1
|
Bliard L, Martin JS, Paniw M, Blumstein DT, Martin JGA, Pemberton JM, Nussey DH, Childs DZ, Ozgul A. Detecting context dependence in the expression of life history trade-offs. J Anim Ecol 2024. [PMID: 39221784 DOI: 10.1111/1365-2656.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.
Collapse
Affiliation(s)
- Louis Bliard
- Department of Evolutionary Biology and Environmental Studies, Zurich University, Zurich, Switzerland
| | - Jordan S Martin
- Institute of Evolutionary Medicine, Zurich University, Zurich, Switzerland
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, Zurich University, Zurich, Switzerland
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, California, Los Angeles, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Daniel H Nussey
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, Zurich University, Zurich, Switzerland
| |
Collapse
|
2
|
Bliard L, Paniw M, Childs DZ, Ozgul A. Population Dynamic Consequences of Context-Dependent Trade-Offs across Life Histories. Am Nat 2024; 203:681-694. [PMID: 38781530 DOI: 10.1086/730111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.
Collapse
|
3
|
Badger JJ, Bowen WD, den Heyer CE, Breed GA. Individual Quality Drives Life History Variation in a Long-Lived Marine Predator. Am Nat 2023; 202:351-367. [PMID: 37606942 DOI: 10.1086/725451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (Halichoerus grypus). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.
Collapse
|
4
|
Macdonald KR, Rotella JJ, Paterson JT. Evaluating the importance of individual heterogeneity in reproduction to Weddell seal population dynamics using integral projection models. J Anim Ecol 2023; 92:1828-1839. [PMID: 37395110 DOI: 10.1111/1365-2656.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Identifying and accounting for unobserved individual heterogeneity in vital rates in demographic models is important for estimating population-level vital rates and identifying diverse life-history strategies, but much less is known about how this individual heterogeneity influences population dynamics. We aimed to understand how the distribution of individual heterogeneity in reproductive and survival rates influenced population dynamics using vital rates from a Weddell seal population by altering the distribution of individual heterogeneity in reproduction, which also altered the distribution of individual survival rates through the incorporation of our estimate of the correlation between the two rates and assessing resulting changes in population growth. We constructed an integral projection model (IPM) structured by age and reproductive state using estimates of vital rates for a long-lived mammal that has recently been shown to exhibit large individual heterogeneity in reproduction. Using output from the IPM, we evaluated how population dynamics changed with different underlying distributions of unobserved individual heterogeneity in reproduction. Results indicate that the changes to the underlying distribution of individual heterogeneity in reproduction cause very small changes in the population growth rate and other population metrics. The largest difference in the estimated population growth rate resulting from changes to the underlying distribution of individual heterogeneity was less than 1%. Our work highlights the differing importance of individual heterogeneity at the population level compared to the individual level. Although individual heterogeneity in reproduction may result in large differences in the lifetime fitness of individuals, changing the proportion of above- or below-average breeders in the population results in much smaller differences in annual population growth rate. For a long-lived mammal with stable and high adult-survival that gives birth to a single offspring, individual heterogeneity in reproduction has a limited effect on population dynamics. We posit that the limited effect of individual heterogeneity on population dynamics may be due to canalization of life-history traits.
Collapse
Affiliation(s)
| | - Jay J Rotella
- Ecology Department, Montana State University, Bozeman, Montana, USA
| | - J Terrill Paterson
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, Montana, USA
| |
Collapse
|
5
|
Ravindran S, Froy H, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Pilkington JG, Harrington L, Pemberton JM, Nussey DH. The association between female reproductive performance and leukocyte telomere length in wild Soay sheep. Mol Ecol 2022; 31:6184-6196. [PMID: 34514660 DOI: 10.1111/mec.16175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep. We find evidence for shorter TL in females that bred, and thus paid any costs of gestation, compared to females that did not breed. However, we found no evidence for any association between TL and litter size. Furthermore, females that invested in gestation and lactation actually had longer TL than females who only invested in gestation because their offspring died shortly after birth. We used multivariate models to decompose these associations into among- and within-individual effects, and discovered that within-individual effects were driving both the negative association between TL and gestation, and the positive association between TL and lactation. This suggests that telomere dynamics may reflect recent physiologically costly investment or variation in physiological condition, depending on the aspect of reproduction being investigated. Our results highlight the physiological complexity of vertebrate reproduction, and the need to better understand how and why different aspects of physiological variation underpinning life histories impact blood cell TL.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Institute for Biology, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer Dorrens
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Payo‐Payo A, Sanz‐Aguilar A, Oro D. Long‐lasting effects of harsh early‐life conditions on adult survival of a long‐lived vertebrate. OIKOS 2022. [DOI: 10.1111/oik.09371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Payo‐Payo
- School of Biological Sciences, Univ. of Aberdeen Aberdeen UK
| | - Ana Sanz‐Aguilar
- Animal Demography and Ecology Group, IMEDEA (CSIC‐UIB) Esporles Spain
- Applied Zoology and Conservation Group, Univ. of the Balearic Islands Palma Spain
| | - Daniel Oro
- Applied Zoology and Conservation Group, Univ. of the Balearic Islands Palma Spain
- Centro de Estudios Avanzados de Blanes (CEAB) Blanes Spain
| |
Collapse
|
7
|
van Daalen SF, Hernández CM, Caswell H, Neubert MG, Gribble KE. The Contributions of Maternal Age Heterogeneity to Variance in Lifetime Reproductive Output. Am Nat 2022; 199:603-616. [PMID: 35472026 PMCID: PMC11416746 DOI: 10.1086/718716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractVariance among individuals in fitness components reflects both genuine heterogeneity between individuals and stochasticity in events experienced along the life cycle. Maternal age represents a form of heterogeneity that affects both the mean and the variance of lifetime reproductive output (LRO). Here, we quantify the relative contribution of maternal age heterogeneity to the variance in LRO using individual-level laboratory data on the rotifer Brachionus manjavacas to parameterize a multistate age × maternal age matrix model. In B. manjavacas, advanced maternal age has large negative effects on offspring survival and fertility. We used multistate Markov chains with rewards to quantify the contributions to variance in LRO of heterogeneity and of the stochasticity inherent in the outcomes of probabilistic transitions and reproductive events. Under laboratory conditions, maternal age heterogeneity contributes 26% of the variance in LRO. The contribution changes when mortality and fertility are reduced to mimic more ecologically relevant environments. Over the parameter space where populations are near stationarity, maternal age heterogeneity contributes an average of 3% of the variance. Thus, the contributions of maternal age heterogeneity and individual stochasticity can be expected to depend strongly on environmental conditions; over most of the parameter space, the variance in LRO is dominated by stochasticity.
Collapse
Affiliation(s)
- Silke F. van Daalen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Christina M. Hernández
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Hal Caswell
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands
| | - Michael G. Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
8
|
Fung YL, Newman K, King R, de Valpine P. Building integral projection models with nonindependent vital rates. Ecol Evol 2022; 12:e8682. [PMID: 35342592 PMCID: PMC8935301 DOI: 10.1002/ece3.8682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 02/06/2022] [Indexed: 11/07/2022] Open
Abstract
Population dynamics are functions of several demographic processes including survival, reproduction, somatic growth, and maturation. The rates or probabilities for these processes can vary by time, by location, and by individual. These processes can co-vary and interact to varying degrees, e.g., an animal can only reproduce when it is in a particular maturation state. Population dynamics models that treat the processes as independent may yield somewhat biased or imprecise parameter estimates, as well as predictions of population abundances or densities. However, commonly used integral projection models (IPMs) typically assume independence across these demographic processes. We examine several approaches for modelling between process dependence in IPMs and include cases where the processes co-vary as a function of time (temporal variation), co-vary within each individual (individual heterogeneity), and combinations of these (temporal variation and individual heterogeneity). We compare our methods to conventional IPMs, which treat vital rates independent, using simulations and a case study of Soay sheep (Ovis aries). In particular, our results indicate that correlation between vital rates can moderately affect variability of some population-level statistics. Therefore, including such dependent structures is generally advisable when fitting IPMs to ascertain whether or not such between vital rate dependencies exist, which in turn can have subsequent impact on population management or life-history evolution.
Collapse
Affiliation(s)
- Yik Leung Fung
- School of MathematicsUniversity of EdinburghEdinburghUK
- Biomathematics and Statistics ScotlandEdinburghUK
| | - Ken Newman
- School of MathematicsUniversity of EdinburghEdinburghUK
- Biomathematics and Statistics ScotlandEdinburghUK
| | - Ruth King
- School of MathematicsUniversity of EdinburghEdinburghUK
| | - Perry de Valpine
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
9
|
Fay R, Authier M, Hamel S, Jenouvrier S, Pol M, Cam E, Gaillard J, Yoccoz NG, Acker P, Allen A, Aubry LM, Bonenfant C, Caswell H, Coste CFD, Larue B, Le Coeur C, Gamelon M, Macdonald KR, Moiron M, Nicol‐Harper A, Pelletier F, Rotella JJ, Teplitsky C, Touzot L, Wells CP, Sæther B. Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rémi Fay
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Matthieu Authier
- Observatoire PELAGIS UMS‐CNRS 3462Université de la Rochelle La Rochelle France
| | - Sandra Hamel
- Département de biologie Université Laval Québec City QC Canada
| | - Stéphanie Jenouvrier
- Centre d'Etudes Biologiques de Chizé UMR 7372Centre National de la Recherche Scientifique Villiers en Bois France
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
| | - Martijn Pol
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- College of Science and Engineering James Cook University Townsville Qld Australia
| | | | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Nigel G. Yoccoz
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Paul Acker
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Andrew Allen
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Lise M. Aubry
- Fish, Wildlife and Conservation Biology Department Colorado State University Fort Collins CO USA
| | - Christophe Bonenfant
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Hal Caswell
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Christophe F. D. Coste
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Benjamin Larue
- Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Christie Le Coeur
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | - Marlène Gamelon
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | | | - Maria Moiron
- CEFE Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - Alex Nicol‐Harper
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
- School of Ocean and Earth Science National Oceanography Centre University of Southampton Waterfront Campus Southampton UK
| | - Fanie Pelletier
- Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Jay J. Rotella
- Department of Ecology Montana State University Bozeman MT USA
| | | | - Laura Touzot
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Caitlin P. Wells
- Fish, Wildlife and Conservation Biology Department Colorado State University Fort Collins CO USA
| | - Bernt‐Erik Sæther
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
10
|
Fay R, Martin J, Plard F. Distinguishing within- from between-individual effects: How to use the within-individual centring method for quadratic patterns. J Anim Ecol 2021; 91:8-19. [PMID: 34651314 PMCID: PMC9298145 DOI: 10.1111/1365-2656.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Any average pattern observed at the population level (cross-sectional analysis) may confound two different types of processes: some processes that occur among individuals and others that occur within individuals. Separating within- from among-individual processes is critical for our understanding of ecological and evolutionary dynamics. The within-individual centring method allows distinguishing within- from among-individual processes and this method has been widely used in ecology to investigate both linear and quadratic patterns. Here we show that two alternative equations could be used for the investigation of quadratic within-individual patterns. We explain the different assumptions and constraints of both equations. Reviewing the literature, we found that mainly one of these two equations has been used in studies investigating quadratic patterns. Yet this equation might not be the most appropriate in all circumstances leading to bias and imprecision. We show that these two alternative equations make different assumptions about the shape of the within-individual pattern. One equation assumes that the within-individual effect is related to an absolute process whereas the other assumes the effect arises from an individual relative process. The choice of using one equation instead of the other should depend upon the biological process investigated. Using simulations, we showed that a mismatch between the assumptions made by the equation used to analyse the data and the biological process investigated might led to flawed inference affecting output of model selection and accuracy of estimates. We stress that the equation used should be chosen carefully. We provide step by step guidelines for choosing an equation when studying quadratic pattern with the within-individual centring approach. We encourage the use of the within-individual centring method, promoting its relevant application for nonlinear relationships.
Collapse
Affiliation(s)
- Rémi Fay
- Swiss Ornithological Institute, Sempach, Switzerland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Martin
- Department of Biological Sciences, University of Ottawa, Ottawa, Canada
| | - Floriane Plard
- Swiss Ornithological Institute, Sempach, Switzerland.,Department of Aquaculture and Fish Biology, Hólar University, Háeyri, Iceland
| |
Collapse
|
11
|
Pigeon G, Albon S, Loe LE, Bischof R, Bonenfant C, Forchhammer M, Irvine RJ, Ropstad E, Veiberg V, Stien A. Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. J Anim Ecol 2021; 91:61-73. [PMID: 34543441 DOI: 10.1111/1365-2656.13593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
The cost of reproduction on demographic rates is often assumed to operate through changing body condition. Several studies have found that reproduction depresses body mass more if the current conditions are severe, such as high population densities or adverse weather, than under benign environmental conditions. However, few studies have investigated the association between the fitness components and body mass costs of reproduction. Using 25 years of individual-based capture-recapture data from Svalbard reindeer Rangifer tarandus platyrhynchus, we built a novel Bayesian state-space model that jointly estimated interannual change in mass, annual reproductive success and survival, while accounting for incomplete observations. The model allowed us to partition the differential effects of intrinsic and extrinsic factors on both non-reproductive mass change and the body mass cost of reproduction, and to quantify their consequences on demographic rates. Contrary to our expectation, the body mass cost of reproduction (mean = -5.8 kg) varied little between years (CV = 0.08), whereas the between-year variation in body mass changes, that were independent of the previous year's reproductive state, varied substantially (CV = 0.4) in relation to autumn temperature and the amount of rain-on-snow in winter. This body mass loss led to a cost of reproduction on the next reproduction, which was amplified by the same environmental covariates, from a 10% reduction in reproductive success in benign years, to a 50% reduction in harsh years. The reproductive mass loss also resulted in a small reduction in survival. Our results show how demographic costs of reproduction, driven by interannual fluctuations in individual body condition, result from the balance between body mass costs of reproduction and body mass changes that are independent of previous reproductive state. We illustrate how a strong context-dependent fitness cost of reproduction can occur, despite a relatively fixed body mass cost of reproduction. This suggests that female reindeer display a very conservative energy allocation strategy, either aborting their reproductive attempt at an early stage or weaning at a relatively constant cost. Such a strategy might be common in species living in a highly stochastic and food limited environment.
Collapse
Affiliation(s)
- Gabriel Pigeon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | | | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Christophe Bonenfant
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Villeurbanne Cedex, France
| | | | | | - Erik Ropstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Audun Stien
- Department for Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Tromsø, Norway
| |
Collapse
|
12
|
|
13
|
Lloyd KJ, Oosthuizen WC, Fay R, Bester MN, Nico de Bruyn PJ. Selective disappearance of frail juveniles: consequences for understanding social dominance in adult male elephant seals. OIKOS 2020. [DOI: 10.1111/oik.07434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kyle J. Lloyd
- Mammal Research Inst., Dept of Zoology and Entomology, Univ. of Pretoria Pretoria South Africa
- Landscape Conservation Programme, BirdLife South Africa Pinegowrie South Africa
| | - W. Chris Oosthuizen
- Mammal Research Inst., Dept of Zoology and Entomology, Univ. of Pretoria Pretoria South Africa
- Marine Apex Predator Research Unit, Zoology Dept, Nelson Mandela Univ. Port Elizabeth South Africa
| | - Rémi Fay
- Swiss Ornithological Institute Seerose Sempach Switzerland
| | - Marthán N. Bester
- Mammal Research Inst., Dept of Zoology and Entomology, Univ. of Pretoria Pretoria South Africa
| | - P. J. Nico de Bruyn
- Mammal Research Inst., Dept of Zoology and Entomology, Univ. of Pretoria Pretoria South Africa
| |
Collapse
|
14
|
Fisher DN, Pruitt JN. Insights from the study of complex systems for the ecology and evolution of animal populations. Curr Zool 2020; 66:1-14. [PMID: 32467699 PMCID: PMC7245006 DOI: 10.1093/cz/zoz016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/01/2022] Open
Abstract
Populations of animals comprise many individuals, interacting in multiple contexts, and displaying heterogeneous behaviors. The interactions among individuals can often create population dynamics that are fundamentally deterministic yet display unpredictable dynamics. Animal populations can, therefore, be thought of as complex systems. Complex systems display properties such as nonlinearity and uncertainty and show emergent properties that cannot be explained by a simple sum of the interacting components. Any system where entities compete, cooperate, or interfere with one another may possess such qualities, making animal populations similar on many levels to complex systems. Some fields are already embracing elements of complexity to help understand the dynamics of animal populations, but a wider application of complexity science in ecology and evolution has not occurred. We review here how approaches from complexity science could be applied to the study of the interactions and behavior of individuals within animal populations and highlight how this way of thinking can enhance our understanding of population dynamics in animals. We focus on 8 key characteristics of complex systems: hierarchy, heterogeneity, self-organization, openness, adaptation, memory, nonlinearity, and uncertainty. For each topic we discuss how concepts from complexity theory are applicable in animal populations and emphasize the unique insights they provide. We finish by outlining outstanding questions or predictions to be evaluated using behavioral and ecological data. Our goal throughout this article is to familiarize animal ecologists with the basics of each of these concepts and highlight the new perspectives that they could bring to variety of subfields.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Bauch C, Gatt MC, Granadeiro JP, Verhulst S, Catry P. Sex-specific telomere length and dynamics in relation to age and reproductive success in Cory's shearwaters. Mol Ecol 2020; 29:1344-1357. [PMID: 32141666 PMCID: PMC7216837 DOI: 10.1111/mec.15399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Individuals in free‐living animal populations generally differ substantially in reproductive success, lifespan and other fitness‐related traits, but the molecular mechanisms underlying this variation are poorly understood. Telomere length and dynamics are candidate traits explaining this variation, as long telomeres predict a higher survival probability and telomere loss has been shown to reflect experienced “life stress.” However, telomere dynamics among very long‐lived species are unresolved. Additionally, it is generally not well understood how telomeres relate to reproductive success or sex. We measured telomere length and dynamics in erythrocytes to assess their relationship to age, sex and reproduction in Cory's shearwaters (Calonectris borealis), a long‐lived seabird, in the context of a long‐term study. Adult males had on average 231 bp longer telomeres than females, independent of age. In females, telomere length changed relatively little with age, whereas male telomere length declined significantly. Telomere shortening within males from one year to the next was three times higher than the interannual shortening rate based on cross‐sectional data of males. Past long‐term reproductive success was sex‐specifically reflected in age‐corrected telomere length: males with on average high fledgling production were characterized by shorter telomeres, whereas successful females had longer telomeres, and we discuss hypotheses that may explain this contrast. In conclusion, telomere length and dynamics in relation to age and reproduction are sex‐dependent in Cory's shearwaters and these findings contribute to our understanding of what characterises individual variation in fitness.
Collapse
Affiliation(s)
- Christina Bauch
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marie Claire Gatt
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - José Pedro Granadeiro
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Paulo Catry
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
16
|
van Daalen S, Caswell H. Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity. Ecol Modell 2020; 417:108856. [PMID: 32089584 PMCID: PMC7015279 DOI: 10.1016/j.ecolmodel.2019.108856] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Individuals vary in traits or in luck; both cause variance in life history outcomes. The variance components are calculated from a multistate group-stage cohort model. Sensitivity analysis shows how variance components relate to demographic parameters. Both mortality and fertility affect the variance components. Effects depend on life history timing, and the nature and mixture of differences.
Variance in life history outcomes among individuals is a requirement for natural selection, and a determinant of the ecological dynamics of populations. Heterogeneity among individuals will cause such variance, but so will the inherently stochastic nature of their demography. The relative contributions of these variance components – stochasticity and heterogeneity – to life history outcomes are presented here in a general, demographic calculation. A general formulation of sensitivity analysis is provided for the relationship between the variance components and the demographic rates within the life cycle. We illustrate these novel methods with two examples; the variance in longevity within and between frailty groups in a laboratory population of fruit flies, and the variance in lifetime reproductive output within and between initial environment states in a perennial herb in a stochastic fire environment. In fruit flies, an increase in mortality would increase the variance due to stochasticity and reduce that due to heterogeneity. In the plant example, increasing mortality reduces, and increasing fertility increases both variance components. Sensitivity analyses such as these can provide a powerful tool in identifying patterns among life history stages and heterogeneity groups and their contributions to variance in life history outcomes.
Collapse
|
17
|
Chen D, Liao J, Bearup D, Li Z. Habitat heterogeneity mediates effects of individual variation on spatial species coexistence. Proc Biol Sci 2020; 287:20192436. [PMID: 31964303 PMCID: PMC7015336 DOI: 10.1098/rspb.2019.2436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Numerous studies have documented the importance of individual variation (IV) in determining the outcome of competition between species. However, little is known about how the interplay between IV and habitat heterogeneity (i.e. variation and spatial autocorrelation in habitat quality) affects species coexistence at the landscape scale. Here, we incorporate habitat heterogeneity into a competition model with IV, in order to explore the mechanism of spatial species coexistence. We find that individual-level variation and habitat heterogeneity interact to promote species coexistence, more obviously at lower dispersal rates. This is in stark contrast to early non-spatial models, which predicted that IV reinforces competitive hierarchies and therefore speeds up species exclusion. In essence, increasing variation in patch quality and/or spatial habitat autocorrelation moderates differences in the competitive ability of species, thereby allowing species to coexist both locally and globally. Overall, our theoretical study offers a mechanistic explanation for emerging empirical evidence that both habitat heterogeneity and IV promote species coexistence and therefore biodiversity maintenance.
Collapse
Affiliation(s)
- Dongdong Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, 330022 Nanchang, People's Republic of China
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Parkwood Road, Canterbury CT2 7FS, UK
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
18
|
Oosthuizen WC, Postma M, Altwegg R, Nevoux M, Pradel R, Bester MN, Bruyn PJN. Individual heterogeneity in life‐history trade‐offs with age at first reproduction in capital breeding elephant seals. POPUL ECOL 2019. [DOI: 10.1002/1438-390x.12015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- W. Chris Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - Martin Postma
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - Res Altwegg
- Centre for Statistics in Ecology Environment and Conservation, Department of Statistical Sciences University of Cape Town Rondebosch South Africa
- African Climate and Development Initiative, University of Cape Town Rondebosch South Africa
| | - Marie Nevoux
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Hatfield South Africa
- UMRESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA Rennes France
| | - Roger Pradel
- Biostatistics and Population Biology Group, CEFE, CNRS, University of Montpellier Montpellier France
| | - Marthán N. Bester
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - P. J. Nico Bruyn
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| |
Collapse
|
19
|
Festa‐Bianchet M, Côté SD, Hamel S, Pelletier F. Long‐term studies of bighorn sheep and mountain goats reveal fitness costs of reproduction. J Anim Ecol 2019; 88:1118-1133. [DOI: 10.1111/1365-2656.13002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Festa‐Bianchet
- Département de biologie Université de Sherbrooke Sherbrooke Québec Canada
- Centre d'études nordiques Québec City Québec Canada
| | - Steeve D. Côté
- Centre d'études nordiques Québec City Québec Canada
- Département de biologie Université Laval Sainte‐Foy Québec Canada
| | - Sandra Hamel
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries, and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Fanie Pelletier
- Département de biologie Université de Sherbrooke Sherbrooke Québec Canada
- Centre d'études nordiques Québec City Québec Canada
| |
Collapse
|
20
|
Integrated population models: powerful methods to embed individual processes in population dynamics models. Ecology 2019; 100:e02715. [DOI: 10.1002/ecy.2715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
|
21
|
Larue B, Côté SD, St‐Laurent M, Dussault C, Leblond M. Natal habitat preference induction in large mammals-Like mother, like child? Ecol Evol 2018; 8:12629-12640. [PMID: 30619569 PMCID: PMC6309006 DOI: 10.1002/ece3.4685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Habitat selection has received considerable attention from ecologists during the last decades, yet the underlying forces shaping individual differences in habitat selection are poorly documented. Some of these differences could be explained by the early experience of individuals in their natal habitat. By selecting habitat attributes like those encountered early in life, individuals could improve resource acquisition, survival, and ultimately fitness. This behavior, known as natal habitat preference induction (NHPI), could be particularly common in large mammals, because offspring generally stay with their mother for an extended period. We used three complementary approaches to assess NHPI in a marked population of woodland caribou (Rangifer tarandus caribou): (a) population-based resource selection functions (RSFs), (b) individual-based RSFs, and (c) behavioral repeatability analyses. All approaches compared the behavior of calves in their natal range to their behavior as independent subadults during the snow-covered (Dec-Apr) and snow-free (May-Nov) seasons. Using RSFs, we found that the magnitude of habitat selection between calf and subadult stages differed for most covariates, yet the signs of statistically significant effects (selection vs. avoidance) were generally the same. We also found that some habitat selection tactics were highly repeatable across life stages. Notably, caribou responses to habitat disturbances were highly repeatable year-round, meaning that different individuals reacted differently, but consistently, to disturbances. This study highlights the potential role of natal habitat preference induction in shaping individual differences in habitat selection in large mammals and provides valuable knowledge for the management and conservation of a threatened species.
Collapse
Affiliation(s)
- Benjamin Larue
- Département de biologieUniversité LavalQuébecQuébecCanada
- Present address:
Département de biologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Steeve D. Côté
- Département de biologie and Centre for Northern StudiesUniversité LavalQuébecQuébecCanada
| | - Martin‐Hugues St‐Laurent
- Département de biologie, chimie et géographie, Centre for Northern Studies, and Centre for Forest ResearchUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - Christian Dussault
- Direction de l’expertise sur la faune terrestre, l’herpétofaune et l’avifauneMinistère des Forêts, de la Faune et des ParcsQuébecQuébecCanada
| | - Mathieu Leblond
- Département de biologie and Centre for Northern StudiesUniversité LavalQuébecQuébecCanada
- Present address:
Environment and Climate Change Canada, Science and Technology BranchOttawaOntarioCanada
| |
Collapse
|
22
|
Vrtílek M, Žák J, Blažek R, Polačik M, Cellerino A, Reichard M. Limited scope for reproductive senescence in wild populations of a short-lived fish. Naturwissenschaften 2018; 105:68. [DOI: 10.1007/s00114-018-1594-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023]
|
23
|
Hamel S, Gaillard JM, Yoccoz NG. Introduction to: Individual heterogeneity - the causes and consequences of a fundamental biological process. OIKOS 2018. [DOI: 10.1111/oik.05222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sandra Hamel
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | | | - Nigel G. Yoccoz
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| |
Collapse
|
24
|
Hamel S, Gaillard JM, Yoccoz NG, Bassar RD, Bouwhuis S, Caswell H, Douhard M, Gangloff EJ, Gimenez O, Lee PC, Smallegange IM, Steiner UK, Vedder O, Vindenes Y. General conclusion to the special issue Moving forward on individual heterogeneity. OIKOS 2018. [DOI: 10.1111/oik.05223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sandra Hamel
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | | | - Nigel G. Yoccoz
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | - Ron D. Bassar
- Dept of Biology; Williams College; Williamstown MA USA
| | - Sandra Bouwhuis
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
| | - Hal Caswell
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | | | - Eric J. Gangloff
- Station d’Ecologie Théorique et Expérimentale du CNRS; Moulis France
| | - Olivier Gimenez
- CEFE UMR 5175; CNRS, Univ. de Montpellier, Univ. Paul-Valéry Montpellier; Montpellier France
| | - Phylis C. Lee
- Psychology, Faculty of Natural Sciences; Univ. of Stirling; Stirling UK
| | - Isabel M. Smallegange
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | - Ulrich K. Steiner
- Max-Planck Odense Centre on the Biodemography of Aging, and Dept of Biology; Odense Denmark
| | - Oscar Vedder
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
- Groningen Inst. for Evolutionary Life Sciences; Univ. of Groningen; Groningen the Netherlands
| | | |
Collapse
|