1
|
Slate ML, Antoninka A, Bailey L, Berdugo MB, Callaghan DA, Cárdenas M, Chmielewski MW, Fenton NJ, Holland-Moritz H, Hopkins S, Jean M, Kraichak BE, Lindo Z, Merced A, Oke T, Stanton D, Stuart J, Tucker D, Coe KK. Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles. THE NEW PHYTOLOGIST 2024; 242:2411-2429. [PMID: 38659154 DOI: 10.1111/nph.19772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.
Collapse
Affiliation(s)
- Mandy L Slate
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Lydia Bailey
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Monica B Berdugo
- Plant Ecology and Geobotany, Department of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany
| | - Des A Callaghan
- Bryophyte Surveys Ltd, Almondsbury, South Gloucestershire, BS32 4DU, UK
| | - Mariana Cárdenas
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Nicole J Fenton
- Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Samantha Hopkins
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Mélanie Jean
- Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Bier Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University in Bangkok, Bangkok, 10900, Thailand
| | - Zoë Lindo
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Amelia Merced
- Department of Biology, University of Puerto Rico Río Piedras, San Juan, PR, 00925, USA
| | - Tobi Oke
- Wildlife Conservation Society & School of Environment & Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Daniel Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julia Stuart
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
- Mountain Planning Service Group, US Forest Service, Lakewood, CO, 80401, USA
| | - Daniel Tucker
- School of Environmental Studies, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Kirsten K Coe
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| |
Collapse
|
2
|
Grau-Andrés R, Thieffry S, Tian S, Wardle DA, Kardol P. Responses of bryosphere fauna to drought across a boreal forest chronosequence. Oecologia 2022; 200:231-245. [PMID: 36074302 PMCID: PMC9547781 DOI: 10.1007/s00442-022-05255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Projected changes in precipitation regimes can greatly impact soil biota, which in turn alters key ecosystem functions. In moss-dominated ecosystems, the bryosphere (i.e., the ground moss layer including live and senesced moss) plays a key role in carbon and nutrient cycling, and it hosts high abundances of microfauna (i.e., nematodes and tardigrades) and mesofauna (i.e., mites and springtails). However, we know very little about how bryosphere fauna responds to precipitation, and whether this response changes across environmental gradients. Here, we used a mesocosm experiment to study the effect of volume and frequency of precipitation on the abundance and community composition of functional groups of bryosphere fauna. Hylocomium splendens bryospheres were sampled from a long-term post-fire boreal forest chronosequence in northern Sweden which varies greatly in environmental conditions. We found that reduced precipitation promoted the abundance of total microfauna and of total mesofauna, but impaired predaceous/omnivorous nematodes, and springtails. Generally, bryosphere fauna responded more strongly to precipitation volume than to precipitation frequency. For some faunal functional groups, the effects of precipitation frequency were stronger at reduced precipitation volumes. Context-dependency effects were found for microfauna only: microfauna was more sensitive to precipitation in late-successional forests (i.e., those with lower productivity and soil nutrient availability) than in earlier-successional forests. Our results also suggest that drought-induced changes in trophic interactions and food resources in the bryosphere may increase faunal abundance. Consequently, drier bryospheres that may result from climate change could promote carbon and nutrient turnover from fauna activity, especially in older, less productive forests.
Collapse
Affiliation(s)
- Roger Grau-Andrés
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Sylvia Thieffry
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Shanyi Tian
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - David A. Wardle
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
3
|
Grau-Andrés R, Wardle DA, Kardol P. Bryosphere Loss Impairs Litter Decomposition Consistently Across Moss Species, Litter Types, and Micro-Arthropod Abundance. Ecosystems 2021. [DOI: 10.1007/s10021-021-00731-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThe bryosphere (that is, ground mosses and their associated biota) is a key driver of nutrient and carbon dynamics in many terrestrial ecosystems, in part because it regulates litter decomposition. However, we have a poor understanding of how litter decomposition responds to changes in the bryosphere, including changes in bryosphere cover, moss species, and bryosphere-associated biota. Specifically, the contribution of micro-arthropods to litter decomposition in the bryosphere is unclear. Here, we used a 16-month litterbag field experiment in two boreal forests to investigate bryosphere effects on litter decomposition rates among two moss species (Pleurozium schreberi and Hylocomium splendens), and two litter types (higher-quality Betula pendula litter and lower-quality P. schreberi litter). Additionally, we counted all micro-arthropods in the litterbags and identified them to functional groups. We found that bryosphere removal reduced litter decomposition rates by 28% and micro-arthropod abundance by 29% and led to a colder micro-climate. Litter decomposition rates and micro-arthropod abundance were uncorrelated overall, but were positively correlated in B. pendula litterbags. Bryosphere effects on litter decomposition rates were consistent across moss species, litter types, and micro-arthropod abundances and community compositions. These findings suggest that micro-arthropods play a minor role in litter decomposition in the boreal forest floor, suggesting that other factors (for example, micro-climate, nutrient availability) likely drive the positive effect of the bryosphere on decomposition rates. Our results point to a substantial and consistent impairment of litter decomposition in response to loss of moss cover, which could have important implications for nutrient and carbon cycling in moss-dominated ecosystems.
Collapse
|