1
|
Martikainen MV, Huttunen K, Tossavainen T, Nordberg ME, Roponen M. Cattle farm dust alters cytokine levels in human airway construct model. Toxicol In Vitro 2023; 88:105559. [PMID: 36681285 DOI: 10.1016/j.tiv.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Epidemiological studies have revealed some alterations in systemic immunity that associate with farm exposure and the risk of respiratory diseases, but in vitro studies focusing on immunological responses in the airways are scarce. Our aim was to assess how cowshed dust affects the integrity and inflammation of human airway tissue in vitro. Cowshed dust samples were collected from four different dairy farms. Lung tissue constructs were exposed to dust samples in air-liquid interface. Transepithelial resistance of the tissue, secreted proteins, and a panel of pro-inflammatory cytokines, growth factors, and chemokines were analysed. Cowshed dust stimulation was associated mainly with increased production of IL-13, IL-15, IP-10 and IFN-γ. Some differences between farms were seen. Only one farm dust sample induced a significant change in transepithelial resistance, whereas dust from two of the farms induced the secretion of proteins. The exposure to cowshed dust affected protein and cytokine secretion, but the response profiles were not uniform between farms. The effect on tight junction dynamics was less pronounced, suggesting the relevance of soluble factors in induced responses in the airways. Our results indicate that in addition to farm type, the contribution of cowshed characteristics to dust composition and its immunomodulatory properties should be taken into account.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Elisa Nordberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Howard E, Orhurhu V, Huang L, Guthrie B, Phipatanakul W. The Impact of Ambient Environmental Exposures to Microbial Products on Asthma Outcomes from Birth to Childhood. Curr Allergy Asthma Rep 2019; 19:59. [PMID: 31781873 PMCID: PMC7088961 DOI: 10.1007/s11882-019-0890-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review Asthma is a chronic respiratory condition with increasing domestic and worldwide prevalence that burdens individuals and the healthcare system with high costs associated with long-term treatments and acute emergency room (ER) visits. It can be triggered by ambient microbes, including bacteria, viruses, and fungi. In this review, we examine the outcomes of asthma patients in relation to environmental exposures to ambient microbe products, focusing on whether exposure leads to asthma development from birth to childhood and if particular microbes are associated with worsened asthma exacerbations. Recent Findings Bacterial endotoxin is more prominent in homes with pets and may cause cytokine cascades that lead to asthma exacerbation. However, some studies have demonstrated a protective effect with early exposure. Patients with positive Aspergillus skin testing are more prone to moderate-severe or severe-uncontrolled asthma. Fungal sensitization is also associated with earlier onset of asthma and demonstrates a dose-dependent relationship of symptom severity and duration. Among viruses, rhinovirus has the greatest association with decreased lung function, severe asthma, and asthma-related hospital admissions. Distribution of microbial products and associated asthma symptoms depends on the geographical climate. Genetic variations among individuals also mitigate the effects of microbial products on asthma development and symptom severity. Summary Microbial products of bacteria, fungi, and viruses are associated with the development of asthma, more severe asthma symptoms, and worse outcomes. However, some early exposure studies have also demonstrated a protective effect. Bacterial and fungal products are related to decreased lung function and earlier onset of asthma. Viral products are related to asthma-associated hospital admissions; and the climate and patient genetics can also temper or intensify the relationships between microbial products, asthma development, and asthma symptom severity. Further research should focus on the effects of early microbe exposure and its interaction with human immune systems and asthma-related outcomes.
Collapse
Affiliation(s)
- Evin Howard
- Bouvé College of Health Sciences, Graduate School of Nursing, Northeastern University, Boston, MA, USA
| | - Vwaire Orhurhu
- Department of Anesthesia, Critical Care, & Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Huang
- Department of Anesthesia, Critical Care, & Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Barbara Guthrie
- Bouvé College of Health Sciences, Graduate School of Nursing, Northeastern University, Boston, MA, USA
| | - Wanda Phipatanakul
- Division of Asthma, Allergy, & Immunology, Harvard Medical School, Children's Hospital Boston, Boston, MA, USA.
| |
Collapse
|
4
|
Deckers J, Lambrecht BN, Hammad H. How a farming environment protects from atopy. Curr Opin Immunol 2019; 60:163-169. [PMID: 31499321 DOI: 10.1016/j.coi.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
It is now well established that the exposure to certain environments such as farms has the potential to protect from the development of allergies later in life. This protection is achieved when repeated exposure to the farming environment occurs early in life, but persists when children spend sufficient amount of time in contact with livestock and hay, and drink unpasteurized milk. The capacity of farm dust to protect from allergy development lies, amongst others, in the microbe composition in the farm. These protective microbes release various metabolites and cell wall components that change farmers' home dust composition, when compared to urbanized home dust. Additionally, they can colonize various barrier sites (skin, lung, intestine) in farmers' children, leading to persistent changes in the way their immune system and their barrier cells respond to environmental allergens.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Pekkanen J, Valkonen M, Täubel M, Tischer C, Leppänen H, Kärkkäinen PM, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M, Janson C, Pin I, Gislason T, Jarvis D, Heinrich J, Hyvärinen A. Indoor bacteria and asthma in adults: a multicentre case-control study within ECRHS II. Eur Respir J 2018; 51:51/2/1701241. [PMID: 29437937 DOI: 10.1183/13993003.01241-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/18/2017] [Indexed: 11/05/2022]
Abstract
Both protective and adverse effects of indoor microbial exposure on asthma have been reported, but mostly in children. To date, no study in adults has used non-targeted methods for detection of indoor bacteria followed by quantitative confirmation.A cross-sectional study of 198 asthmatic and 199 controls was conducted within the European Community Respiratory Health Survey (ECRHS) II. DNA was extracted from mattress dust for bacterial analysis using denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced and associations with asthma confirmed with four quantitative PCR (qPCR) assays.15 out of 37 bands detected with DGGE, which had at least a suggestive association (p<0.25) with asthma, were sequenced. Of the four targeted qPCRs, Clostridium cluster XI confirmed the protective association with asthma. The association was dose dependent (aOR 0.43 (95% CI 0.22-0.84) for the fourth versus first quartile, p for trend 0.009) and independent of other microbial markers. Few significant associations were observed for the three other qPCRs used.In this large international study, the level of Clostridium cluster XI was independently associated with a lower risk of prevalent asthma. Results suggest the importance of environmental bacteria also in adult asthma, but need to be confirmed in future studies.
Collapse
Affiliation(s)
- Juha Pekkanen
- Dept of Public Health, University of Helsinki, Helsinki, Finland .,National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland
| | - Maria Valkonen
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland.,Dept of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Martin Täubel
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland
| | - Christina Tischer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hanna Leppänen
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland
| | - Päivi M Kärkkäinen
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland
| | - Helena Rintala
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio, Finland
| | - Jan-Paul Zock
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lidia Casas
- Centre for Environment and Health - Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Nicole Probst-Hensch
- Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Mathias Holm
- Dept of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christer Janson
- Dept of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Isabelle Pin
- CHU de Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Thorarinn Gislason
- Dept of Respiratory Medicine and Sleep, Landspitali University Hospital (E7), Reykjavik, Iceland.,University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - Debbie Jarvis
- Population Health and Occupational Disease, Imperial College, National Heart and Lung Institute, London, UK.,MRC-PHE Centre for Environment and Health, Imperial College, London, UK
| | - Joachim Heinrich
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich, Ludwig Maximillians University Munich, Munich, Germany.,Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne Hyvärinen
- Dept of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|