1
|
Sutherland DL, Burke J. Modifying filamentous algae nutrient scrubbers for improved wastewater treatment and harvestability - comparison with microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119339. [PMID: 37883837 DOI: 10.1016/j.jenvman.2023.119339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Algae have been well studied for their abilities to treat wastewater, and several types of treatment systems have been demonstrated at a range of scales. High Rate Algae Ponds (HRAP) are a microalgae-based system and Filamentous Algae Nutrient Scrubbers (FANS) a filamentous algae-based system. For FANS, nutrient removal rates are typically lower and more variable than HRAPs, while HRAPs have lower productivity and poor harvestability. This study investigated if modifying a FANS to mimic HRAPs (using high rate algae mesocosms HRAM), with respect to hydraulic retention time (HRT) and smaller footprint, overcomes FANS limitations, while increasing wastewater treatment and resource recovery compared to HRAPs. Biomass productivity on the FANS (10.5 ± 2.9 g m-2 d-1) and FANS with CO2 addition (19.0 ± 4.8 g m-2 d-1) were significantly higher (p < 0.01) compared to the HRAMs (6.7 ± 1.4 g m-2 d-1) and HRAMs with CO2 addition (8.1 ± 1.2 g m-2 d-1). Under phosphorus replete conditions, biomass production was significantly higher on FANS (44.8 ± 14.4 g m-2 d-1) than HRAMs (5.0 ± 0.6 g m-2 d-1). Effluent quality (nutrient removal) was significantly higher (p < 0.05) for FANS compared to HRAMS, regardless of treatment. For harvesting, FANS (2.9-41%) yielded significantly higher (p < 0.01) percentage solids with, and, without dewatering/gravity harvesting compared to the HRAM (0.04-0.11%). Modifying the operation of the FANS to mimic longer HRT of HRAMs resulted in higher areal biomass productivity and nutrient removal in the FANS than the HRAM, regardless of treatment. The use of filamentous algae on FANS greatly improved the percentage solids yield in the harvested biomass without the need for energy intensive harvesting techniques. Further investigations need to be undertaken to determine if benefits will be realised at fullscale.
Collapse
Affiliation(s)
| | - Joel Burke
- Global Algae Innovations, 4473 Pahee Street, 96766, Lihue, Hawaii, USA
| |
Collapse
|
2
|
Ijzerman MM, Raby M, Izma GB, Kudla YM, Letwin NV, Gallant MJ, Schiffer SR, Atkinson BJ, Rooney RC, Sibley PK, Prosser RS. An Assessment of the Toxicity of Pesticide Mixtures in Periphyton from Agricultural Streams to the Mayfly Neocloeon triangulifer. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2143-2157. [PMID: 37341551 DOI: 10.1002/etc.5698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
Residual concentrations of pesticides are commonly found outside the intended area of application in Ontario's surface waters. Periphyton are a vital dietary component for grazing organisms in aquatic ecosystems but can also accumulate substantial levels of pesticides from the surrounding water. Consequently, grazing aquatic organisms are likely subjected to pesticide exposure through the consumption of pesticide-contaminated periphyton. The objectives of the present study were to determine if pesticides partition into periphyton in riverine environments across southern Ontario and, if so, to determine the toxicity of pesticides in periphyton when fed to the grazing mayfly Neocloeon triangulifer. Sites with low, medium, and high pesticide exposure based on historic water quality monitoring data were selected to incorporate a pesticide exposure gradient into the study design. Artificial substrate samplers were utilized to colonize periphyton in situ, which were then analyzed for the presence of approximately 500 pesticides. The results demonstrate that periphyton are capable of accumulating pesticides in agricultural streams. A novel 7-day toxicity test method was created to investigate the effects of pesticides partitioned into periphyton when fed to N. triangulifer. Periphyton collected from the field sites were fed to N. triangulifer and survival and biomass production recorded. Survival and biomass production significantly decreased when fed periphyton colonized in streams with catchments dominated by agricultural land use (p < 0.05). However, the relationship between pesticide concentration and survival or biomass production was not consistent. Using field-colonized periphyton allowed us to assess the dietary toxicity of environmentally relevant concentrations of pesticide mixtures; however, nutrition and taxonomic composition of the periphyton may vary between sites. Environ Toxicol Chem 2023;42:2143-2157. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Gab B Izma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Yaryna M Kudla
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas V Letwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Brian J Atkinson
- Agriculture and Food Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca C Rooney
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Mendes MP, Cupe-Flores B, Liber K. Sampling method and season influence selenium dynamics at the base of a boreal lake food chain. ENVIRONMENTAL RESEARCH 2023; 234:116157. [PMID: 37196689 DOI: 10.1016/j.envres.2023.116157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Few studies have investigated the potential influence of sampling method and season on Se bioaccumulation at the base of the aquatic food chain. In particular, the effects of low water temperature associated with prolonged ice-cover periods on Se uptake by periphyton and further transfer to benthic macroinvertebrates (BMI) have been overlooked. Such information is crucial to help improve Se modelling and risk assessment at sites receiving continuous Se inputs. To date, this seems to be the first study to address these research questions. Here, we examined potential differences related to sampling methods (artificial substrates vs. grab samples) and seasons (summer vs. winter) on Se dynamics in the benthic food chain of a boreal lake (McClean Lake) receiving continuous low-level Se input from a Saskatchewan uranium milling operation. During summer 2019, water, sediment grab samples and artificial substrates were sampled from 8 sites with varying mill-treated effluent exposure. In winter 2021, water and sediment grab samples were sampled at 4 locations in McClean Lake. Water, sediment, and biological samples were subsequently analyzed for total Se concentrations. Enrichment functions (EF) in periphyton and trophic transfer factors (TTF) in BMI were calculated for both sampling methods and seasons. Periphyton collected with artificial substrates (Hester-Dendy samplers and glass plates) exhibited significantly higher mean Se concentrations (2.4 ± 1.5 μg/g d.w) than periphyton collected from the surface of sediment grab samples (1.1 ± 1.3 μg/g d.w). Selenium concentrations in periphyton sampled in winter (3.5 ± 1.0 μg/g d.w) were significantly greater than summer (1.1 ± 1.3 μg/g d.w). Nevertheless, Se bioaccumulation in BMI was similar between seasons, possibly suggesting that invertebrates are not actively feeding in winter. Further investigations are necessary to verify if peak Se bioaccumulation in BMI takes place in spring, coinciding with the reproductive and developmental windows of some fish species.
Collapse
Affiliation(s)
- Maíra P Mendes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Sofi MS, Hamid A, Bhat SU, Rashid I, Kuniyal JC. Understanding the role of natural and anthropogenic forcings in structuring the periphytic algal assemblages in a regulated river ecosystem. Sci Rep 2023; 13:1882. [PMID: 36732529 PMCID: PMC9894984 DOI: 10.1038/s41598-023-27773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Periphytic algal assemblages in the River Sindh of Kashmir Himalaya were studied in relation to environmental factors and anthropogenic alterations like flow regulation for Run-of-River hydropower plants to understand their ecology in a regulated river ecosystem. Sites were sampled from unregulated, regulated, and downstream reaches along the river on a seasonal basis from the year 2017 to 2019. A total of 48 species were identified, spread over 31 genera. Non-metric multidimensional analysis showed clear distinction in periphytic algal assemblage samples based on sites and potentially some more minor distinction based on seasons rendering the sites into two distinct groups (G1 and G2). The ADONIS test showed that the groups (G1 and G2 sites) do not significantly differ in terms of how communities differ from one another, but there is a difference in species compositions based on seasons. However, the betadisper test indicated that groups (G1 and G2 sites) and seasons present homogeneity among group dispersions (compositions vary similarly) while having significantly different compositions. Geo-physical factors (discharge and altitude) accounted for most variations, while the scraper community played a minor role. This study provides scientific insights related to the ecology of a regulated Himalayan river and may provide information relevant to managing the River Sindh sustainably.
Collapse
Affiliation(s)
- Mohd Sharjeel Sofi
- Aquatic Ecology Lab, Department of Environmental Science, University of Kashmir, Srinagar, 190 006, India
| | - Aadil Hamid
- Aquatic Ecology Lab, Department of Environmental Science, University of Kashmir, Srinagar, 190 006, India
| | - Sami Ullah Bhat
- Aquatic Ecology Lab, Department of Environmental Science, University of Kashmir, Srinagar, 190 006, India.
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190 006, India
| | - Jagdish Chandra Kuniyal
- Govind Ballabh Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| |
Collapse
|
5
|
Rober AR, McCann KS, Turetsky MR, Wyatt KH. Cascading effects of predators on algal size structure. JOURNAL OF PHYCOLOGY 2022; 58:308-317. [PMID: 35032342 DOI: 10.1111/jpy.13235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The presence of edible and inedible prey species in a food web can influence the strength that nutrients (bottom-up) or herbivores (top-down) have on primary production. In boreal peatlands, wetter more nutrient-rich conditions associated with ongoing climate change are expanding consumer access to aquatic habitat and promoting sources of primary production (i.e., algae) that are susceptible to trophic regulation. Here, we used an in situ mesocosm experiment to evaluate the consequences of enhanced nutrient availability and food-web manipulation (herbivore and predator exclusion) on algal assemblage structure in an Alaskan fen. Owing to the potential for herbivores to selectively consume edible algae (small cells) in favor of more resistant forms, we predicted that the proportion of less-edible algae (large cells) would determine the strength of top-down or bottom-up effects. Consistent with these expectations, we observed an increase in algal-cell size in the presence of herbivores (2-tiered food web) that was absent in the presence of a trophic cascade (3-tiered food web), suggesting that predators indirectly prevented morphological changes in the algal assemblage by limiting herbivory. Increases in algal-cell size with herbivory were driven by a greater proportion of filamentous green algae and nitrogen-fixing cyanobacteria, whose size and morphological characteristics mechanically minimize consumption. While consumer-driven shifts in algal assemblage structure were significant, they did not prevent top-down regulation of biofilm development by herbivores. Our findings show that increasing wet periods in northern peatlands will provide new avenues for trophic regulation of algal production, including directly through consumption and indirectly via a trophic cascade.
Collapse
Affiliation(s)
- Allison R Rober
- Department of Biology, Ball State University, Muncie, Indiana, 47306, USA
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, NIG 2WI, Canada
| | - Merritt R Turetsky
- Institute of Arctic and Alpine Research and Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Kevin H Wyatt
- Department of Biology, Ball State University, Muncie, Indiana, 47306, USA
| |
Collapse
|
6
|
Cook SC, Back JA, King RS. Compensatory dynamics of lotic algae break down nonlinearly with increasing nutrient enrichment. Ecology 2021; 103:e3613. [PMID: 34921393 DOI: 10.1002/ecy.3613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022]
Abstract
One important mechanism governing the temporal maintenance of biodiversity is asynchrony in co-occurring competitors due to fluctuating environments (i.e. compensatory dynamics). Temporal niche partitioning has evolved in response to predictable oscillations in environmental conditions so that species may offset competition, but we do not yet have a clear understanding of how novel anthropogenic stressors alter seasonal patterns of succession. Many primary producers are nutrient-limited, and enrichment may decrease the importance of environmental fluctuations that govern which species are effective competitors under naturally low nutrient regimes. Consequently, elevated nutrient concentrations may synchronize species responses to seasonality. By studying benthic algal assemblages over two years from 35 streams that spanned a wide gradient of nutrient enrichment, we found that compensatory dynamics characterizing seasonal succession under natural nutrient regimes broke down at relatively low levels of total phosphorus (P) enrichment (~ 25 μg L-1 ). With increasing P more species were able to coexist at any given time, and seasonal variation in assemblage composition was characterized by synchronous swings in species biovolumes. We also observed much higher instability in assemblage biovolumes with declines in compensatory dynamics, which indicates that anthropogenic alteration of nutrient regimes can affect community stability by changing the dominant mode of seasonal succession. Our findings indicate that compensatory fluctuations of stream algae are driven by seasonality, and provide insight about how nutrient enrichment alters evolved drivers of species coexistence.
Collapse
Affiliation(s)
- Stephen C Cook
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, Texas, USA.,Department of Biology, Baylor University, One Bear Place 97388, Waco, Texas, USA
| | - Jeffrey A Back
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, Texas, USA
| | - Ryan S King
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, Texas, USA.,Department of Biology, Baylor University, One Bear Place 97388, Waco, Texas, USA
| |
Collapse
|
7
|
Iannino A, Fink P, Weitere M. Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth. Sci Rep 2021; 11:21621. [PMID: 34732760 PMCID: PMC8566523 DOI: 10.1038/s41598-021-00856-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Algal biofilms in streams are simultaneously controlled by light and nutrient availability (bottom-up control) and by grazing activity (top-down control). In addition to promoting algal growth, light and nutrients also determine the nutritional quality of algae for grazers. While short-term experiments have shown that grazers increase consumption rates of nutrient-poor algae due to compensatory feeding, nutrient limitation in the long run can constrain grazer growth and hence limit the strength of grazing activity. In this study, we tested the effects of light and phosphorus availability on grazer growth and thus on the long-term control of algal biomass. At the end of the experiment, algal biomass was significantly affected by light, phosphorus and grazing, but the interactive effects of the three factors significantly changed over time. At both high light and phosphorus supply, grazing did not initially reduce algal biomass, but the effect of grazing became stronger in the final three weeks of the experiment. Snail growth was enhanced by light, rather than phosphorus, suggesting that algal quantity rather than quality was the main limiting factor for grazer growth. Our results highlight the role of feedback effects and the importance of long-term experiments in the study of foodweb interactions.
Collapse
Affiliation(s)
- Alessandra Iannino
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany. .,Workgroup Aquatic Chemical Ecology, University of Cologne, Zülpicherstrasse 47b, 50674, Cologne, Germany.
| | - Patrick Fink
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany.,Workgroup Aquatic Chemical Ecology, University of Cologne, Zülpicherstrasse 47b, 50674, Cologne, Germany.,Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany
| | - Markus Weitere
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany
| |
Collapse
|
8
|
Joachim S, Beaudouin R, Daniele G, Geffard A, Bado-Nilles A, Tebby C, Palluel O, Dedourge-Geffard O, Fieu M, Bonnard M, Palos-Ladeiro M, Turiès C, Vulliet E, David V, Baudoin P, James A, Andres S, Porcher JM. Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111812. [PMID: 33472112 DOI: 10.1016/j.ecoenv.2020.111812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 05/14/2023]
Abstract
Due to the potential hazard of diclofenac on aquatic organisms and the lack of higher-tier ecotoxicological studies, a long-term freshwater mesocosm experiment was set up to study the effects of this substance on primary producers and consumers at environmentally realistic nominal concentrations 0.1, 1 and 10 µg/L (average effective concentrations 0.041, 0.44 and 3.82 µg/L). During the six-month exposure period, the biovolume of two macrophyte species (Nasturtium officinale and Callitriche platycarpa) significantly decreased at the highest treatment level. Subsequently, a decrease in dissolved oxygen levels was observed. High mortality rates, effects on immunity, and high genotoxicity were found for encaged zebra mussels (Dreissena polymorpha) in all treatments. In the highest treatment level, one month after the beginning of the exposure, mortality of adult fish (Gasterosteus aculeatus) caused effects on the final population structure. Total abundance of fish and the percentage of juveniles decreased whereas the percentage of adults increased. This led to an overall shift in the length frequency distribution of the F1 generation compared to the control. Consequently, indirect effects on the community structure of zooplankton and macroinvertebrates were observed in the highest treatment level. The No Observed Effect Concentration (NOEC) value at the individual level was < 0.1 µg/L and 1 µg/L at the population and community levels. Our study showed that in more natural conditions, diclofenac could cause more severe effects compared to those observed in laboratory conditions. The use of our results for regulatory matters is also discussed.
Collapse
Affiliation(s)
- S Joachim
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France.
| | - R Beaudouin
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - G Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - A Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - A Bado-Nilles
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - C Tebby
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - O Palluel
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - O Dedourge-Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - M Fieu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - M Bonnard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - M Palos-Ladeiro
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - C Turiès
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - E Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - V David
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - P Baudoin
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - A James
- Expertise entoxicologie/écotoxicologie des substances chimiques (ETES), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - S Andres
- Expertise entoxicologie/écotoxicologie des substances chimiques (ETES), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - J M Porcher
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| |
Collapse
|
9
|
Iannino A, Vosshage ATL, Weitere M, Fink P. Taxonomic Shift Over a Phosphorus Gradient Affects the Stoichiometry and Fatty Acid Composition of Stream Periphyton. JOURNAL OF PHYCOLOGY 2020; 56:1687-1695. [PMID: 32738149 DOI: 10.1111/jpy.13060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus enrichment of stream ecosystems generally increases primary production in the benthos, but the consequences of eutrophication for the nutritional quality of periphyton for grazers are less clear. On short timescales, high phosphorus inputs may lead to reduced C:P ratios and high essential fatty acid contents of periphyton, which are both considered important determinants of food quality for grazers. However, nutrient enrichment may alter the taxonomic composition of periphyton and favor the growth of less palatable algal taxa. In this study, periphyton was grown under a gradient of dissolved phosphorus availability from 5 to 100 µg P · L-1 , to investigate eutrophication effects on periphyton taxonomy, C:N:P stoichiometry, and fatty acid composition. After 1 month, periphyton grown under oligotrophic conditions was mainly composed of diatoms (~86%). With increasing phosphorus availability, diatoms were gradually outcompeted by chlorophytes and cyanobacteria, which were the predominant taxon under eutrophic conditions. Unexpectedly, periphyton C:P ratios increased with greater phosphorus supply, from ~280 under oligotrophic conditions up to ~790 at 100 µg · L-1 , reflecting a tendency of chlorophytes and cyanobacteria to produce more biomass per unit of assimilated phosphorus compared to diatoms. Periphyton content of essential polyunsaturated fatty acids relative to biomass followed a unimodal relationship with phosphorus availability and peaked at intermediate phosphorus levels, likely as a result of both taxonomic and nutrient effects. Our results demonstrate that phosphorus-driven eutrophication of freshwater ecosystems may worsen periphyton nutritional quality due to taxonomic sorting, which may further lead to lower growth and reproduction of herbivores.
Collapse
Affiliation(s)
- Alessandra Iannino
- Workgroup Aquatic Chemical Ecology, University of Cologne Biocentre, Zülpichestrasse 47B, 50674, Cologne, Germany
| | - Alexander Tim Ludwig Vosshage
- Department of River Ecology, Helmholtz Centre for Environmental Research (UFZ), Brückstrasse 3A, 39114, Magdeburg, Germany
| | - Markus Weitere
- Department of River Ecology, Helmholtz Centre for Environmental Research (UFZ), Brückstrasse 3A, 39114, Magdeburg, Germany
| | - Patrick Fink
- Workgroup Aquatic Chemical Ecology, University of Cologne Biocentre, Zülpichestrasse 47B, 50674, Cologne, Germany
- Department of River Ecology & Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Brückstrasse 3A, 39114, Magdeburg, Germany
| |
Collapse
|
10
|
Furey PC, Lee SS, Clemans DL. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1629-1648. [PMID: 33463854 DOI: 10.1002/wer.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/12/2023]
Abstract
Highlights of new, interesting, and emerging research findings on substratum-associated microbiota covered from a survey of 2019 literature from primarily freshwaters provide insight into research trends of interest to the Water Environment Federation and others interested in benthic, aquatic environments. Coverage of topics on bottom-associated or attached algae and cyanobacteria, though not comprehensive, includes new methods, taxa new-to-science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, and bloom-forming and harmful algae. Coverage of bacteria, also not comprehensive, focuses on the ecology of benthic biofilms and microbial communities, along with the ecology of microbes like Caulobacter crescentus, Rhodobacter, and other freshwater microbial species. Bacterial topics covered also include metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Readers may use this literature review to learn about or renew their interest in the recent advances and discoveries regarding substratum-associated microbiota. PRACTITIONER POINTS: This review of literature from 2019 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Coverage of algae and cyanobacteria includes findings on new methods, taxa new to science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, bloom-forming and harmful algae. Coverage of bacteria includes findings on ecology of benthic biofilms and microbial communities, the ecology of microbes, metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Highlights of new, noteworthy and emerging topics build on those from 2018 and will be of relevance to the Water Environment Federation and others interested in benthic, aquatic environments.
Collapse
Affiliation(s)
- Paula C Furey
- Department Biology, St. Catherine University, St. Paul, Minnesota, USA
| | - Sylvia S Lee
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Daniel L Clemans
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
11
|
Increased harvest frequency improves biomass yields and nutrient removal on a filamentous algae nutrient scrubber. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|