1
|
Biagioni B, Scala E, Cecchi L. What molecular allergy teaches us about genetics and epidemiology of allergies. Curr Opin Allergy Clin Immunol 2024; 24:280-290. [PMID: 38640142 DOI: 10.1097/aci.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW To delineate pertinent information regarding the application of molecular allergology within the realm of both genetic and epidemiological facets of allergic diseases. RECENT FINDINGS The emergence of molecular allergy has facilitated the comprehension of the biochemical characteristics of allergens originating from diverse sources. It has allowed for the exploration of sensitization trajectories and provided novel insights into the influence of genetics and environmental exposure on the initiation and development of allergic diseases. This review delves into the primary discoveries related to the genetics and epidemiology of allergies, facilitated by the application of molecular allergy. It also scrutinizes the impact of environmental exposure across varied geoclimatic, socioeconomic, and lifestyle contexts. Additionally, the review introduces specific models of molecular allergy within the realms of plants and animals. SUMMARY The utilization of molecular allergy in clinical practice holds crucially acknowledged diagnostic and therapeutic implications. From a research standpoint, there is a growing need for the widespread adoption of molecular diagnostic tools to achieve a more profound understanding of the epidemiology and natural progression of allergic diseases.
Collapse
Affiliation(s)
- Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI-IRCCS, Rome
| | - Lorenzo Cecchi
- SOSD Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy
| |
Collapse
|
2
|
Khaitov M, Shilovskiy I, Valenta R, Weber M, Korneev A, Tulaeva I, Gattinger P, van Hage M, Hofer G, Konradsen JR, Keller W, Akinfenwa O, Poroshina A, Ilina N, Fedenko E, Elisyutina O, Litovkina A, Smolnikov E, Nikonova A, Rybalkin S, Aldobaev V, Smirnov V, Shershakova N, Petukhova O, Kudlay D, Shatilov A, Timofeeva A, Campana R, Udin S, Skvortsova V. Recombinant PreS-fusion protein vaccine for birch pollen and apple allergy. Allergy 2024; 79:1001-1017. [PMID: 37855043 DOI: 10.1111/all.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.
Collapse
Affiliation(s)
- Musa Khaitov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor Shilovskiy
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Rudolf Valenta
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Karl Landsteiner University for Healthcare Sciences, Krems, Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Artem Korneev
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Inna Tulaeva
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry, University of Stockholm, Stockholm, Sweden
| | - Jon R Konradsen
- Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Oluwatoyin Akinfenwa
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Poroshina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Nataliya Ilina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Elena Fedenko
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Olga Elisyutina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Alla Litovkina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Evgenii Smolnikov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | | | - Sergei Rybalkin
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vladimir Aldobaev
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valeriy Smirnov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga Petukhova
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Dmitriy Kudlay
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Artem Shatilov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei Udin
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russian Federation
| | - Veronica Skvortsova
- Federal Medical Biological Agency of Russia (FMBA Russia), Moscow, Russian Federation
| |
Collapse
|
3
|
Brazhnikov G, Smolnikov E, Litovkina A, Jiang T, Shatilov A, Tulaeva I, Tulaev M, Karaulov A, Poroshina A, Zhernov Y, Focke‐Tejkl M, Weber M, Akinfenwa O, Elisyutina O, Andreev S, Shilovskiy I, Shershakova N, Smirnov V, Fedenko E, Lepeshkova TS, Beltyukov EC, Naumova VV, Kundi M, Khaitov M, Wiedermann U, Valenta R, Campana R. Natural human Bet v 1-specific IgG antibodies recognize non-conformational epitopes whereas IgE reacts with conformational epitopes. Allergy 2023; 78:3136-3153. [PMID: 37701941 PMCID: PMC10952721 DOI: 10.1111/all.15865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.
Collapse
Affiliation(s)
- Georgii Brazhnikov
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Evgenii Smolnikov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Alla Litovkina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Tianchi Jiang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Artem Shatilov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Mikhail Tulaev
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Alina Poroshina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Yury Zhernov
- F. Erismann Institute of Public HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Olga Elisyutina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Sergey Andreev
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Nadezhda Shershakova
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Valeriy Smirnov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Elena Fedenko
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | | | - Evgeny Cronidovich Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Veronika Victorovna Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Michael Kundi
- Institute for Hygiene and Applied Immunology, Center for Public HealthMedical University of ViennaViennaAustria
| | - Musa Khaitov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Ursula Wiedermann
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Trifonova D, Curin M, Riabova K, Karsonova A, Keller W, Grönlund H, Käck U, Konradsen JR, van Hage M, Karaulov A, Valenta R. Allergenic Activity of Individual Cat Allergen Molecules. Int J Mol Sci 2023; 24:16729. [PMID: 38069052 PMCID: PMC10706119 DOI: 10.3390/ijms242316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
More than 10% of the world's population suffers from an immunoglobulin E (IgE)-mediated allergy to cats which is accompanied mainly by respiratory symptoms such as rhinitis and asthma. Several cat allergen molecules have been identified, but their allergenic activity has not been investigated in depth. Purified cat allergen molecules (Fel d 1, Fel d 2, Fel d 3, Fel d 4, Fel d 6, Fel d 7 and Fel d 8) were characterized via mass spectrometry and circular dichroism spectroscopy regarding their molecular mass and fold, respectively. Cat-allergen-specific IgE levels were quantified via ImmunoCAP measurements in IgE-sensitized subjects with (n = 37) and without (n = 20) respiratory symptoms related to cat exposure. The allergenic activity of the cat allergens was investigated by loading patients' IgE onto rat basophils expressing the human FcεRI receptor and studying the ability of different allergen concentrations to induce β-hexosaminidase release. Purified and folded cat allergens with correct masses were obtained. Cat-allergen-specific IgE levels were much higher in patients with a respiratory allergy than in patients without a respiratory allergy. Fel d 1, Fel d 2, Fel d 4 and Fel d 7 bound the highest levels of specific IgE and already-induced basophil degranulation at hundred-fold-lower concentrations than the other allergens. Fel d 1, Fel d 4 and Fel d 7 were recognized by more than 65% of patients with a respiratory allergy, whereas Fel d 2 was recognized by only 30%. Therefore, in addition to the major cat allergen Fel d 1, Fel d 4 and Fel d 7 should also be considered to be important allergens for the diagnosis and specific immunotherapy of cat allergy.
Collapse
Affiliation(s)
- Daria Trifonova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, 8010 Graz, Austria;
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Ulrika Käck
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden;
| | - Jon R. Konradsen
- Pediatric Allergy and Pulmonology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 17164 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden;
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
- Karl Landsteiner University for Healthcare Sciences, 3500 Krems, Austria
| |
Collapse
|
5
|
Landzaat LJ, Emons JAM, Sonneveld LJH, Schreurs MWJ, Arends NJT. Early inhalant allergen sensitization at component level: an analysis in atopic Dutch children. FRONTIERS IN ALLERGY 2023; 4:1173540. [PMID: 37470032 PMCID: PMC10352100 DOI: 10.3389/falgy.2023.1173540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
Background Allergic rhinitis is a common respiratory disease in children and sensitization to inhalant allergens plays a significant role in its development. However, limited knowledge exists regarding sensitization profiles of inhalant allergen components in atopic children, particularly in the very young individuals. Understanding these profiles could provide insights into the early development of allergic rhinitis. The objective of this cross-sectional retrospective study was to evaluate the IgE-sensitization profiles to multiple inhalant allergen components and their clinical relevance in Dutch atopic children, with specific focus on children under the age of 4 years. Methods A total of 243 atopic children were included in the study and sensitization profiles were analyzed using multiplex microarray analysis (ISAC). Clinical information was obtained from records of a pediatric allergy outpatient clinic between 2011 and 2020. Specific IgE responses to inhalation allergen components from five allergen sources (grass pollen, tree pollen, house dust mite, cat and dog), were examined. The study encompassed children of different age groups and compared those with and without symptoms. Results The results demonstrated that sensitization to inhalant allergen components was present in 92% of the cohort. Sensitization was already evident at a young age (87%), including infancy, with a rapid increase in prevalence after 1 year of age. House dust mite emerged as the most predominant sensitizing allergen in early childhood, followed by tree pollen in later years. Sensitization patterns were similar between symptomatic and asymptomatic children, although symptomatic children exhibited higher frequencies and values. The sensitization profiles in very young children were comparable to those of children across all age groups. Conclusion These findings highlight the presence of sensitization to inhalant allergen components and the early onset of allergic rhinitis before the age of 4, including infancy, in Dutch atopic children. Notable allergen molecules in Dutch atopic children under the age of 4 years include Bet v 1, Fel d 1, Der f 1, Der p 1, Der p 10 and Phl p 4, with house dust mite sensitization being the most common among Dutch infants. Moreover, the prevalence of sensitization to inhalant allergens in this Dutch cohort surpassed that of general European populations, emphasizing the importance of early assessment and management of allergic rhinitis in young atopic children.
Collapse
Affiliation(s)
- Lonneke J. Landzaat
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Joyce A. M. Emons
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Laura J. H. Sonneveld
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marco W. J. Schreurs
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Nicolette J. T. Arends
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Naumova V, Beltyukov E, Niespodziana K, Errhalt P, Valenta R, Karaulov A, Kiseleva D. Cumulative IgE-levels specific for respiratory allergens as biomarker to predict efficacy of anti-IgE-based treatment of severe asthma. Front Immunol 2022; 13:941492. [PMID: 36211434 PMCID: PMC9533054 DOI: 10.3389/fimmu.2022.941492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Molecular therapies, including anti-IgE, biologicals and small molecules are increasingly used for treatment of asthma. The effectiveness of these therapies may be increased with biomarkers. Aim of this study was to assess the value of measuring cumulative IgE levels specific for respiratory allergens to increase the efficacy of anti-IgE therapy for severe bronchial asthma. One hundred and thirty seven patients with severe asthma were recruited from 2016 to 2022. Standard empirical allergy diagnosis (i.e., anamnesis, skin testing, allergen-specific IgE measurement), blood eosinophil counting, measurement of total IgE and of cumulative IgE-specific for respiratory allergens by Phadiatop™ were performed. Thirty four patients with severe allergic asthma, for whom all three diagnostic methods were performed, were then used to analyze the efficacy of anti-IgE treatment in patients stratified in two groups according to cumulative IgE levels specific for respiratory allergens determined by Phadiatop™. Group #1 patients (n = 8) had cumulative specific IgE values ≥ 0.35 and < 1.53 PAU/l while in group #2 patients (n = 26) they were ≥ 1.53 PAU/l. Treatment with Omalizumab was performed for at least 12 months. The level of asthma control (ACT questionnaire), the number of asthma exacerbations, the quality of life (AQLQ questionnaire), the need for systemic corticosteroids, and the respiratory function (FEV1) was determined by “before-after” analysis for each group, followed by a comparison of the dynamics between groups. In group 2 patients with an initial allergen-specific IgE level ≥ 1.53 kUA/L, the efficacy of Omalizumab treatment was better regarding asthma control, number of exacerbations, and quality of life than in group 1 patients. Our study provides evidence that measuring cumulative levels of IgE specific for respiratory allergens could be a useful screening method for detecting an allergic phenotype of severe asthma and may serve as biomarker to enhance the success of IgE-targeted therapy.
Collapse
Affiliation(s)
- Veronika Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, Ekaterinburg, Russia
| | - Evgeny Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, Ekaterinburg, Russia
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter Errhalt
- Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- National Research Centre (NCR) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- *Correspondence: Rudolf Valenta,
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Darina Kiseleva
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, Ekaterinburg, Russia
| |
Collapse
|
7
|
Art v 1 IgE epitopes of patients and humanized mice are conformational. J Allergy Clin Immunol 2022; 150:920-930. [PMID: 35738928 DOI: 10.1016/j.jaci.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.
Collapse
|
8
|
Luengo O, Galvan-Blasco P, Cardona V. Molecular diagnosis contribution for personalized medicine. Curr Opin Allergy Clin Immunol 2022; 22:175-180. [PMID: 35174793 DOI: 10.1097/aci.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of the current review is to highlight the most recent findings in molecular allergy and its applicability in precision medicine for allergic patients. RECENT FINDINGS Molecular allergy provides useful information in areas of respiratory allergy (house dust mites, pet dander and pollen allergy), food allergy (tree nuts, peanuts, fruits and vegetables), hymenoptera venom allergy and others, in order to improve management of patients. Regional differences in sensitization profiles, assay characteristics and interpretation of molecular sensitization in relation to whole extracts and total immunoglobulin E need to be taken into account. Studies of the impact of such strategies are needed. SUMMARY Molecular allergy diagnosis represents a major contribution for personalized medicine. It aids in the assesment of risk prediction, disease severity, genuine/cross-reactive sensitization, and finally to apply precise management strategies.
Collapse
Affiliation(s)
- Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Paula Galvan-Blasco
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| |
Collapse
|
9
|
Akinfenwa O, Huang HJ, Linhart B, Focke-Tejkl M, Vrtala S, Poroshina A, Nikonova A, Khaitov M, Campion NJ, Eckl-Dorna J, Niederberger-Leppin V, Kratzer B, Tauber PA, Pickl WF, Kundi M, Campana R, Valenta R. Preventive Administration of Non-Allergenic Bet v 1 Peptides Reduces Allergic Sensitization to Major Birch Pollen Allergen, Bet v 1. Front Immunol 2021; 12:744544. [PMID: 34795666 PMCID: PMC8594376 DOI: 10.3389/fimmu.2021.744544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022] Open
Abstract
IgE-mediated allergy to birch pollen affects more than 100 million patients world-wide. Bet v 1, a 17 kDa protein is the major allergen in birch pollen responsible for allergic rhinoconjunctivitis and asthma in birch pollen allergic patients. Allergen-specific immunotherapy (AIT) based on therapeutic administration of Bet v 1-containing vaccines is an effective treatment for birch pollen allergy but no allergen-specific forms of prevention are available. We developed a mouse model for IgE sensitization to Bet v 1 based on subcutaneous injection of aluminum-hydroxide adsorbed recombinant Bet v 1 and performed a detailed characterization of the specificities of the IgE, IgG and CD4+ T cell responses in sensitized mice using seven synthetic peptides of 31-42 amino acids length which comprised the Bet v 1 sequence and the epitopes recognized by human CD4+ T cells. We then demonstrate that preventive systemic administration of a mix of synthetic non-allergenic Bet v 1 peptides to 3-4 week old mice significantly reduced allergic immune responses, including IgE, IgG, IgE-mediated basophil activation, CD4+ T cell and IL-4 responses to the complete Bet v 1 allergen but not to the unrelated major grass pollen allergen Phl p 5, without inducing Bet v 1-specific allergic sensitization or adaptive immunity. Our results thus demonstrate that early preventive administration of non-allergenic synthetic T cell epitope-containing allergen peptides could be a safe strategy for the prevention of allergen-specific IgE sensitization.
Collapse
Affiliation(s)
- Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Poroshina
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Alexandra Nikonova
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nicholas J Campion
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Anton Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute for Hygiene and Applied Immunology, Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
D'souza N, Weber M, Sarzsinszky E, Vrtala S, Curin M, Schaar M, Garib V, Focke-Tejkl M, Li Y, Jones R, Chen H, Valenta R, Sun B. The Molecular Allergen Recognition Profile in China as Basis for Allergen-Specific Immunotherapy. Front Immunol 2021; 12:719573. [PMID: 34512644 PMCID: PMC8430339 DOI: 10.3389/fimmu.2021.719573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Approximately 30% of the world population suffers from immunoglobulin-E (IgE)-mediated allergy. IgE-mediated allergy affects the respiratory tract, the skin and the gastrointestinal tract and may lead to life-threatening acute systemic manifestations such as anaphylactic shock. The symptoms of allergy are mediated by IgE-recognition of causative allergen molecules from different allergen sources. Today, molecular allergy diagnosis allows determining the disease-causing allergens to develop allergen-specific concepts for prevention and treatment of allergy. Allergen-specific preventive and therapeutic strategies include allergen avoidance, vaccination, and tolerance induction. The implementation of these preventive and therapeutic strategies requires a detailed knowledge of the relevant allergen molecules affecting a given population. China is the world´s most populous country with around 1.4 billion inhabitants and an estimated number of more than 400 million allergic patients. Research in allergy in China has dramatically increased in the last decade. We summarize in this review article what is known about the dominating allergen sources and allergen molecules in China and what further investigations could be performed to draw a molecular map of IgE sensitization for China as a basis for the implementation of systematic and rational allergen-specific preventive and therapeutic strategies to combat allergic diseases in this country.
Collapse
Affiliation(s)
- Nishelle D'souza
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eszter Sarzsinszky
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirjam Schaar
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yanqiu Li
- Worg Pharmaceuticals, Hangzhou, China
| | | | - Hao Chen
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia.,National Research Center (NRC) Institute of Immunology Federal Medico-Biological Agency (FMBA) of Russia, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Eigenmann P. Comments on vitamin D and sensitization, asthma treatment, and lung function development. Pediatr Allergy Immunol 2021; 32:1137-1140. [PMID: 34333802 DOI: 10.1111/pai.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Pediatrics Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Eigenmann P. Comments on pollen season changes, vegetable consumption and asthma, and exercise-induced reactions after oral immunotherapy to foods. Pediatr Allergy Immunol 2021; 32:809-812. [PMID: 34196057 DOI: 10.1111/pai.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Women-Children-Teenagers, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Elisyutina O, Lupinek C, Fedenko E, Litovkina A, Smolnikov E, Ilina N, Kudlay D, Shilovskiy I, Valenta R, Khaitov M. IgE-reactivity profiles to allergen molecules in Russian children with and without symptoms of allergy revealed by micro-array analysis. Pediatr Allergy Immunol 2021; 32:251-263. [PMID: 32869350 PMCID: PMC7891667 DOI: 10.1111/pai.13354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The analysis of longitudinal birth cohorts with micro-arrayed allergen molecules has provided interesting information about the evolution of IgE sensitization in children. However, so far no cross-sectional study has been performed comparing IgE sensitization profiles in children with and without symptoms of allergy. Furthermore, no data are available regarding molecular IgE sensitization profiles in children from Russia. METHODS We recruited two groups of age- and gender-matched children, one (Group 1: n = 103; 12.24 ± 2.23 years; male/female: 58/45) with symptoms and a second (Group 2: n = 97; 12.78 ± 2.23 years; male/female: 53/44), without symptoms of allergy according to international ISAAC questionnaire. Children were further studied regarding symptoms of allergy (rhinitis, asthma, atopic dermatitis) according to international guidelines, and skin prick testing with a panel of aeroallergen extracts was performed before sera were analyzed in an investigator-blinded manner for IgE specific to more than 160 micro-arrayed allergen molecules using ImmunoCAP ISAC technology. RESULTS IgE sensitization = or >0.3 ISU to at least one of the micro-arrayed allergen molecules was found in 100% of the symptomatic children and in 36% of the asymptomatic children. Symptomatic and asymptomatic children showed a comparable IgE sensitization profile; however, frequencies of IgE sensitization and IgE levels to the individual allergen molecules were higher in the symptomatic children. Aeroallergen sensitization was dominated by sensitization to major birch pollen allergen, Bet v 1, and major cat allergen, Fel d 1. Food allergen sensitization was due to cross-sensitization to PR10 pollen and food allergens whereas genuine peanut sensitization was absent. CONCLUSION This is the first study analyzing molecular IgE sensitization profiles to more than 160 allergen molecules in children with and without symptoms of allergy. It detects similar molecular IgE sensitization profiles in symptomatic and asymptomatic children and identifies Bet v 1 and Fel d 1 as the predominant respiratory allergen molecules and PR10 proteins as the major food allergens and absence of genuine peanut allergy in Moscow region (Russia).
Collapse
Affiliation(s)
| | - Christian Lupinek
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCentre for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Elena Fedenko
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | | | | | | | - Dmitry Kudlay
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | | | - Rudolf Valenta
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCentre for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Sechenov First State Medical UniversityMoscowRussia
- Karl Landsteiner University for Health SciencesKremsAustria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| |
Collapse
|