1
|
Akinyemi OO, Čepl J, Keski-Saari S, Tomášková I, Stejskal J, Kontunen-Soppela S, Keinänen M. Derivative-based time-adjusted analysis of diurnal and within-tree variation in the OJIP fluorescence transient of silver birch. PHOTOSYNTHESIS RESEARCH 2023; 157:133-146. [PMID: 37382782 PMCID: PMC10485093 DOI: 10.1007/s11120-023-01033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
The JIP test, based on fast chlorophyll fluorescence (ChlF) kinetics and derived parameters, is a dependable tool for studying photosynthetic efficiency under varying environmental conditions. We extracted additional information from the whole OJIP and the normalized variable fluorescence (Vt) transient curve using first and second-order derivatives to visualize and localize points of landmark events. To account for light-induced variations in the fluorescence transient, we present a time-adjusted JIP test approach in which the derivatives of the transient curve are used to determine the exact timing of the J and I steps instead of fixed time points. We compared the traditional JIP test method with the time-adjusted method in analyzing fast ChlF measurements of silver birch (Betula pendula) in field conditions studying diurnal and within-crown variation. The time-adjusted JIP test method showed potential for studying ChlF dynamics, as it takes into account potential time shifts in the occurrence of J and I steps. The exact occurrence times of J and I steps and other landmark events coincided with the times of significant differences in fluorescence intensity. Chlorophyll fluorescence parameters were linearly related to photosynthetic photon flux density (PPFD) at different times of day, and the values obtained by the time-adjusted JIP test showed a stronger linear regression than the traditional JIP test. For fluorescence parameters having significant differences among different times of day and crown layers, the time-adjusted JIP test resulted in more clear differences than the traditional JIP test. Diurnal ChlF intensity data indicated that differences between the southern and northern provenance were only evident under low light conditions. Taken together, our results emphasize the potential relevance of considering the time domain in the analysis of the fast ChlF induction.
Collapse
Affiliation(s)
- Olusegun Olaitan Akinyemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland.
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia.
| | - Jaroslav Čepl
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| | - Ivana Tomášková
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Jan Stejskal
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
- Center for Photonics Sciences, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
2
|
Tenkanen A, Suprun S, Oksanen E, Keinänen M, Keski-Saari S, Kontunen-Soppela S. Strategy by latitude? Higher photosynthetic capacity and root mass fraction in northern than southern silver birch (Betula pendula Roth) in uniform growing conditions. TREE PHYSIOLOGY 2021; 41:974-991. [PMID: 33171495 DOI: 10.1093/treephys/tpaa148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Growth of northern trees is limited by short growing seasons. In multi-year trials, northern trees usually grow less than southern ones but can have higher gas exchange, whereas differences in biomass allocation and its relation to photosynthesis are less known. We characterized silver birch (Betula pendula Roth) provenances from southern (latitude 61°) and northern (latitude 67°) Finland in uniform chamber conditions. In a time-series experiment, we measured traits related to growth, biomass allocation and photosynthesis, and determined gas exchange responses to temperature and light. We found provenance differences in photosynthetic capacity and growth. The northern provenance allocated relatively more to roots, having a higher root mass fraction and lower shoot:root ratio than the southern provenance. On the other hand, the northern provenance had fewer leaves and lower total leaf dry weight (DW) than the southern provenance. The northern provenance attained higher rates of net photosynthesis (Anet) and higher stomatal conductance (gs) in all measured temperatures and higher photosynthesis at the optimum temperature (Aopt) than the southern provenance, but there was no difference in the optimum temperature of photosynthesis (Topt, 18.3 °C for the southern provenance vs 18.9 °C for the northern one). Photosynthetic light response curves showed no between-provenance differences. In a time-series, the northern provenance had higher Anet than the southern provenance, but gs was similar. The northern provenance had higher maximum quantum yield of photosystem II photochemistry (Fv/Fm) than the southern provenance. There were no differences between provenances in height, total plant DW, shoot DW, root DW or shoot mass fraction. Our results suggest that the provenances occupy a common thermal niche, or can at least relatively quickly acclimate to a common growth temperature. Thus, carbon assimilation of these northern trees may not be significantly affected by rising temperatures alone. In an equal photoperiod and optimal conditions, we found different one-season biomass accumulation strategies: southern trees grow with more leaves, while northern trees reach similar total assimilation (total DW, height) with more efficient photosynthetic capacity per leaf area (higher gas exchange, higher Fv/Fm) and relatively more investment in the below-ground fraction of the plant.
Collapse
Affiliation(s)
- Antti Tenkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, Joensuu 80101, Finland
| | - Sergei Suprun
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki PO Box 00014, Helsinki, Finland
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, Joensuu 80101, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, Joensuu 80101, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, Joensuu 80101, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
3
|
Possen BJHM, Rousi M, Keski‐Saari S, Silfver T, Kontunen‐Soppela S, Oksanen E, Mikola J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B. J. H. M. Possen
- Ecology Section Royal HaskoningDHV Larixplein 1 Eindhoven5616 VBThe Netherlands
| | - M. Rousi
- Vantaa Research Unit Natural Resources Institute Finland P.O. Box 18 Vantaa01301Finland
| | - S. Keski‐Saari
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - T. Silfver
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| | - S. Kontunen‐Soppela
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - E. Oksanen
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - J. Mikola
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| |
Collapse
|
4
|
Gossner MM, Beenken L, Arend K, Begerow D, Peršoh D. Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME COMMUNICATIONS 2021; 1:6. [PMID: 37938649 PMCID: PMC9723786 DOI: 10.1038/s43705-021-00004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
Plants can be severely affected by insect herbivores and phytopathogenic fungi, but interactions between these plant antagonists are poorly understood. We analysed the impact of feeding damage by the abundant herbivore Orchestes fagi on infection rates of beech (Fagus sylvatica) leaves with Petrakia liobae, an invasive plant pathogenic fungus. The fungus was not detected in hibernating beetles, indicating that O. fagi does not serve as vector for P. liobae, at least not between growing seasons. Abundance of the fungus in beech leaves increased with feeding damage of the beetle and this relationship was stronger for sun-exposed than for shaded leaves. A laboratory experiment revealed sun-exposed leaves to have thicker cell walls and to be more resistant to pathogen infection than shaded leaves. Mechanical damage significantly increased frequency and size of necroses in the sun, but not in shade leaves. Our findings indicate that feeding damage of adult beetles provides entry ports for fungal colonization by removal of physical barriers and thus promotes infection success by pathogenic fungi. Feeding activity by larvae probably provides additional nutrient sources or eases access to substrates for the necrotrophic fungus. Our study exemplifies that invasive pathogens may benefit from herbivore activity, which may challenge forest health in light of climate change.
Collapse
Affiliation(s)
- Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Zurich, Switzerland.
| | - Ludwig Beenken
- Forest Protection, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kirstin Arend
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Dominik Begerow
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Derek Peršoh
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany.
| |
Collapse
|
5
|
Rubtsov VV, Utkina IA. Response of Forest Phyllophagous Insects to Climate Change. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520070094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tenkanen A, Keski-Saari S, Salojärvi J, Oksanen E, Keinänen M, Kontunen-Soppela S. Differences in growth and gas exchange between southern and northern provenances of silver birch (Betula pendula Roth) in northern Europe. TREE PHYSIOLOGY 2020; 40:198-214. [PMID: 31860709 DOI: 10.1093/treephys/tpz124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Due to its ubiquity across northern latitudes, silver birch (Betula pendula Roth) is an attractive model species for studying geographical trait variation and acclimation capacity. Six birch provenances from 60 to 67°N across Finland were grown in a common garden and studied for provenance and genotype variation. We looked for differences in height growth, photosynthetic gas exchange and chlorophyll content index (CCI) and compared the gas exchange of early and late leaves on short and long shoots, respectively. The provenances stratified into southern and northern groups. Northern provenances attained less height growth increment and had higher stomatal conductance (gs) and lower intrinsic water-use efficiency (WUE, Anet/gs) than southern provenances, whereas net photosynthesis (Anet) or CCI did not show clear grouping. Short shoot leaves had lower gs and higher WUE than long shoot leaves in all provenances, but there was no difference in Anet between shoot types. The separation of the provenances into two groups according to their physiological responses might reflect the evolutionary history of B. pendula. Latitudinal differences in gas exchange and water use traits can have plausible consequences for global carbon and water fluxes in a warming climate.
Collapse
Affiliation(s)
- Antti Tenkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
7
|
Abstract
The availability of light within the tree canopy affects various leaf traits and leaf reflectance. We determined the leaf reflectance variation from 400 nm to 2500 nm among three canopy layers and cardinal directions of three genetically identical cloned silver birches growing at the same common garden site. The variation in the canopy layer was evident in the principal component analysis (PCA), and the influential wavelengths responsible for variation were identified using the variable importance in projection (VIP) based on partial least squares discriminant analysis (PLS-DA). Leaf traits, such as chlorophyll, nitrogen, dry weight, and specific leaf area (SLA), also showed significant variation among the canopy layers. We found a shift in the red edge inflection point (REIP) for the canopy layers. The canopy layers contribute to the variability in the reflectance indices. We conclude that the largest variation was among the canopy layers, whereas the differences among individual trees to the leaf reflectance were relatively small. This implies that within-tree variation due to the canopy layer should be taken into account in the estimation of intraspecific variation in the canopy reflectance.
Collapse
|
8
|
Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2326-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Koski TM, Laaksonen T, Mäntylä E, Ruuskanen S, Li T, Girón-Calva PS, Huttunen L, Blande JD, Holopainen JK, Klemola T. Do Insectivorous Birds use Volatile Organic Compounds from Plants as Olfactory Foraging Cues? Three Experimental Tests. Ethology 2015. [DOI: 10.1111/eth.12426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Toni Laaksonen
- Section of Ecology; Department of Biology; University of Turku; Turku Finland
| | - Elina Mäntylä
- Section of Ecology; Department of Biology; University of Turku; Turku Finland
| | - Suvi Ruuskanen
- Section of Ecology; Department of Biology; University of Turku; Turku Finland
| | - Tao Li
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | | | - Liisa Huttunen
- Section of Ecology; Department of Biology; University of Turku; Turku Finland
| | - James D. Blande
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - Jarmo K. Holopainen
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - Tero Klemola
- Section of Ecology; Department of Biology; University of Turku; Turku Finland
| |
Collapse
|
10
|
Maja MM, Kasurinen A, Holopainen T, Kontunen-Soppela S, Oksanen E, Holopainen JK. Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland. TREE PHYSIOLOGY 2015; 35:975-986. [PMID: 26093370 DOI: 10.1093/treephys/tpv052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Climate warming is having an impact on distribution, acclimation and defence capability of plants. We compared the emission rate and composition of volatile organic compounds (VOCs) from silver birch (Betula pendula (Roth)) provenances along a latitudinal gradient in a common garden experiment over the years 2012 and 2013. Micropropagated silver birch saplings from three provenances were acquired along a gradient of 7° latitude and planted at central (Joensuu 62°N) and northern (Kolari 67°N) sites. We collected VOCs emitted by shoots and assessed levels of herbivore damage of three genotypes of each provenance on three occasions at the central site and four occasions at the northern site. In 2012, trees of all provenances growing at the central site had higher total VOC emission rates than the same provenances growing at the northern site; in 2013 the reverse was true, thus indicating a variable effect of latitude. Trees of the southern provenance had lower VOC emission rates than trees of the central and northern provenances during both sampling years. However, northward or southward translocation itself had no significant effect on the total VOC emission rates, and no clear effect on insect herbivore damage. When VOC blend composition was studied, trees of all provenances usually emitted more green leaf volatiles at the northern site and more sesquiterpenes at the central site. The monoterpene composition of emissions from trees of the central provenance was distinct from that of the other provenances. In summary, provenance translocation did not have a clear effect in the short-term on VOC emissions and herbivory was not usually intense at the lower latitude. Our data did not support the hypothesis that trees growing at lower latitudes would experience more intense herbivory, and therefore allocate resources to chemical defence in the form of inducible VOC emissions.
Collapse
Affiliation(s)
- Mengistu M Maja
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | - Anne Kasurinen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | - Toini Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | | | - Elina Oksanen
- Department of Biology, University of Eastern Finland, PO Box 111, Joensuu, Finland
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| |
Collapse
|