1
|
Beerweiler CC, Salvermoser M, Theodorou J, Böck A, Sattler F, Kulig P, Tosevski V, Schaub B. Farm-dust mediated protection of childhood asthma: Mass cytometry reveals novel cellular regulation. Allergy 2024; 79:3022-3035. [PMID: 39400913 DOI: 10.1111/all.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Farm-dust mediated asthma protection in childhood was replicated in numerous epidemiological studies. Central immune mechanisms are not fully understood. This exploratory study aimed to disentangle underlying immunological regulation of farm-dust mediated protection in peripheral blood on a single-cell level. METHODS Single-cell protein expression of in vitro farm-dust stimulated and unstimulated cells from allergic asthmatics and healthy controls were measured using mass cytometry. Analysis of innate and adaptive cellular proportions (linear regression) and T-cell proliferation was performed. Functional marker intensity was investigated using Earth Mover's Distance and the Monte Carlo permutation test. RESULTS Farm-dust stimulation induced cell type-specific regulation: Key-features of farm-dust stimulation comprised opposing regulation of immune-cell frequencies (downregulated innate cell populations (monocytes/DCs (p < .001), NK-cells (p < .05)) and upregulated adaptive populations (B-cells, CD4+ T-cells (both p < .05)), reduced CD4+ CD25- T-cell proliferation, and differential cell type-specific functional marker expression. Following stimulation, functional marker analysis revealed induced activation (CD25) in T-cells and NK-T-cells in both phenotypes even after correction for multiple testing. Cytotoxicity (GZMB) and inflammation (pERK1/2, pp38) related markers were reduced in T-cells exclusively in asthmatic children. Asthma-associated markers (Gata3, RORγ, and HLA-DR) were reduced in T- and innate- cell populations of asthmatics following stimulation. B-cells displayed a phenotypically independent increase of diverse functional markers upon farm-dust stimulation. CONCLUSIONS This study mimicking in vivo environmental exposure identified a novel profile of immune-regulatory markers using mass cytometry demonstrating decreased asthma-associated markers following farm-dust stimulation. These findings may be key for further studies on asthma prevention in childhood.
Collapse
Affiliation(s)
- Claudia Carina Beerweiler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johanna Theodorou
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Andreas Böck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| | - Franziska Sattler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paulina Kulig
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| |
Collapse
|
2
|
Tan T, Yang F, Wang Z, Gao F, Sun L. Mediated Mendelian randomization analysis to determine the role of immune cells in regulating the effects of plasma metabolites on childhood asthma. Medicine (Baltimore) 2024; 103:e38957. [PMID: 39058829 PMCID: PMC11272359 DOI: 10.1097/md.0000000000038957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Childhood asthma is a chronic inflammatory disease of the airways, the pathogenesis of which involves multiple factors including genetic predisposition, environmental exposure, and immune system regulation. To date, the causal relationships between immune cells, plasma metabolites, and childhood asthma remain undetermined. Therefore, we aim to utilize the Mendelian randomization approach to assess the causal relationships among immune cells, plasma metabolites, and childhood asthma. This study employed the Mendelian randomization approach to investigate how immune cells influenced the risk of childhood asthma by modulating the levels of plasma metabolites. Five Mendelian randomization methods-inverse variance weighted, weighted median, Mendelian randomization-Egger, simple mode, and weighted mode-were utilized to explore the causal relationships among 731 types of immune cells, 1400 plasma metabolites, and childhood asthma. The instrumental variables for the 731 immune cells and 1400 plasma metabolites were derived from a genome-wide association study meta-analysis. Additionally, sensitivity analyses were conducted to examine the robustness of the results, potential heterogeneity, and pleiotropy. The inverse variance weighted results indicated that HLA DR on dendritic cells (DC) is a risk factor for childhood asthma (OR: 1.08, 95% CI: 1.02-1.14). In contrast, HLA DR on DC acts as a protective factor against elevated catechol glucuronide levels (OR: 0.94, 95% CI: 0.91-0.98), while catechol glucuronide levels themselves serve as a protective factor for childhood asthma (OR: 0.73, 95% CI: 0.60-0.89). Thus, HLA DR on DC can exert a detrimental effect on childhood asthma through the negative regulation of catechol glucuronide levels. The mediating effect was 0.018, accounting for a mediation effect proportion of 23.4%. This study found that HLA DR on DC can exert a risk effect on childhood asthma through the negative regulation of catechol glucuronide levels, providing new strategies for the prevention and treatment of childhood asthma and guiding future research and clinical practice.
Collapse
Affiliation(s)
- Tianhui Tan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fushuang Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fa Gao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liping Sun
- Center of Children’s Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
4
|
Xing Y, Tsang MSM, Yang Z, Wang MH, Pivniouk V, Leung ASY, Leung TF, Roponen M, Schaub B, Vercelli D, Wong CK, Li J, Wong GWK. Immune modulation by rural exposures and allergy protection. Pediatr Allergy Immunol 2024; 35:e14086. [PMID: 38351891 DOI: 10.1111/pai.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Growing up on traditional farms protects children from the development of asthma and allergies. However, we have identified distinct asthma-protective factors, such as poultry exposure. This study aims to examine the biological effect of rural exposure in China. METHODS We recruited 67 rural children (7.4 ± 0.9 years) and 79 urban children (6.8 ± 0.6 years). Depending on the personal history of exposure to domestic poultry (DP), rural children were further divided into those with DP exposure (DP+ , n = 30) and those without (DP- , n = 37). Blood samples were collected to assess differential cell counts and expression of immune-related genes. Dust samples were collected from poultry stables inside rural households. In vivo activities of nasal administration of DP dust extracts were tested in an ovalbumin-induced asthma model. RESULTS There was a stepwise increase in the percentage of eosinophils (%) from rural DP+ children (median = 1.65, IQR = [1.28, 3.75]) to rural DP- children (3.40, [1.70, 6.50]; DP+ vs. DP- , p = .087) and to the highest of their urban counterparts (4.00, [2.00, 7.25]; urban vs. DP+ , p = .017). Similarly, rural children exhibited reduced mRNA expression of immune markers, both at baseline and following lipopolysaccharide (LPS) stimulation. Whereas LPS stimulation induced increased secretion of Th1 and proinflammatory cytokines in rural DP+ children compared to rural DP- children and urban children. Bronchoalveolar lavage of mice with intranasal instillation of dust extracts from DP household showed a significant decrease in eosinophils as compared to those of control mice (p < .05). Furthermore, DP dust strongly inhibited gene expression of Th2 signature cytokines and induced IL-17 expression in the murine asthma model. CONCLUSIONS Immune responses of rural children were dampened compared to urban children and those exposed to DP had further downregulated immune responsiveness. DP dust extracts ameliorated Th2-driven allergic airway inflammation in mice. Determining active protective components in the rural environment may provide directions for the development of primary prevention of asthma.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Maggie Haitian Wang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Vadim Pivniouk
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Munich, Germany
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Bácsi A, Ágics B, Pázmándi K, Kocsis B, Sándor V, Bertók L, Bruckner G, Sipka S. Radiation-Detoxified Form of Endotoxin Effectively Activates Th 1 Responses and Attenuates Ragweed-Induced Th 2-Type Airway Inflammation in Mice. Int J Mol Sci 2024; 25:1581. [PMID: 38338861 PMCID: PMC10855154 DOI: 10.3390/ijms25031581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th2-type airway inflammation. To explore this, cages of six-week-old BALB/c mice were treated daily with aerosolized native LPS (N-LPS) or RD-LPS. After a 10-week treatment period, mice were sensitized and challenged with ragweed pollen extract, and inflammatory cell infiltration into the airways was observed. As dendritic cells (DCs) play a crucial role in the polarization of T-cell responses, in our in vitro experiments, the effects of N-LPS and RD-LPS were compared on human monocyte-derived DCs (moDCs). Mice in RD-LPS-rich milieu developed significantly less allergic airway inflammation than mice in N-LPS-rich or common environments. The results of our in vitro experiments demonstrate that RD-LPS-exposed moDCs have a higher Th1-polarizing capacity than moDCs exposed to N-LPS. Consequently, we suppose that the aerosolized, non-toxic RD-LPS applied in early life for the renaturation of urban indoors may be suitable for the prevention of Th2-mediated allergies in childhood.
Collapse
Affiliation(s)
- Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Beatrix Ágics
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktor Sándor
- Institute of Bioanalysis, Medical School and Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Lóránd Bertók
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, H-1221 Budapest, Hungary
| | - Geza Bruckner
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY 40536, USA;
| | - Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Laubhahn K, Schaub B. From preschool wheezing to asthma: Immunological determinants. Pediatr Allergy Immunol 2023; 34:e14038. [PMID: 37877843 DOI: 10.1111/pai.14038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Asthma represents a chronic respiratory disease affecting millions of children worldwide. The transition from preschool wheezing to school-age asthma involves a multifaceted interplay of various factors, including immunological aspects in early childhood. These factors include complex cellular interactions among different immune cell subsets, induction of pro-inflammatory mediators and the molecular impact of environmental factors like allergens or viral infections on the developing immune system. Furthermore, the activation of specific genes and signalling pathways during this early phase plays a pivotal role in the manifestation of symptoms and subsequent development of asthma. Early identification of the propensity or risk for asthma development, for example by allergen sensitisation and viral infections during this critical period, is crucial for understanding the transition from wheeze to asthma. Favourable immune regulation during a critical 'window of opportunity' in early childhood can induce persistent changes in immune cell behaviour. In this context, trained immunity, including memory function of innate immune cells, has significant implications for understanding immune responses, potentially shaping long-term immunological outcomes based on early-life environmental exposures. Exploration of these underlying immune mechanisms that drive disease progression will provide valuable insights to understand childhood asthma development. This will be instrumental to develop preventive strategies at different stages of disease development for (i) inhibiting progression from wheeze to asthma or (ii) reducing disease severity and (iii) uncovering novel therapeutic strategies and contributing to more tailored and effective treatments for childhood asthma. In the long term, this shall empower healthcare professionals to develop evidence-based interventions that reduce the burden of asthma for children, families and society overall.
Collapse
Affiliation(s)
- Kristina Laubhahn
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
8
|
Xing Y, Wang MH, Leung TF, Wong CK, Roponen M, Schaub B, Li J, Wong GWK. Poultry exposure and environmental protection against asthma in rural children. Allergy 2022; 77:2949-2960. [PMID: 35531632 DOI: 10.1111/all.15365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Asthma is one of the most common chronic diseases in childhood, and the prevalence has been increasing over the past few decades. One of the most consistent epidemiological findings is that children living in a farming or rural environment are protected from development of asthma and allergies, but the protective factors in rural China are not clear. METHODS A community-based, cross-sectional epidemiological study was performed in a total of 17,587 children aged 5-8 years, 3435 from Hong Kong (urban) and 14,152 from Conghua (rural county in southern China). Asthma and allergic symptoms as well as environmental exposures were ascertained by using a standardized and validated questionnaire. RESULTS The prevalence of current wheeze was significantly lower in rural Conghua than that of urban Hong Kong (1.7% vs. 7.7%, p < 0.001). A lower rate of asthma ever was also reported in rural children compared with their urban counterparts (2.5% vs. 5.3%, p < 0.001). After adjusting for confounding factors, exposure to agricultural farming (adjusted odds ratio 0.74, 95% confidence interval: 0.56-0.97) and poultry (0.75, 0.59-0.96) were the most important factors associated with the asthma-protective effect in the rural area. Further propensity score-adjusted analysis indicated that such protection conferred by living in the rural environment was mainly attributable to poultry exposure. CONCLUSIONS We confirmed that the prevalence of asthma and atopic disorders was significantly lower in rural children when compared with their urban peers. Exposure to poultry and agricultural farming are the most important factors associated with asthma protection in the rural area.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H Wang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fan Leung
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gary W K Wong
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Yavuz ST, Kalayci Ö, Eigenmann PA. Editorial to the special issue "Environmental influences on childhood asthma". Pediatr Allergy Immunol 2022; 33:e13828. [PMID: 35871455 DOI: 10.1111/pai.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Süleyman Tolga Yavuz
- Department of Pediatric Allergy, Children's Hospital, University of Bonn, Bonn, Germany
| | - Ömer Kalayci
- Hacettepe University School of Medicine, Ankara, Turkey
| | - Philippe A Eigenmann
- Department of Pediatrics, Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Mechanism of Peitu Shengjin Formula Shenlingbaizhu Powder in Treating Bronchial Asthma and Allergic Colitis through Different Diseases with Simultaneous Treatment Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4687788. [PMID: 35586697 PMCID: PMC9110165 DOI: 10.1155/2022/4687788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
Abstract
Background Shenlingbaizhu powder (SLBZP), one of the classic Earth-cultivating and gold-generating prescriptions of traditional Chinese medicine, is widely used to treat various diseases. However, the pharmacological mechanisms of SLBZP on bronchial asthma (BA) and allergic colitis (AC) remain to be elucidated. Methods Network pharmacology and molecular docking technology were used to explore the potential mechanism of SLBZP in treating BA and AC with the simultaneous treatment of different diseases. The potential active compounds of SLBZP and their corresponding targets were obtained from BATMAN-TCM, ETCM, SymMap TCM@TAIWAN, and TCMSP databases. BA and AC disease targets were collected through DisGeNET, TTD, GeneCards, PharmGKB, OMIM, NCBI, The Human Phenotype Ontology, and DrugBank databases. Common targets for drugs and diseases were screened by using the bioinformatics and evolutionary genomics platform. The analyses and visualizations of Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of common targets were carried out by R software. The key targets were screened by using the plug-in “cytoHubba” of Cytoscape software, and the “active compound-key target” network was constructed. Molecular docking analysis was performed using AutoDock software. The miRTarBase database was used to predict microRNAs (miRNAs) targeting key targets, and the key target-miRNA network was constructed. Result Through screening, 246 active compounds and 281 corresponding targets were obtained. Common targets were mainly enriched in 2933 biological processes and 182 signal pathways to play the role of treating BA and AC. There were 131 active compounds related to key targets. The results of molecular docking showed that the important active compounds in SLBZP had good binding ability with the key targets. The key target-miRNA network showed that 94 miRNAs were predicted. Conclusion SLBZP has played the role of treating different diseases with the same treatment on BA and AC through the characteristics of multicompound, multitarget, and multipathway of traditional Chinese medicine, which provides a theoretical basis for explaining the mechanism and clinical application of SLBZP treating different diseases with the same treatment in BA and AC.
Collapse
|
11
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Kalayci Ö, Eigenmann PA. Editorial comments on: "Mitogen-activated protein kinase signaling in childhood asthma development and environment-mediated protection". Pediatr Allergy Immunol 2022; 33:e13715. [PMID: 34971011 DOI: 10.1111/pai.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Ömer Kalayci
- Hacettepe University School of Medicine, Ankara, Turkey
| | - Philippe A Eigenmann
- Department of Pediatrics, Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Xing Y, Wong GWK. Environmental Influences and Allergic Diseases in the Asia-Pacific Region: What Will Happen in Next 30 Years? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:21-39. [PMID: 34983105 PMCID: PMC8724831 DOI: 10.4168/aair.2022.14.1.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022]
Abstract
Asia-Pacific is a populous region with remarkable variations in socioeconomic development and environmental exposure among countries. The prevalence rates of asthma and allergic rhinitis appear to have recently reached a plateau in Western countries, whereas they are still increasing in many Asian countries. Given the large population in Asia, even a slight increase in the prevalence rate will translate into an overwhelming number of patients. To reduce the magnitude of the increase in allergic diseases in next few decades in Asia, we must understand the potential factors leading to the occurrence of these disorders and the development of potential preventive strategies. The etiology of allergic disorders is likely due to complex interactions among genetic, epigenetic, and environmental factors for the manifestations of inappropriate immune responses. As urbanization and industrialization inevitably progress in Asia, there is an urgent need to curtail the upcoming waves of the allergy epidemic. Potentially modifiable risk exposure, such as air pollution, should be minimized through timely implementation of effective legislations. Meanwhile, re-introduction of protective factors that were once part of the traditional farming lifestyle might give new insight into primary prevention of allergy.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|