: 10.1007/s10006-023-01160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVES This cross-sectional invitro research aimed to compare and contrast the macroscopic and microscopic, mechanical and biochemical features of leukocyte-rich platelet-rich fibrin, advanced platelet-rich fibrin, and injectable platelet-rich fibrin. MATERIALS AND METHODS In all, 150 samples were taken from males aged 18 to 25 with good systemic health (n = 50 each for i-PRF, A-PRF, and L-PRF). The samples were assessed for clot length, clot width, membrane length and width. Microscopic parameters assessed were the distribution of cells and fibrin structure. Mechanical tests were performed for tensile strength using a universal testing machine and growth factor analysis was performed for platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)- β on Days 1, 3 and 7 using commercially available ELISA kits. The osteogenic potential was analyzed in a culture of human periodontal ligament cells for 21 days using cell viability assay, alkaline phosphatase formation and alizarin red staining for mineralization. RESULTS L-PRF demonstrates statistically superior clot length, width, weight, membrane length, width and weight in comparison to A-PRF (p < 0.05). L-PRF demonstrates a denser fibrin structure in comparison to A-PRF and i-PRF (p < 0.05). The cells in L-PRF are most commonly situated in the proximal of the clot where as they are distributed in the proximal and middle aspect for A-PRF(p < 0.05). A-PRF demonstrates the highest tensile strength followed by L-PRF (p < 0.05). When growth factor release was evaluated, A-PRF showed noticeably increased release of all growth factors, namely PDGF-BB, TGF-ß, and VEGF, in comparison to i-PRF and L-PRF (p < 0.05). On days 7 and 14, the cell viability of human periodontal ligament cells in co-culture with A-PRF was statistically substantially greater than that of L-PRF and i-PRF (p < 0.05). Alkaline phosphatase levels were statistically substantially higher in A-PRF, followed by i-PRF and L-PRF on days 14 and 21 (p < 0.05). After 21 days of culture, A-PRF treated cultures had much more Alizarin Red staining than L-PRF and i-PRF cultures did (p < 0.05). CONCLUSION It was determined that although L-PRF exhibits greater size and weight in comparison to A-PRF and i-PRF, A-PRF has superior mechanical properties, increased growth factor releases of TGF-b, PDGF-BB, and VEGF as well as superior cell viability, alkaline phosphatase production, and mineralization on human periodontal ligament cells. CLINICAL RELEVANCE Based on these findings, A-PRF can be recommended for improved delivery of growth factors and osteogenesis whereas L-PRF is better-suited for applications relying on the size of membrane.
Collapse
Affiliation(s)
- Rucha Shah
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004.
| | - Triveni M G
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| | - Raison Thomas
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| | - Tarun Kumar A B
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| |
Collapse
|
4
|
Miron RJ, Gruber R, Farshidfar N, Sculean A, Zhang Y. Ten years of injectable platelet-rich fibrin. Periodontol 2000 2024; 94:92-113. [PMID: 38037213 DOI: 10.1111/prd.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
The use of platelet-rich fibrin (PRF) has seen widespread advantages over platelet-rich plasma (PRP) in many fields of medicine. However, until 2014, PRF remained clinically available only in its solid clotted form. Modifications to centrifugation protocols and tube technology have led to the development of a liquid injectable version of PRF (i-PRF). This narrative review takes a look back at the technological developments made throughout the past decade and further elaborates on their future clinical applications. Topics covered include improvements in isolation techniques and protocols, ways to further concentrate i-PRF, and the clinical impact and relevance of cooling i-PRF. Next, various uses of i-PRF are discussed, including its use in regenerative periodontology, implantology, endodontics, temporomandibular joint injections, and orthodontic tooth movement. Furthermore, various indications in medicine are also covered, including its use in sports injuries and osteoarthritis of various joints, treatment of diabetic ulcers/wound care, and facial esthetics and hair regrowth. Finally, future applications are discussed, mainly its use as a drug delivery vehicle for small biomolecules, such as growth factors, antibiotics, exosomes, and other medications that may benefit from the controlled and gradual release of biomolecules over time.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Nima Farshidfar
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
de Lima Barbosa R, Stellet Lourenço E, de Azevedo dos Santos JV, Rodrigues Santiago Rocha N, Mourão CF, Alves GG. The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration-A Scoping Review of In Vitro Evidence. J Funct Biomater 2023; 14:503. [PMID: 37888168 PMCID: PMC10607127 DOI: 10.3390/jfb14100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet-rich fibrin (PRF) is a second-generation blood concentrate that serves as an autologous approach for both soft and hard tissue regeneration. It provides a scaffold for cell interaction and promotes the local release of growth factors. PRF has been investigated as an alternative to bone tissue therapy, with the potential to expedite wound healing and bone regeneration, though the mechanisms involved are not yet fully understood. This review aims to explore the in vitro evidence of PRF's effects on the behavior of mineralizing cells related to bone tissue regeneration. A systematic electronic search was conducted up to August 2023, utilizing three databases: PubMed, Web of Science, and Scopus. A total of 76 studies were selected, which presented in vitro evidence of PRF's usefulness, either alone or in conjunction with other biomaterials, for bone tissue treatment. PRF membranes' influence on the proliferation, differentiation, and mineralization of bone cells is linked to the constant release of growth factors, resulting in changes in crucial markers of bone cell metabolism and behavior. This further reinforces their therapeutic potential in wound healing and bone regeneration. While there are some notable differences among the studies, the overall results suggest a positive effect of PRF on cell proliferation, differentiation, mineralization, and a reduction in inflammation. This points to its therapeutic potential in the field of regenerative medicine. Collectively, these findings may help enhance our understanding of how PRF impacts basic physiological processes in bone and mineralized tissue.
Collapse
Affiliation(s)
- Renata de Lima Barbosa
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Emanuelle Stellet Lourenço
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Julya Vittoria de Azevedo dos Santos
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Neilane Rodrigues Santiago Rocha
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| |
Collapse
|
6
|
Farshidfar N, Jafarpour D, Firoozi P, Sahmeddini S, Hamedani S, de Souza RF, Tayebi L. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:89-123. [PMID: 35368368 PMCID: PMC8971935 DOI: 10.1016/j.jdsr.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
Background Ongoing research in the dental field has begun to focus on the use of injectable platelet-rich fibrin (I-PRF) as a regenerative tool with the potential to prompt tissue regeneration. In this regard, this systematic scoping review aimed to collect, map, and appraise the in vitro and in vivo studies regarding the role of I-PRF in or soft and hard tissue regeneration in relation to oral and maxillofacial structures. Methods A systematic electronic search of Medline, Scopus, Web of Science, and Embase databases was performed from 2000 to December 2021 using a combination of keywords. All in vitro and in vivo studies, written in English and concerning the potential role of I-PRF in regenerative dentistry were considered. Results In total, 18 in vitro studies, 5 animal studies, 6 case reports, and 31 clinical studies have evaluated the effect of I-PRF on oral and maxillofacial soft and hard tissue regeneration. The investigated studies verified the anti-inflammatory, anti-microbial efficacy and the positive effects of I-PRF application for wound, periodontal, bone, cartilage, and pulp regeneration, as well as acceleration in tooth movement during orthodontic treatment. Conclusions Current literature approves the feasibility of I-PRF application as a promising regenerative adjunct to dental procedures.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dana Jafarpour
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Parsa Firoozi
- Student Research Committee, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sarina Sahmeddini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences,Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
7
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [DOI: https:/doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
8
|
Feng M, Wang Y, Wei Y, Zhang X, Xiao L, Gong Z, Fujioka-Kobayashi M, Sculean A, Miron RJ, Froum S, Zhang Y. Preparation, characterization and biological properties of a novel bone block composed of platelet rich fibrin and a deproteinized bovine bone mineral. FUNDAMENTAL RESEARCH 2022; 2:321-328. [PMID: 38933158 PMCID: PMC11197745 DOI: 10.1016/j.fmre.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 01/12/2023] Open
Abstract
Alveolar bone defects caused by tooth loss often lead to challenges in implant dentistry, with a need for development of optimal bone biomaterials to predictably rebuild these tissues. To address this problem, we fabricated a novel bone block using platelet-rich fibrin (PRF) and Deproteinized Bovine Bone Mineral (DBBM), and characterized their mechanical and biological properties. The bone block was prepared by mixing DBBM, Liquid-PRF, and Solid-PRF fragments in various combinations as follows: (1) BLOCK-1 made with Solid-PRF fragments + DBBM, (2) BLOCK-2 made with Liquid-PRF + DBBM, (3) BLOCK-3 made with Solid-PRF fragments + Liquid-PRF + DBBM. The time for solidification and the degradation properties were subsequently recorded. Scanning electron microscopy (SEM) and tensile tests were carried out to investigate the microstructure and mechanical properties of each block. The bioactivity of the three groups towards osteoblast differentiation was also evaluated by culturing cells with the conditioned medium from each of the three groups including cell proliferation assay, cell migration assay, alkaline phosphatase (ALP) staining, and alizarin red staining (ARS), as well as by real-time PCR for genes encoding runt-related transcription factor 2 (RUNX2), ALP, collagen type I alpha1(COL1A1) and osteocalcin (OCN). BLOCK-3 made with Solid-PRF fragments + Liquid-PRF + DBBM had by far the fastest solidification period (over a 10-fold increase) as well as the most resistance to degradation. SEM and tensile tests also revealed that the mechanical properties of BLOCK-3 were superior in strength when compared to all other groups and further induced the highest osteoblast migration and osteogenic differentiation confirmed by ALP, ARS and real-time PCR. PRF bone blocks made through the combination of Solid-PRF fragments + Liquid-PRF + DBBM had the greatest mechanical and biological properties when compared to either used alone. Future clinical studies are warranted to further support the clinical application of PRF bone blocks in bone regeneration procedures.
Collapse
Affiliation(s)
- Mengge Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Yan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Xiaoxin Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | - Masako Fujioka-Kobayashi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Scott Froum
- Clinical Assistant Professor State University of New York, Stony Brook Department of Periodontology, Private Practice New York, New York, USA
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [PMID: 35527147 PMCID: PMC9295636 DOI: 10.1016/j.msec.2021.112557] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Among all the biomaterials introduced in the field of bone tissue engineering, injectable platelet-rich fibrin (I-PRF) has recently gained considerable attention. I-PRF, as a rich source of biologically active molecules, is a potential candidate which can be easily obtained in bedside and constitutes several biological factors which can result in higher anti-bacterial, anti-inflammatory and regenerative capabilities. According to the studies evaluating the osteogenic efficacy of I-PRF, this biomaterial has exhibited favorable outcomes in terms of adhesion, differentiation, migration, proliferation and mineralization potential of stem cells. In addition, the injectability and ease-of-applicability of this biomaterial has led to its various clinical applications in the oral and maxillofacial bone regeneration such as ridge augmentation, sinus floor elevation, cleft palate reconstruction and so on. Furthermore, to enhance the clinical performance of I-PRF, albumin gel-PRF as a long-lasting material for long-term utilization has been recently introduced with a gradual increase in growth factor release pattern. This review provides a comprehensive approach to better evaluate the applicability of I-PRF by separately appraising its performance in in-vitro, in-vivo and clinical situations. The critical approach of this review toward the different production protocols and different physical and biological aspects of I-PRF can pave the way for future studies to better assess the efficacy of I-PRF in bone regeneration.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dana Jafarpour
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021. [DOI: https://doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Shah R, Gowda TM, Thomas R, Kumar T. Second generation liquid platelet concentrates: A literature review. Curr Pharm Biotechnol 2021; 23:1315-1326. [PMID: 34425742 DOI: 10.2174/1389201022666210823102618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Liquid or injectable platelet rich fibrin (PRF) is a second-generation platelet concentrate which is completely autologous and free of external additives like bovine thrombin and calcium chloride. Additionally, it is the only one to be obtained in a liquid form among the second generation platelet concentrates. This allows for wide applications such as to maximize injections or mixing with biomaterials such as bone grafts or antibiotics. Since it was first introduced in 2015, several modifications of the original protocol have been proposed which aim at maximizing its biological and mechanical properties. This includes changes in centrifugation speed, time, and so on. The aim of this review is to summarize the various modifications of the injectable/liquid formation of PRF as well as to discuss the potential applications and future research direction.
Collapse
Affiliation(s)
- Rucha Shah
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Triveni M Gowda
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Raison Thomas
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Tarun Kumar
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| |
Collapse
|