1
|
Mo L, Zanella A, Squartini A, Ranzani G, Bolzonella C, Concheri G, Pindo M, Visentin F, Xu G. Anthropogenic vs. natural habitats: Higher microbial biodiversity pays the trade-off of lower connectivity. Microbiol Res 2024; 282:127651. [PMID: 38430888 DOI: 10.1016/j.micres.2024.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in β-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.
Collapse
Affiliation(s)
- Lingzi Mo
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Augusto Zanella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Andrea Squartini
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giulia Ranzani
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Cristian Bolzonella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giuseppe Concheri
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Massimo Pindo
- Fondazione Edmund Mach, San Michele all'Adige 38098, Italy.
| | - Francesca Visentin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy.
| | - Guoliang Xu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Song C, Spaak JW. Trophic tug-of-war: Coexistence mechanisms within and across trophic levels. Ecol Lett 2024; 27:e14409. [PMID: 38590122 DOI: 10.1111/ele.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Jurg W Spaak
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
3
|
Spaak JW, Ke P, Letten AD, De Laender F. Different measures of niche and fitness differences tell different tales. OIKOS 2022. [DOI: 10.1111/oik.09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jurg W. Spaak
- Dept of Ecology and Evolutionary Biology, Cornell Univ. Ithaca NY USA
| | - Po‐Ju Ke
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ. Taipei Taiwan
- Dept of Ecology&Evolutionary Biology, Princeton Univ. Princeton NJ USA
| | - Andrew D. Letten
- School of Biological Sciences, Univ. of Queensland Brisbane QLD Australia
| | - Frederik De Laender
- Univ. of Namur Namur Belgium
- Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Belgium
| |
Collapse
|
4
|
Su G, Wang Y, Ma B, Deng F, Lin D. Nanoscale zero-valent iron changes microbial co-occurrence pattern in pentachlorophenol-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129482. [PMID: 35785734 DOI: 10.1016/j.jhazmat.2022.129482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is a prominent nanomaterial for the remediation of organochlorine-contaminated soil and groundwater. However, a knowledge gap regarding the effects of the coexistence of nZVI and pollutants on soil microorganisms remains. Here, we studied the effects of nZVI on the microbial community structure, co-occurrence network, and keystone taxa in pentachlorophenol (PCP, a typical organochlorine pesticide) contaminated soils. The addition of nZVI (1000 mg/kg) had no obvious recovery effect on the microbial community structure of PCP-contaminated soil, but enhanced the connection and lowered the modularity of the microbial network. These changes were mainly present in the bacterial network rather than in the fungal or archaeal network. Moreover, the addition of nZVI increased the number of keystone taxa in the PCP-contaminated soil from 29 to 76. These keystone taxa are related to the degradation of organochlorine pollutants, carbon metabolism, and nitrogen metabolism and may thus be helpful in recovering soil ecological functions. These findings provide new insights into the interaction among nanomaterials, microorganisms, and pollutants.
Collapse
Affiliation(s)
- Gangping Su
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yanlong Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil, Water Resource, and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fucai Deng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wu B, Wang P, Devlin AT, She Y, Zhao J, Xia Y, Huang Y, Chen L, Zhang H, Nie M, Ding M. Anthropogenic Intensity-Determined Assembly and Network Stability of Bacterioplankton Communities in the Le'an River. Front Microbiol 2022; 13:806036. [PMID: 35602050 PMCID: PMC9114710 DOI: 10.3389/fmicb.2022.806036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterioplankton are essential components of riverine ecosystems. However, the mechanisms (deterministic or stochastic processes) and co-occurrence networks by which these communities respond to anthropogenic disturbances are not well understood. Here, we integrated niche-neutrality dynamic balancing and co-occurrence network analysis to investigate the dispersal dynamics of bacterioplankton communities along human activity intensity gradients. Results showed that the lower reaches (where intensity of human activity is high) had an increased composition of bacterioplankton communities which induced strong increases in bacterioplankton diversity. Human activity intensity changes influenced bacterioplankton community assembly via regulation of the deterministic-stochastic balance, with deterministic processes more important as human activity increases. Bacterioplankton molecular ecological network stability and robustness were higher on average in the upper reaches (where there is lower intensity of human activity), but a human activity intensity increase of about 10%/10% can reduce co-occurrence network stability of bacterioplankton communities by an average of 0.62%/0.42% in the dry and wet season, respectively. In addition, water chemistry (especially NO3–-N and Cl–) contributed more to explaining community assembly (especially the composition) than geographic distance and land use in the dry season, while the bacterioplankton community (especially the bacterioplankton network) was more influenced by distance (especially the length of rivers and dendritic streams) and land use (especially forest regions) in the wet season. Our research provides a new perspective of community assembly in rivers and important insights into future research on environmental monitoring and classified management of aquatic ecosystems under the influence of human activity.
Collapse
Affiliation(s)
- Bobo Wu
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Adam Thomas Devlin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Yuanyang She
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Yang Xia
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yi Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Lu Chen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
6
|
Spaak JW, Carpentier C, De Laender F. Species richness increases fitness differences, but does not affect niche differences. Ecol Lett 2021; 24:2611-2623. [PMID: 34532957 DOI: 10.1111/ele.13877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
A key question in ecology is what limits species richness. Modern coexistence theory presents the persistence of species as a balance between niche differences and fitness differences that favour and hamper coexistence, respectively. With most applications focusing on species pairs, however, we know little about if and how this balance changes with species richness. Here, we apply recently developed definitions of niche and fitness differences, based on invasion analysis, to multispecies communities. We present the first mathematical proof that, for invariant average interaction strengths, the average fitness difference among species increases with richness, while the average niche difference stays constant. Extensive simulations with more complex models and analyses of empirical data confirmed these mathematical results. Combined, our work suggests that, as species accumulate in ecosystems, ever-increasing fitness differences will at some point exceed constant niche differences, limiting species richness. Our results contribute to a better understanding of coexistence multispecies communities.
Collapse
Affiliation(s)
- Jurg W Spaak
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Camille Carpentier
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium
| | - Frederik De Laender
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium
| |
Collapse
|
7
|
Horák J. Niche partitioning among dead wood-dependent beetles. Sci Rep 2021; 11:15178. [PMID: 34312411 PMCID: PMC8313673 DOI: 10.1038/s41598-021-94396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Niche partitioning among species with virtually the same requirements is a fundamental concept in ecology. Nevertheless, some authors suggest that niches have little involvement in structuring communities. This study was done in the Pardubice Region (Czech Republic) on saproxylic beetles with morphologically similar larvae and very specific requirements, which are related to their obligatory dependence on dead wood material: Cucujus cinnaberinus, Pyrochroa coccinea, and Schizotus pectinicornis. This work was performed on 232 dead wood pieces at the landscape scale over six years. Based on the factors studied, the relationships among these species indicated that their co-occurrence based on species presence and absence was low, which indicated niche partitioning. However, based on analyses of habitat requirements and species composition using observed species abundances, there was no strong evidence for niche partitioning at either studied habitat levels, the tree and the microhabitat. The most likely reasons for the lack of strong niche partitioning were that dead wood is a rich resource and co-occurrence of saproxylic community was not driven by resource competition. This might be consistent with the theory that biodiversity could be controlled by the neutral drift of species abundance. Nevertheless, niche partitioning could be ongoing, meaning that the expanding C. cinnaberinus may have an advantage over the pyrochroids and could dominate in the long term.
Collapse
Affiliation(s)
- Jakub Horák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
8
|
Prendergast KS, Dixon KW, Bateman PW. Interactions between the introduced European honey bee and native bees in urban areas varies by year, habitat type and native bee guild. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
European honey bees have been introduced across the globe and may compete with native bees for floral resources. Compounding effects of urbanization and introduced species on native bees are, however, unclear. Here, we investigated how honey bee abundance and foraging patterns related to those of native bee abundance and diversity in residential gardens and native vegetation remnants for 2 years in urbanized areas of the Southwest Australian biodiversity hotspot and assessed how niche overlap influenced these relationships. Honey bees did not overtly suppress native bee abundance; however, complex relationships emerged when analysing these relationships according to body size, time of day and floral resource levels. Native bee richness was positively correlated with overall honeybee abundance in the first year, but negatively correlated in the second year, and varied with body size. Native bees that had higher resource overlap with honey bees were negatively associated with honey bee abundance, and resource overlap between honey bees and native bees was higher in residential gardens. Relationships with honey bees varied between native bee taxa, reflecting adaptations to different flora, plus specialization. Thus, competition with introduced bees varies by species and location, mediated by dietary breadth and overlap and by other life-history traits of individual bee species.
Collapse
Affiliation(s)
- Kit S Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley WA, Australia
| | - Kingsley W Dixon
- School of Molecular and Life Sciences, Curtin University, Bentley WA, Australia
| | - Philip W Bateman
- School of Molecular and Life Sciences, Curtin University, Bentley WA, Australia
| |
Collapse
|
9
|
Wang L, Han M, Li X, Yu B, Wang H, Ginawi A, Ning K, Yan Y. Mechanisms of niche-neutrality balancing can drive the assembling of microbial community. Mol Ecol 2021; 30:1492-1504. [PMID: 33522045 DOI: 10.1111/mec.15825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
One hotspot of present community ecology is to uncover the mechanisms of community succession. In this study, two popular concepts, niche-neutrality dynamic balancing and co-occurrence network analysis, were integrated to investigate the dispersal dynamics of microbial communities in a freshwater river continuum in subtropical China. Results showed that when habitat conditions were mild and appropriate, such as in the clean upstream river, free of heavy pollution or long-lasting extreme disturbances, stochastic processes could increase species diversities, and organize communities into relatively loosely linked and stable networks with higher modularity and more modules. However, when conditions became degraded under heavy pollution, the influence of neutrality diminished, and niche-based selection imposed more constraints on communities and guided the assembling processes in certain directions: depleting species richness, strengthening interspecies connections and breaking boundaries of modules. Consequently, communities became more sensitive to fluctuations so as to deal with the harsh conditions efficiently. Another interesting finding was that, both as keystone taxa of communities, module hubs were mostly neutrally distributed generalists with high abundances, and were beneficial to many related operational taxonomic units. In contrast, connectors were less abundant and their distributions were more subjected to the environments. Therefore, connectors were probably responsible for the information transmission between microbial communities and environments, as well as between different modules, and thus could restrict the dispersal of microbes and guide the direction of community assembly.
Collapse
Affiliation(s)
- Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huading Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Amjed Ginawi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Steinmetz B, Kalyuzhny M, Shnerb NM. Intraspecific variability in fluctuating environments: mechanisms of impact on species diversity. Ecology 2020; 101:e03174. [PMID: 32860217 DOI: 10.1002/ecy.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Recent studies have found considerable trait variations within species. The effect of such intraspecific trait variability (ITV) on the stability, coexistence, and diversity of ecological communities received considerable attention and in many models it was shown to impede coexistence and decrease species diversity. Here we present a numerical study of the effect of genetically inherited ITV on species persistence and diversity in a temporally fluctuating environment. Two mechanisms are identified. First, ITV buffers populations against varying environmental conditions (portfolio effect) and reduces variation in abundances. Second, the interplay between ITV and environmental variations tends to increase the mean fitness of diverse populations. The first mechanism promotes persistence and tends to increase species richness, while the second reduces the chance of a rare species population (which is usually homogeneous) to invade, thus decreasing species richness. We show that for large communities the portfolio effect is dominant, leading to ITV promoting species persistence and richness.
Collapse
Affiliation(s)
- Bnaya Steinmetz
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Michael Kalyuzhny
- Department of Ecology, Evolution, and Behavior, Institute of Life Sciences, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
11
|
Spaak JW, De Laender F. Intuitive and broadly applicable definitions of niche and fitness differences. Ecol Lett 2020; 23:1117-1128. [DOI: 10.1111/ele.13511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jurg W. Spaak
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| | - Frederik De Laender
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| |
Collapse
|
12
|
Pande J, Fung T, Chisholm R, Shnerb NM. Mean growth rate when rare is not a reliable metric for persistence of species. Ecol Lett 2019; 23:274-282. [DOI: 10.1111/ele.13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Jayant Pande
- Department of Physics Bar‐Ilan University Ramat Gan 52900 Israel
| | - Tak Fung
- Department of Biological Sciences National University of Singapore Singapore 117543 Republic of Singapore
| | - Ryan Chisholm
- Department of Biological Sciences National University of Singapore Singapore 117543 Republic of Singapore
| | - Nadav M. Shnerb
- Department of Physics Bar‐Ilan University Ramat Gan 52900 Israel
| |
Collapse
|
13
|
How self-regulation, the storage effect, and their interaction contribute to coexistence in stochastic and seasonal environments. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-0420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
DeMalach N, Ron R, Kadmon R. Mechanisms of seed mass variation along resource gradients. Ecol Lett 2018; 22:181-189. [DOI: 10.1111/ele.13179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Niv DeMalach
- Department of Biology Stanford University Stanford CA94305USA
| | - Ronen Ron
- Department of Ecology, Evolution and Behavior The Hebrew University of Jerusalem Givat Ram Jerusalem91904 Israel
| | - Ronen Kadmon
- Department of Ecology, Evolution and Behavior The Hebrew University of Jerusalem Givat Ram Jerusalem91904 Israel
| |
Collapse
|
15
|
Ron R, Fragman-Sapir O, Kadmon R. Dispersal increases ecological selection by increasing effective community size. Proc Natl Acad Sci U S A 2018; 115:11280-11285. [PMID: 30322907 PMCID: PMC6217402 DOI: 10.1073/pnas.1812511115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selection and drift are universally accepted as the cornerstones of evolutionary changes. Recent theories extend this view to ecological changes, arguing that any change in species composition is driven by deterministic fitness differences among species (enhancing selection) and/or stochasticity in birth and death rates of individuals within species (enhancing drift). These forces have contrasting effects on the predictability of ecological dynamics, and thus understanding the factors affecting their relative importance is crucial for understanding ecological dynamics. Here we test the hypothesis that dispersal increases the relative importance of ecological selection by increasing the effective size of the community (i.e., the size relevant for competitive interactions and drift). According to our hypothesis, dispersal increases the effective size of the community by mixing individuals from different localities. This effect diminishes the relative importance of demographic stochasticity, thereby reducing drift and increasing the relative importance of selective forces as drivers of species composition. We tested our hypothesis, which we term the "effective community size" hypothesis, using two independent experiments focusing on annual plants: a field experiment in which we manipulated the magnitude of dispersal and a mesocosm experiment in which we directly manipulated the effective size of the communities. Both experiments, as well as related model simulations, were consistent with the hypothesis that increasing dispersal increases the role of selective forces as drivers of species composition. This finding has important implications for our understanding of the fundamental forces affecting community dynamics, as well as the management of species diversity, particularly in patchy and fragmented environments.
Collapse
Affiliation(s)
- Ronen Ron
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
| | - Ori Fragman-Sapir
- Jerusalem Botanical Gardens, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
| | - Ronen Kadmon
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel;
| |
Collapse
|
16
|
DeMalach N, Kadmon R. Seed mass diversity along resource gradients: the role of allometric growth rate and size-asymmetric competition. Ecology 2018; 99:2196-2206. [DOI: 10.1002/ecy.2450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Niv DeMalach
- Department of Ecology, Evolution and Behavior; The Hebrew University of Jerusalem; Givat Ram Jerusalem 91904 Israel
| | - Ronen Kadmon
- Department of Ecology, Evolution and Behavior; The Hebrew University of Jerusalem; Givat Ram Jerusalem 91904 Israel
| |
Collapse
|