1
|
Badrov MB, Tobushi T, Notarius CF, Keys E, Nardone M, Cherney DZ, Mak S, Floras JS. Sympathetic Response to 1-Leg Cycling Exercise Predicts Exercise Capacity in Patients With Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2025; 18:e011962. [PMID: 39641163 DOI: 10.1161/circheartfailure.124.011962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND In heart failure, sympathetic excess and exercise intolerance impair quality of life. In heart failure with reduced ejection fraction, exercise stimulates a reflex increase in muscle sympathetic nerve activity (MSNA) that relates inversely to peak oxygen uptake (V̇O2peak). Whether similar sympathoexcitatory responses are present in heart failure with preserved EF (HFpEF) and relate to V̇O2peak are unknown. METHODS In 13 patients with HFpEF (70±6 years), 17 comorbidity-matched controls (CMC; 67±8 years), and 18 healthy controls (65±8 years), we measured heart rate, blood pressure, and MSNA (microneurography) during (1) 7-minute baseline; (2) 2-minute isometric handgrip (40% maximal voluntary contraction) or rhythmic handgrip (50% and 30% maximal voluntary contraction) exercise, followed by 2-minute postexercise circulatory occlusion; and (3) 4-minute 1-leg cycling (2 minutes each at mild and moderate intensity). V̇O2peak was obtained by open-circuit spirometry. RESULTS Resting MSNA was higher and V̇O2peak was lower in HFpEF versus CMCs and healthy controls (all P<0.05). During handgrip, MSNA increased in all groups (all P<0.05); in HFpEF, MSNA was greater than CMCs and healthy controls during HG and postexercise circulatory occlusion at 40% isometric handgrip (all P<0.05) and HG only at 50% and 30% rhythmic handgrip (all P<0.05). During cycling, MSNA (bursts·min-1) decreased during mild (-4±4; P=0.01) and moderate (-8±6; P<0.001) cycling in healthy controls, was unchanged during mild (+1±7; P=0.42) and moderate (+2±8; P=0.28) cycling in CMCs, yet increased in HFpEF during mild (+8±8; P<0.001) and moderate (+9±10; P<0.001) cycling. In HFpEF, the change in MSNA during moderate cycling related inversely to relative (r=-0.72; R 2=0.51; P<0.01) and percent-predicted (r=-0.63; R 2=0.39; P=0.03) V̇O2peak. No statistically significant relationships were detected in controls (P>0.05). CONCLUSIONS In contrast to CMCs, patients with HFpEF exhibit augmented MSNA at rest and during exercise. The magnitude of such paradoxical sympathoexcitation during dynamic cycling relates inversely to V̇O2peak, consistent with a neurogenic, vasoconstrictor limit on exercise capacity in HFpEF.
Collapse
Affiliation(s)
- Mark B Badrov
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - Tomoyuki Tobushi
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - Catherine F Notarius
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
| | - Evan Keys
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - Massimo Nardone
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - David Z Cherney
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - Susanna Mak
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - John S Floras
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| |
Collapse
|
2
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
3
|
Alves CR, Chermont SSMC, Reis CW, Nascimento EA, Ribeiro ML, Ribeiro F, Mesquita ET, Mesquita CT. Effects of Cardiac Resynchronization Therapy on a Six-minute Walk Test, Maximal Inspiratory Pressure and Peak Expiratory Flow in Patients with Heart Failure: A Longitudinal Study. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.36660/ijcs.20190158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Keir DA, Notarius CF, Badrov MB, Millar PJ, Floras JS. Heart failure-specific inverse relationship between the muscle sympathetic response to dynamic leg exercise and V̇O2peak. Appl Physiol Nutr Metab 2021; 46:1119-1125. [DOI: 10.1139/apnm-2020-1074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During 1-leg cycling, contralateral muscle sympathetic nerve activity (MSNA) falls in healthy adults but increases in most with reduced ejection fraction heart failure (HFrEF). We hypothesized that their peak oxygen uptake (V̇O2peak) relates inversely to their MSNA response to exercise. Twenty-nine patients (6 women; 63 ± 9 years; left ventricular ejection fraction: 30 ± 7%; V̇O2peak: 78 ± 23 percent age-predicted (%V̇O2peak); mean ± SD) and 21 healthy adults (9 women; 58 ± 7 years; 115 ± 29%V̇O2peak) performed 2 min of mild- (“loadless”) and moderate-intensity (“loaded”) 1-leg cycling. Heart rate, blood pressure (BP), contralateral leg MSNA and perceived exertion rate (RPE) were recorded. Resting MSNA burst frequency (BF) was higher (p < 0.01) in HFrEF (51 ± 11 vs 44 ± 7 bursts·min−1). Exercise heart rate, BP and RPE responses at either intensity were similar between groups. In minute 2 of “loadless” and “loaded” cycling, group mean BF fell from baseline values in controls (−5 ± 6 and −7 ± 7 bursts·min−1, respectively) but rose in HFrEF (+5 ± 7 and +5 ± 10 bursts·min−1). However, in 10 of the latter cohort, BF fell, similarly to controls. An inverse relationship between ΔBF from baseline to “loaded” cycling and %V̇O2peak was present in patients (r = −0.43, p < 0.05) but absent in controls (r = 0.07, p = 0.77). In HFrEF, ∼18% of variance in %V̇O2peak can be attributed to the change in BF elicited by exercise. Novelty: Unlike healthy individuals, in the majority of heart failure patients with reduced ejection fraction (HFrEF), 1-leg cycling increases muscle sympathetic nerve activity (MSNA). In HFrEF, ∼18% of age-predicted peak oxygen uptake (V̇O2peak) can be attributed to changes in MSNA elicited by low-intensity exercise. This relationship is absent in healthy adults.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Catherine F. Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mark B. Badrov
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Philip J. Millar
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
6
|
Tedjasukmana D, Triangto K, Radi B. Aerobic exercise prescription in heart failure patients with cardiac resynchronization therapy. J Arrhythm 2021; 37:165-172. [PMID: 33664899 PMCID: PMC7896451 DOI: 10.1002/joa3.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023] Open
Abstract
Exercise for heart failure patients had been shown to be beneficial in improving functional status, and was reviewed to be safe. In cases of advanced heart failure, Cardiac Resynchronization Therapy (CRT) is a promising medical option before being a heart transplant candidate. CRT itself is a biventricular pacing device, which could detect electrical aberrance in the failing heart and provide a suitable response. Studies have shown that exercise has clear benefits toward improving an overall exercise capacity of the patients. Despite its impacts, these randomized clinical trials have varying exercise regime, and until now there has not been a standardized exercise prescription for this group of patients. The nature of CRT as a pacemaker, sometimes with defibrillator, being attached to a heart failure patient, each has its own potential exercise hazards. Therefore, providing detailed exercise prescription in adjusting to the medical condition is very essential in the field of physical medicine and rehabilitation. Being classified as a high-risk patient group, exercise challenges for the complex heart failure with CRT patients will then be discussed in this literature review, with a general aim to provide a safe, effective, and targeted exercise regime.
Collapse
Affiliation(s)
- Deddy Tedjasukmana
- Department of Physical Medicine and RehabilitationFaculty of MedicineUniversitas IndonesiaJakartaIndonesia
| | - Kevin Triangto
- Department of Physical Medicine and RehabilitationFaculty of MedicineUniversitas IndonesiaJakartaIndonesia
| | - Basuni Radi
- Department of Cardiology and Vascular MedicineFaculty of MedicineUniversitas IndonesiaJakartaIndonesia
| |
Collapse
|
7
|
Ye LF, Wang SM, Wang LH. Efficacy and Safety of Exercise Rehabilitation for Heart Failure Patients With Cardiac Resynchronization Therapy: A Systematic Review and Meta-Analysis. Front Physiol 2020; 11:980. [PMID: 32973547 PMCID: PMC7472379 DOI: 10.3389/fphys.2020.00980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Many heart failure (HF) patients admitted to cardiac rehabilitation (CR) centers have a cardiac resynchronization therapy (CRT) device. However, information about the efficacy and safety of exercise rehabilitation in HF patients with a CRT device is scant. We assessed the effects of exercise rehabilitation in HF patients with a CRT device. Methods and Results: The PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL, PsycInfo, China Biology Medicine, Wanfang, and China National Knowledge Infrastructure databases were searched comprehensively to identify randomized controlled trials (RCTs) published between January 1, 1990 and July 1, 2019 on exercise rehabilitation in HF patients with CRT devices. We identified seven studies published from 2006 to 2019, including 661 patients with an intervention duration of 8 to 24 weeks. Three studies reported all-cause mortality and serious adverse events, and no significant difference was found between exercise rehabilitation patients and controls at the longest available follow-up (both P > 0.05; both I 2 = 0%). Exercise rehabilitation patients exhibited a higher exercise capacity (peak oxygen uptake: random-effect WMD = 2.02 ml/kg/min, 95% CI 0.62 to 3.41, P = 0.005, I 2 = 67.4%; exercise duration: fixed-effect WMD = 102.34s, 95% CI 67.06 to 137.62, P < 0.001, I 2 = 25%) after intervention, despite the significant heterogeneity of studies. Left ventricular ejection fraction (LVEF) was significantly improved in exercise rehabilitation patients compared to that in controls (fixed-effect WMD = 3.89%, 95% CI 1.50 to 6.28; P = 0.001; I 2 = 48.0%). Due to differences in health-related quality of life (HRQOL) assessment methods, we only pooled data that reported Minnesota Living with Heart Failure Questionnaire scores. Exercise rehabilitation patients exhibited a better HRQOL than controls (fixed-effect WMD = -5.34, 95% CI -10.12 to -0.56; P = 0.028; I 2 = 0%). Conclusions: Exercise rehabilitation may restore exercise capacity and cardiac function in HF patients with a CRT device. Furthermore, exercise training was associated with better HRQOL on follow-up.
Collapse
Affiliation(s)
| | | | - Li-hong Wang
- Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Xiao PL, Cai C, Zhang P, DeSimone CV, Ernst DK, Yin YH, Chen PS, Cha YM. Cardiac resynchronization therapy modulates peripheral sympathetic activity. Heart Rhythm 2020; 17:1139-1146. [DOI: 10.1016/j.hrthm.2020.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
|
9
|
Sympathetic neural overdrive in congestive heart failure and its correlates: systematic reviews and meta-analysis. J Hypertens 2020; 37:1746-1756. [PMID: 30950979 DOI: 10.1097/hjh.0000000000002093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Sympathetic neural activation occurs in congestive heart failure (CHF). However, the small sample size of the microneurographic studies, heterogeneity of the patients examined, presence of comorbidities as well as confounders (including treatment) represented major weaknesses not allowing to identify the major features of the phoenomenon, particularly in mild CHF. This meta-analysis evaluated 2530 heart failure (CHF) patients recruited in 106 microneurographic studies. It was based on muscle sympathetic nerve activity (MSNA) quantification in CHF of different clinical severity, but data from less widely addressed conditions, such as ischemic vs. idiopathic, were also considered. METHODS Assessment was extended to the relationships of MSNA with venous plasma norepinephrine, heart rate (HR) and echocardiographic parameters of cardiac morphology [left ventricular (LV) end-diastolic diameter] and function (LV ejection fraction) as well. RESULTS MSNA was significantly greater (1.9 times, P < 0.001) in CHF patients as compared with healthy controls, a progressive significant increase being observed from New York Heart Association classes I-IV in unadjusted and adjusted analyses. MSNA was significantly greater in both untreated and treated CHF (P < 0.001 for both), related to left ventricular (LV) end-diastolic diameter and to a lesser extent to LV ejection fraction (r = 0.24 and -0.05, P < 0.001 and <0.01, respectively), and closely associated with HR (r = 0.66, P < 0.001) and plasma norepinephrine (r = 0.68, P < 0.001). CONCLUSION CHF is characterized by sympathetic overactivity which mirrors the degree of LV dysfunction independently of the stage of CHF, its cause and presence of confounders or pharmacological treatment. plasma norepinephrine and HR represent potentially valuable surrogate markers of sympathetic activation in the clinical setting.
Collapse
|
10
|
Meta-Analysis of the Effects of Cardiac Rehabilitation on Exercise Tolerance and Cardiac Function in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3202838. [PMID: 31871936 PMCID: PMC6907042 DOI: 10.1155/2019/3202838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023]
Abstract
Objective To evaluate the effects of cardiac rehabilitation on exercise tolerance and cardiac function in heart failure patients undergoing cardiac resynchronization therapy (CRT). Methods Randomized controlled trials were initially identified from systematic reviews of the literature about cardiac rehabilitation and heart failure patients with CRT. We undertook updated literature searches of the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, CBM, CNKI, and Wanfang databases until July 1, 2017. STATA12.0 software was used. Results Four randomized controlled studies were included. The total sample size was 157 patients, including 77 in the control group. Cardiac rehabilitation treatment affected the peak VO2 in heart failure patients with CRT (P heterogeneity=0.491, I 2 = 0%). The results lacked heterogeneity, and the data were merged in a fixed-effects model (WMD = 2.17 ml/kg/min, 95% CI (1.42, 2.92), P < 0.001). The peak VO2 was significantly higher in the cardiac rehabilitation group than in the control group. The sensitivity analysis showed that the results of the meta-analysis were robust. Cardiac rehabilitation treatment affected LVEF in heart failure patients with CRT (P heterogeneity=0.064, I 2 = 63.6%); the heterogeneity among the various research results meant that the data were merged in a random-effects model (WMD = 4.75%, 95% CI (1.53, 7.97), P=0.004). The LVEF was significantly higher in the cardiac rehabilitation group than in the control group. The sources of heterogeneity were analyzed, and it was found that one of the studies was the source of significant heterogeneity. After the elimination of that study, the data were reanalyzed, and the heterogeneity was significantly reduced. There were still significant differences in the WMD and 95% CI. Conclusion Cardiac rehabilitation can improve exercise tolerance and cardiac function in heart failure patients with CRT. Future studies are needed to evaluate whether these beneficial effects of cardiac rehabilitation may translate into an improvement in long-term clinical outcomes among these patients.
Collapse
|
11
|
Spaggiari CV, Kuniyoshi RR, Antunes-Correa LM, Groehs RV, de Siqueira SF, Martinelli Filho M. Cardiac resynchronization therapy restores muscular metaboreflex control. J Cardiovasc Electrophysiol 2019; 30:2591-2598. [PMID: 31544272 DOI: 10.1111/jce.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The muscular metaboreflex, whose activation regulates blood flow during isometric and aerobic exercise, is blunted in patients with heart failure (HF), and cardiac resynchronization therapy (CRT) may restore this regulatory reflex. OBJECTIVE To evaluate metaboreflex responses after CRT. METHODS Thirteen HF patients and 12 age-matched healthy control subjects underwent the following evaluations (pre- and post-CRT implantation in the patient group): (a) heart rate, blood pressure, and forearm blood flow measurements; (b) muscle sympathetic nerve activity (MSNA) evaluation; and (c) peak oxygen consumption (VO2peak ). Examinations were performed at rest, during moderate isometric exercise (IE), and during forearm ischemia (metaboreflex activation). The primary outcome was the increment in MSNA during limb ischemia compared to the rest moment (ΔMSNA rest to metaboreflex activation). RESULTS After CRT, rest MSNA decreased in the HF participants: 50.4 ± 9.2 bursts/min pre-CRT vs 34.0 ± 14.4 bursts/min post-CRT, P = .001, accompanied by an improvement in systolic blood pressure and in rate-pressure product. MSNA during limb ischemia decreased: 56.6 ± 11.5 bursts/min pre-CRT vs 43.6 ± 12.7 bursts/min post-CRT, P = .001, and the ΔMSNA rest to metaboreflex activation increased: 0% (interquartile range [IQR)], -7 to 9) vs 13% (IQR, 5-30), P = .03. An augmentation of mean blood pressure during limb ischemia post-CRT was noticed: 94 mmHg (IQR, 81-104) vs 110 mmHg (IQR, 100-117), P = .04. CRT improved VO2peak , and this improvement was correlated with diminution in ΔMSNA pre- to post-CRT at rest moment (rs = -0.74, P = .006). CONCLUSION CRT provides metaboreflex sensitization and MSNA enhancement. The restoration of sympathetic responsiveness correlates with the improvement in functional capacity.
Collapse
Affiliation(s)
- Caio V Spaggiari
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lígia M Antunes-Correa
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raphaela V Groehs
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio F de Siqueira
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martino Martinelli Filho
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Kiuchi MG, Nolde JM, Villacorta H, Carnagarin R, Chan JJSY, Lugo-Gavidia LM, Ho JK, Matthews VB, Dwivedi G, Schlaich MP. New Approaches in the Management of Sudden Cardiac Death in Patients with Heart Failure-Targeting the Sympathetic Nervous System. Int J Mol Sci 2019; 20:E2430. [PMID: 31100908 PMCID: PMC6567277 DOI: 10.3390/ijms20102430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been considered the most predominant cause of death and one of the most critical public health issues worldwide. In the past two decades, cardiovascular (CV) mortality has declined in high-income countries owing to preventive measures that resulted in the reduced burden of coronary artery disease (CAD) and heart failure (HF). In spite of these promising results, CVDs are responsible for ~17 million deaths per year globally with ~25% of these attributable to sudden cardiac death (SCD). Pre-clinical data demonstrated that renal denervation (RDN) decreases sympathetic activation as evaluated by decreased renal catecholamine concentrations. RDN is successful in reducing ventricular arrhythmias (VAs) triggering and its outcome was not found inferior to metoprolol in rat myocardial infarction model. Registry clinical data also suggest an advantageous effect of RDN to prevent VAs in HF patients and electrical storm. An in-depth investigation of how RDN, a minimally invasive and safe method, reduces the burden of HF is urgently needed. Myocardial systolic dysfunction is correlated to neuro-hormonal overactivity as a compensatory mechanism to keep cardiac output in the face of declining cardiac function. Sympathetic nervous system (SNS) overactivity is supported by a rise in plasma noradrenaline (NA) and adrenaline levels, raised central sympathetic outflow, and increased organ-specific spillover of NA into plasma. Cardiac NA spillover in untreated HF individuals can reach ~50-fold higher levels compared to those of healthy individuals under maximal exercise conditions. Increased sympathetic outflow to the renal vascular bed can contribute to the anomalies of renal function commonly associated with HF and feed into a vicious cycle of elevated BP, the progression of renal disease and worsening HF. Increased sympathetic activity, amongst other factors, contribute to the progress of cardiac arrhythmias, which can lead to SCD due to sustained ventricular tachycardia. Targeted therapies to avoid these detrimental consequences comprise antiarrhythmic drugs, surgical resection, endocardial catheter ablation and use of the implantable electronic cardiac devices. Analogous NA agents have been reported for single photon-emission-computed-tomography (SPECT) scans usage, specially the 123I-metaiodobenzylguanidine (123I-MIBG). Currently, HF prognosis assessment has been improved by this tool. Nevertheless, this radiotracer is costly, which makes the use of this diagnostic method limited. Comparatively, positron-emission-tomography (PET) overshadows SPECT imaging, because of its increased spatial definition and broader reckonable methodologies. Numerous ANS radiotracers have been created for cardiac PET imaging. However, so far, [11C]-meta-hydroxyephedrine (HED) has been the most significant PET radiotracer used in the clinical scenario. Growing data has shown the usefulness of [11C]-HED in important clinical situations, such as predicting lethal arrhythmias, SCD, and all-cause of mortality in reduced ejection fraction HF patients. In this article, we discussed the role and relevance of novel tools targeting the SNS, such as the [11C]-HED PET cardiac imaging and RDN to manage patients under of SCD risk.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Janis Marc Nolde
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Humberto Villacorta
- Cardiology Division, Department of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24033-900, Brazil.
| | - Revathy Carnagarin
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Justine Joy Su-Yin Chan
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Jan K Ho
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Vance B Matthews
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research and Fiona Stanley Hospital, The University of Western Australia, Perth 6150, Australia.
| | - Markus P Schlaich
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth 6000, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
| |
Collapse
|
13
|
Nobre TS, Antunes-Correa LM, Groehs RV, Alves MJNN, Sarmento AO, Bacurau AV, Urias U, Alves GB, Rondon MUPB, Brum PC, Martinelli M, Middlekauff HR, Negrao CE. Exercise training improves neurovascular control and calcium cycling gene expression in patients with heart failure with cardiac resynchronization therapy. Am J Physiol Heart Circ Physiol 2016; 311:H1180-H1188. [PMID: 27591218 PMCID: PMC6347073 DOI: 10.1152/ajpheart.00275.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023]
Abstract
Heart failure (HF) is characterized by decreased exercise capacity, attributable to neurocirculatory and skeletal muscle factors. Cardiac resynchronization therapy (CRT) and exercise training have each been shown to decrease muscle sympathetic nerve activity (MSNA) and increase exercise capacity in patients with HF. We hypothesized that exercise training in the setting of CRT would further reduce MSNA and vasoconstriction and would increase Ca2+-handling gene expression in skeletal muscle in patients with chronic systolic HF. Thirty patients with HF, ejection fraction <35% and CRT for 1 mo, were randomized into two groups: exercise-trained (ET, n = 14) and untrained (NoET, n = 16) groups. The following parameters were compared at baseline and after 4 mo in each group: V̇o2 peak, MSNA (microneurography), forearm blood flow, and Ca2+-handling gene expression in vastus lateralis muscle. After 4 mo, exercise duration and V̇o2 peak were significantly increased in the ET group (P = 0.04 and P = 0.01, respectively), but not in the NoET group. MSNA was significantly reduced in the ET (P = 0.001), but not in NoET, group. Similarly, forearm vascular conductance significantly increased in the ET (P = 0.0004), but not in the NoET, group. The expression of the Na+/Ca2+ exchanger (P = 0.01) was increased, and ryanodine receptor expression was preserved in ET compared with NoET. In conclusion, the exercise training in the setting of CRT improves exercise tolerance and neurovascular control and alters Ca2+-handling gene expression in the skeletal muscle of patients with systolic HF. These findings highlight the importance of including exercise training in the treatment of patients with HF even following CRT.
Collapse
Affiliation(s)
- Thais S Nobre
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Raphaela V Groehs
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Adriana O Sarmento
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Aline V Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ursula Urias
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Guilherme B Alves
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Patrícia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Martino Martinelli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Holly R Middlekauff
- Department of Medicine (Cardiology) and Physiology, Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Carlos E Negrao
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil;
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Ghotbi AA, Sander M, Køber L, Philbert BT, Gustafsson F, Hagemann C, Kjær A, Jacobsen PK. Optimal Cardiac Resynchronization Therapy Pacing Rate in Non-Ischemic Heart Failure Patients: A Randomized Crossover Pilot Trial. PLoS One 2015; 10:e0138124. [PMID: 26382243 PMCID: PMC4575161 DOI: 10.1371/journal.pone.0138124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/21/2015] [Indexed: 12/27/2022] Open
Abstract
Background The optimal pacing rate during cardiac resynchronization therapy (CRT) is unknown. Therefore, we investigated the impact of changing basal pacing frequencies on autonomic nerve function, cardiopulmonary exercise capacity and self-perceived quality of life (QoL). Methods Twelve CRT patients with non-ischemic heart failure (NYHA class II–III) were enrolled in a randomized, double-blind, crossover trial, in which the basal pacing rate was set at DDD-60 and DDD-80 for 3 months (DDD-R for 2 patients). At baseline, 3 months and 6 months, we assessed sympathetic nerve activity by microneurography (MSNA), peak oxygen consumption (pVO2), N-terminal pro-brain natriuretic peptide (p-NT-proBNP), echocardiography and QoL. Results DDD-80 pacing for 3 months increased the mean heart rate from 77.3 to 86.1 (p = 0.001) and reduced sympathetic activity compared to DDD-60 (51±14 bursts/100 cardiac cycles vs. 64±14 bursts/100 cardiac cycles, p<0.05). The mean pVO2 increased non-significantly from 15.6±6 mL/min/kg during DDD-60 to 16.7±6 mL/min/kg during DDD-80, and p-NT-proBNP remained unchanged. The QoL score indicated that DDD-60 was better tolerated. Conclusion In CRT patients with non-ischemic heart failure, 3 months of DDD-80 pacing decreased sympathetic outflow (burst incidence only) compared to DDD-60 pacing. However, Qol scores were better during the lower pacing rate. Further and larger scale investigations are indicated. Trial Registration ClinicalTrials.gov NCT02258061
Collapse
Affiliation(s)
- Adam Ali Ghotbi
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Mikael Sander
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Køber
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Berit Th. Philbert
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Gustafsson
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoffer Hagemann
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter K. Jacobsen
- The Heart Center, Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
15
|
Notarius CF, Millar PJ, Floras JS. Muscle sympathetic activity in resting and exercising humans with and without heart failure. Appl Physiol Nutr Metab 2015; 40:1107-15. [PMID: 26481289 DOI: 10.1139/apnm-2015-0289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system is critical for coordinating the cardiovascular response to various types of physical exercise. In a number of disease states, including human heart failure with reduced ejection fraction (HFrEF), this regulation can be disturbed and adversely affect outcome. The purpose of this review is to describe sympathetic activity at rest and during exercise in both healthy humans and those with HFrEF and outline factors, which influence these responses. We focus predominately on studies that report direct measurements of efferent sympathetic nerve traffic to skeletal muscle (muscle sympathetic nerve activity; MSNA) using intraneural microneurographic recordings. Differences in MSNA discharge between subjects with and without HFrEF both at rest and during exercise and the influence of exercise training on the sympathetic response to exercise will be discussed. In contrast to healthy controls, MSNA increases during mild to moderate dynamic exercise in the presence of HFrEF. This increase may contribute to the exercise intolerance characteristic of HFrEF by limiting muscle blood flow and may be attenuated by exercise training. Future investigations are needed to clarify the neural afferent mechanisms that contribute to efferent sympathetic activation at rest and during exercise in HFrEF.
Collapse
Affiliation(s)
- Catherine F Notarius
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Philip J Millar
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Floras
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
16
|
Notarius CF, Millar PJ, Murai H, Morris BL, Marzolini S, Oh P, Floras JS. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects. J Physiol 2014; 593:715-22. [PMID: 25398528 DOI: 10.1113/jphysiol.2014.281873] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/03/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. ABSTRACT The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P < 0.001) in HFrEF. Exercise increased HR (P < 0.001) with no group difference (P = 0.1). MSNA burst frequency decreased during mild to moderate dynamic exercise in the healthy controls but increased in HFrEF (-5.5 ± 2.0 vs. 6.9 ± 1.8 bursts min(-1), P < 0.001). Exercise capacity correlated inversely with MSNA burst frequency at 50% V̇O2,peak (n = 29; r = -0.64; P < 0.001). At the same relative workload, one-legged dynamic exercise elicited a fall in MSNA burst frequency in healthy subjects but sympathoexcitation in HFrEF, a divergence probably reflecting between-group differences in reflexes engaged by cycling. This finding, coupled with an inverse relationship between MSNA burst frequency during loaded cycling and subjects' V̇O2,peak, is consistent with a neurogenic determinant of exercise capacity in HFrEF.
Collapse
Affiliation(s)
- Catherine F Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|