1
|
Yu D, Huang R, Yu S, Liang Q, Wang Y, Dang H, Zhang Y. Construction of the first high-density genetic linkage map and QTL mapping of flavonoid and leaf-size related traits in Epimedium. BMC PLANT BIOLOGY 2023; 23:278. [PMID: 37231361 PMCID: PMC10210407 DOI: 10.1186/s12870-023-04257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Leaves are the main medicinal organ in Epimedium herbs, and leaf flavonoid content is an important criterion of Epimedium herbs. However, the underlying genes that regulate leaf size and flavonoid content are unclear, which limits the use of breeding for Epimedium development. This study focuses on QTL mapping of flavonoid and leaf-size related traits in Epimedium. RESULTS We constructed the first high-density genetic map (HDGM) using 109 F1 hybrids of Epimedium leptorrhizum and Epimedium sagittatum over three years (2019-2021). Using 5,271 single nucleotide polymorphism (SNP) markers, an HDGM with an overall distance of 2,366.07 cM and a mean gap of 0.612 cM was generated by utilizing genotyping by sequencing (GBS) technology. Every year for three years, 46 stable quantitative trait loci (QTLs) for leaf size and flavonoid contents were discovered, including 31 stable loci for Epimedin C (EC), one stable locus for total flavone content (TFC), 12 stable loci for leaf length (LL), and two stable loci for leaf area (LA). For flavonoid content and leaf size, the phenotypic variance explained for these loci varied between 4.00 and 16.80% and 14.95 and 17.34%, respectively. CONCLUSIONS Forty-six stable QTLs for leaf size and flavonoid content traits were repeatedly detected over three years. The HDGM and stable QTLs are laying the basis for breeding and gene investigation in Epimedium and will contribute to accelerating the identification of desirable genotypes for Epimedium breeding.
Collapse
Affiliation(s)
- Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruoqi Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Shuxia Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China.
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China.
| |
Collapse
|
2
|
Metabolite Variation between Nematode and Bacterial Seed Galls in Comparison to Healthy Seeds of Ryegrass Using Direct Immersion Solid-Phase Microextraction (DI-SPME) Coupled with GC-MS. Molecules 2023; 28:molecules28020828. [PMID: 36677885 PMCID: PMC9864257 DOI: 10.3390/molecules28020828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Annual ryegrass toxicity (ARGT) is an often-fatal poisoning of livestock that consume annual ryegrass infected by the bacterium Rathayibacter toxicus. This bacterium is carried into the ryegrass by a nematode, Anguina funesta, and produces toxins within seed galls that develop during the flowering to seed maturity stages of the plant. The actual mechanism of biochemical transformation of healthy seeds to nematode and bacterial gall-infected seeds remains unclear and no clear-cut information is available on what type of volatile organic compounds accumulate in the respective galls. Therefore, to fill this research gap, the present study was designed to analyze the chemical differences among nematode galls (A. funesta), bacterial galls (R. toxicus) and healthy seeds of annual ryegrass (Lolium rigidum) by using direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography−mass spectrometry (GC-MS). The method was optimized and validated by testing its linearity, sensitivity, and reproducibility. Fifty-seven compounds were identified from all three sources (nematode galls, bacterial galls and healthy seed), and 48 compounds were found to be present at significantly different (p < 0.05) levels in the three groups. Five volatile organic compounds (hexanedioic acid, bis(2-ethylhexyl) ester), (carbonic acid, but-2-yn-1-yl eicosyl ester), (fumaric acid, 2-ethylhexyl tridec-2-yn-1-yl ester), (oct-3-enoylamide, N-methyl-N-undecyl) and hexacosanoic acid are the most frequent indicators of R. toxicus bacterial infection in ryegrass, whereas the presence of 15-methylnonacosane, 13-methylheptacosane, ethyl hexacosyl ether, heptacosyl acetate and heptacosyl trifluoroacetate indicates A. funesta nematode infestation. Metabolites occurring in both bacterial and nematode galls included batilol (stearyl monoglyceride) and 9-octadecenoic acid (Z)-, tetradecyl ester. Among the chemical functional group, esters, fatty acids, and alcohols together contributed more than 70% in healthy seed, whereas this contribution was 61% and 58% in nematode and bacterial galls, respectively. This study demonstrated that DI-SPME is a valid technique to study differentially expressed metabolites in infected and healthy ryegrass seed and may help provide better understanding of the biochemical interactions between plant and pathogen to aid in management of ARGT.
Collapse
|
3
|
Chankaew S, Sriwichai S, Rakvong T, Monkham T, Sanitchon J, Tangphatsornruang S, Kongkachana W, Sonthirod C, Pootakham W, Amkul K, Kaewwongwal A, Laosatit K, Somta P. The First Genetic Linkage Map of Winged Bean [ Psophocarpus tetragonolobus (L.) DC.] and QTL Mapping for Flower-, Pod-, and Seed-Related Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:500. [PMID: 35214834 PMCID: PMC8878720 DOI: 10.3390/plants11040500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Winged bean [Psophocarpus tetragonolobus (L.) DC.] (2n = 2× = 18) is a tropical legume crop with multipurpose usages. Recently, the winged bean has regained attention from scientists as a food protein source. Currently, there is no breeding program for winged bean cultivars. All winged bean cultivars are landraces or selections from landraces. Molecular markers and genetic linkage maps are pre-requisites for molecular plant breeding. The aim of this study was to develop a high-density linkage map and identify quantitative trait loci (QTLs) for pod and seed-related traits of the winged bean. An F2 population of 86 plants was developed from a cross between winged bean accessions W054 and TPT9 showing contrasting pod length, and pod, flower and seed colors. A genetic linkage map of 1384 single nucleotide polymorphism (SNP) markers generated from restriction site-associated DNA sequencing was constructed. The map resolved nine haploid chromosomes of the winged bean and spanned the cumulative length of 4552.8 cM with the number of SNPs per linkage ranging from 36 to 218 with an average of 153.78. QTL analysis in the F2 population revealed 31 QTLs controlling pod length, pod color, pod anthocyanin content, flower color, and seed color. The number of QTLs per trait varied between 1 (seed length) to 7 (banner color). Interestingly, the major QTLs for pod color, anthocyanin content, and calyx color, and for seed color and flower wing color were located at the same position. The high-density linkage map QTLs reported in this study will be useful for molecular breeding of winged beans.
Collapse
Affiliation(s)
- Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (S.S.); (T.R.); (T.M.); (J.S.)
| | - Sasiprapa Sriwichai
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (S.S.); (T.R.); (T.M.); (J.S.)
| | - Teppratan Rakvong
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (S.S.); (T.R.); (T.M.); (J.S.)
| | - Tidarat Monkham
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (S.S.); (T.R.); (T.M.); (J.S.)
| | - Jirawat Sanitchon
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (S.S.); (T.R.); (T.M.); (J.S.)
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.K.); (C.S.); (W.P.)
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.K.); (C.S.); (W.P.)
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.K.); (C.S.); (W.P.)
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.K.); (C.S.); (W.P.)
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (K.A.); (A.K.); (K.L.)
| | - Anochar Kaewwongwal
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (K.A.); (A.K.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (K.A.); (A.K.); (K.L.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (K.A.); (A.K.); (K.L.)
| |
Collapse
|
4
|
Genome-wide SSR markers in bottle gourd: development, characterization, utilization in assessment of genetic diversity of National Genebank of India and synteny with other related cucurbits. J Appl Genet 2022; 63:237-263. [PMID: 35106708 DOI: 10.1007/s13353-022-00684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Lagenaria siceraria (Molina) Standley is an important cultivated crop with its immense importance in pharmaceutical industry and as vegetable. Its seed, root, stem, leaves, flower, and fruit are used as an ointment for ailment of various diseases throughout Asia. Despite its worldwide importance, informative co-dominant microsatellite markers in the bottle gourd crop are very restricted, impeding genetic improvement, cultivar identification, and phylogenetic studies. Next-generation sequencing has revolutionized the approaches for discovery, assessment, and validation of molecular markers. We conducted a genome-wide analysis, for developing SSR markers by utilizing restriction site-associated DNA sequencing (RAD-Seq) data obtained from NCBI. By performing in silico mining of microsatellite repeat motifs, we developed 45,066 perfect SSR markers. Of which 207 markers were successfully validated and 120 (57.97%) polymorphic primer pairs were utilized for an in-depth genetic diversity and population structure analysis of 96 accessions from the National Genebank of India. Tetranucleotide repeats (∼34.3%) were the most prevalent followed by trinucleotide repeats (∼30.73%), further 21.03%, 9.6%, and 4.3% of di-, penta-, and hexa-nucleotide repeats in the bottle gourd genome, respectively. Synteny of SSR markers on 11 bottle gourd linkage groups was correlated with the 7 chromosomes of cucumber (93.2%), 12 chromosomes of melon (87.4%), and 11 of watermelon (90.8%). The generated SSR markers provide a valuable tool for germplasm characterization, genetic linkage map construction, studying synteny, gene discovery, and for breeding in bottle gourd and other cucurbits species. KEY MESSAGE: Development of 45,066 perfect microsatellite markers as a valuable tool for marker assisted selection (MAS) in plant breeding.
Collapse
|
5
|
Hanley SJ, Pellny TK, de Vega JJ, Castiblanco V, Arango J, Eastmond PJ, Heslop-Harrison JS(P, Mitchell RAC. Allele mining in diverse accessions of tropical grasses to improve forage quality and reduce environmental impact. ANNALS OF BOTANY 2021; 128:627-637. [PMID: 34320174 PMCID: PMC8422886 DOI: 10.1093/aob/mcab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS The C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America. A key target for variety improvement is forage quality: enhanced digestibility could decrease the amount of land required per unit production, and enhanced lipid content could decrease methane emissions from cattle. For these traits, loss-of-function (LOF) alleles in known gene targets are predicted to improve them, making a reverse genetics approach of allele mining feasible. We therefore set out to look for such alleles in diverse accessions of Urochloa species and Megathyrsus maximus from the genebank collection held at the CIAT. METHODS We studied allelic diversity of 20 target genes (11 for digestibility, nine for lipid content) in 104 accessions selected to represent genetic diversity and ploidy levels of U. brizantha, U. decumbens, U. humidicola, U. ruziziensis and M. maximum. We used RNA sequencing and then bait capture DNA sequencing to improve gene models in a U. ruziziensis reference genome to assign polymorphisms with high confidence. KEY RESULTS We found 953 non-synonymous polymorphisms across all genes and accessions; within these, we identified seven putative LOF alleles with high confidence, including those in the non-redundant SDP1 and BAHD01 genes present in diploid and tetraploid accessions. These LOF alleles could respectively confer increased lipid content and digestibility if incorporated into a breeding programme. CONCLUSIONS We demonstrated a novel, effective approach to allele discovery in diverse accessions using a draft reference genome from a single species. We used this to find gene variants in a collection of tropical grasses that could help reduce the environmental impact of cattle production.
Collapse
Affiliation(s)
| | | | | | | | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | | | | |
Collapse
|
6
|
Paul MJ, Eastmond PJ. Turning sugar into oil: making photosynthesis blind to feedback inhibition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2216-2218. [PMID: 32251510 PMCID: PMC7134900 DOI: 10.1093/jxb/erz504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article comments on: Beechey-Gradwell Z, Cooney L, Winichayakul S, Andrews M, Hea SY, Crowther T, Roberts N. 2020. Storing carbon in leaf lipid sinks enhanced perennial ryegrass carbon capture especially under high N and elevated CO2. Journal of Experimental Botany 71, 2351–2361.
Collapse
Affiliation(s)
| | - Peter J Eastmond
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
7
|
Ahmed H, Nazir MF, Pan Z, Gong W, Iqbal MS, He S, Du X. Genotyping by Sequencing Revealed QTL Hotspots for Trichome-Based Plant Defense in Gossypium hirsutum. Genes (Basel) 2020; 11:E368. [PMID: 32231109 PMCID: PMC7231212 DOI: 10.3390/genes11040368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/23/2023] Open
Abstract
Cotton possesses certain physical features, including leaf and stem trichomes that help plants deter damage caused by insect pests, and to some extent, from abiotic factors as well. Among those features, trichomes (pubescence) hold a special place as a first line of defense and a managemental tool against sucking insect pests of cotton. Different insect pests of cotton (whiteflies, aphids, jassids, and boll weevil) severely damage the yield and quality of the crop. Likewise, whiteflies, aphids, jassids, and other insect pests are considered as potential carriers for cotton leaf curl viruses and other diseases. Genotyping by sequencing (GBS) study was conducted to understand and explore the genomic regions governing hairy (Pubescence) leaves and stem phenotypes. A total of 224 individuals developed from an intraspecific cross (densely haired cotton (Liaoyang duomao mian) × hairless cotton (Zong 128)) and characterized phenotypically for leaf and stem pubescence in different environments. Here we identify and report significant QTLs (quantitative trait loci) associated with leaf and stem pubescence, and the response of plant under pest (aphid) infestation. Further, we identified putative genes colocalized on chromosome A06 governing mechanism for trichome development and host-pest interaction. Our study provides a comprehensive insight into genetic architecture that can be employed to improve molecular marker-assisted breeding programs aimed at developing biotic (insect pests) resilient cotton cultivars.
Collapse
Affiliation(s)
- Haris Ahmed
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
| | - Mian Faisal Nazir
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
| | - Zhoe Pan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Muhammad Shahid Iqbal
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
- Cotton Research Station, Ayub Agriculture Research Institute, Faisalabad 38000, Pakistan
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China; (H.A.); (M.F.N.); (Z.P.); (M.S.I.); (S.H.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Wilkinson JM, Lee MRF, Rivero MJ, Chamberlain AT. Some challenges and opportunities for grazing dairy cows on temperate pastures. GRASS AND FORAGE SCIENCE : THE JOURNAL OF THE BRITISH GRASSLAND SOCIETY 2020; 75:1-17. [PMID: 32109974 PMCID: PMC7028026 DOI: 10.1111/gfs.12458] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 05/13/2023]
Abstract
Grazing plays an important role in milk production in most regions of the world. In this review, some challenges to the grazing cow are discussed together with opportunities for future improvement. We focus on daily feed intake, efficiency of pasture utilization, output of milk per head, environmental impact of grazing and the nutritional quality to humans of milk produced from dairy cows in contrasting production systems. Challenges are discussed in the context of a trend towards increased size of individual herds and include limited and variable levels of daily herbage consumption, lower levels of milk output per cow, excessive excretion of nitrogenous compounds and requirements for minimal periods of grazing regardless of production system. A major challenge is to engage more farmers in making appropriate adjustments to their grazing management. In relation to product quality, the main challenge is to demonstrate enhanced nutritional/processing benefits of milk from grazed cows. Opportunities include more accurate diet formulations, supplementation of grazed pasture to match macro- and micronutrient supply with animal requirement and plant breeding. The application of robotics and artificial intelligence to pasture management will assist in matching daily supply to animal requirement. Wider consumer recognition of the perceived enhanced nutritional value of milk from grazed cows, together with greater appreciation of the animal health, welfare and behavioural benefits of grazing should contribute to the future sustainability of demand for milk from dairy cows on pasture.
Collapse
Affiliation(s)
| | - Michael R. F. Lee
- Bristol Veterinary SchoolUniversity of BristolLangfordUK
- Rothamsted ResearchOkehamptonUK
| | | | | |
Collapse
|
9
|
Zhang Z, Xie W, Zhang J, Wang N, Zhao Y, Wang Y, Bai S. Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. BMC Genomics 2019; 20:861. [PMID: 31726988 PMCID: PMC6857239 DOI: 10.1186/s12864-019-6254-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Background Elymus sibiricus is an ecologically and economically important perennial, self-pollinated, and allotetraploid (StStHH) grass, widely used for forage production and animal husbandry in Western and Northern China. However, it has low seed yield mainly caused by seed shattering, which makes seed production difficult for this species. The goals of this study were to construct the high-density genetic linkage map, and to identify QTLs and candidate genes for seed-yield related traits. Results An F2 mapping population of 200 individuals was developed from a cross between single genotype from “Y1005” and “ZhN06”. Specific-locus amplified fragment sequencing (SLAF-seq) was applied to construct the first genetic linkage map. The final genetic map included 1971 markers on the 14 linkage groups (LGs) and was 1866.35 cM in total. The length of each linkage group varied from 87.67 cM (LG7) to 183.45 cM (LG1), with an average distance of 1.66 cM between adjacent markers. The marker sequences of E. sibiricus were compared to two grass genomes and showed 1556 (79%) markers mapped to wheat, 1380 (70%) to barley. Phenotypic data of eight seed-related traits (2016–2018) were used for QTL identification. A total of 29 QTLs were detected for eight seed-related traits on 14 linkage groups, of which 16 QTLs could be consistently detected for two or three years. A total of 6 QTLs were associated with seed shattering. Based on annotation with wheat and barley genome and transcriptome data of abscission zone in E. sibiricus, we identified 30 candidate genes for seed shattering, of which 15, 7, 6 and 2 genes were involved in plant hormone signal transcription, transcription factor, hydrolase activity and lignin biosynthetic pathway, respectively. Conclusion This study constructed the first high-density genetic linkage map and identified QTLs and candidate genes for seed-related traits in E. sibiricus. Results of this study will not only serve as genome-wide resources for gene/QTL fine mapping, but also provide a genetic framework for anchoring sequence scaffolds on chromosomes in future genome sequence assembly of E. sibiricus.
Collapse
Affiliation(s)
- Zongyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Junchao Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Na Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yongqiang Zhao
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, People's Republic of China
| |
Collapse
|
10
|
Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, Evans C, Lovatt A, Lister S, Thorogood D, Skøt L, Hegarty M, Blackmore T, Kudrna D, Byrne S, Asp T, Powell W, Fernandez-Fuentes N, Armstead I. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. ANNALS OF BOTANY 2019; 123:977-992. [PMID: 30715119 PMCID: PMC6589518 DOI: 10.1093/aob/mcy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). METHODS BAC-based physical maps for L. perenne were constructed from ~212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. KEY RESULTS Between ~3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with ~35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. CONCLUSIONS Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.
Collapse
Affiliation(s)
- J Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - S Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Heavens
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - D Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Lovatt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S Lister
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - L Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - S Byrne
- Teagasc, Department of Crop Science, Carlow, Ireland
| | - T Asp
- Department of Molecular Biology and Genetics, Crop Genetics and Biotechnology, Aarhus University, Slagelse, Denmark
| | - W Powell
- Scotland’s Rural College, Edinburgh, UK
| | - N Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - I Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
11
|
Harper J, Phillips D, Thomas A, Gasior D, Evans C, Powell W, King J, King I, Jenkins G, Armstead I. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1861-1871. [PMID: 29635481 PMCID: PMC6019035 DOI: 10.1093/jxb/ery052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/10/2018] [Indexed: 05/26/2023]
Abstract
Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Caron Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - Julie King
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Ian King
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
12
|
QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population. Mol Genet Genomics 2018; 293:831-843. [PMID: 29423657 DOI: 10.1007/s00438-018-1424-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Gossypium hirsutum L. is the most important fiber crop worldwide and contributes to more than 95% of global cotton production. Marker-assisted selection (MAS) is an effective approach for improving fiber quality, and quantitative trait loci (QTL) mapping of fiber quality traits is important for cotton breeding. In this study, a permanent intra-specific recombinant inbred line (RIL) population containing 137 families was used for fiber quality testing. Based on a previously reported high-density genetic map with an average marker distance of 0.63 cM, 186 additive QTLs were obtained for five fiber quality traits over five consecutive years, including 39 for fiber length (FL), 36 for fiber strength (FS), 50 for fiber uniformity (FU), 33 for micronaire (MC) and 28 for fiber elongation (FE). Three stable QTLs, qMC-A4-1, qMC-D2-3 and qFS-D9-1, were detected in four datasets, and another eight stable QTLs, qMC-A4-2, qMC-D11-2, qFU-A9-1, qFU-A10-4, qFS-D11-1, qFL-D9-2, qFL-D11-1 and qFE-A3-2, were detected in three datasets. The annotated genes in these 11 stable QTLs were collected, and these genes included many transcription factors with functions during fiber development. 33 QTL coincidence regions were found, and these involved nearly half of the total QTLs. Four chromosome regions containing at least 6 QTLs were promising for fine mapping. In addition, 41 pairs of epistatic QTLs (e-QTLs) were screened, including 6 for FL, 30 for FS, 2 for FU and 3 for MC. The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.
Collapse
|
13
|
Xia Z, Zhang S, Wen M, Lu C, Sun Y, Zou M, Wang W. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:3. [PMID: 29321812 PMCID: PMC5759280 DOI: 10.1186/s13068-017-1004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. RESULTS An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF-1, qNF-2a, qNF-2b, qNF-2c, qNF-3, qNF-4, qNF-6, qNF-7a, qNF-7b and qNF-8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF-1, qTWF-2 and qTWF-3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. CONCLUSION This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha.
Collapse
Affiliation(s)
- Zhiqiang Xia
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Shengkui Zhang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Mingfu Wen
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Cheng Lu
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Yufang Sun
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Meiling Zou
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Wenquan Wang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
14
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
15
|
Foito A, Hackett CA, Stewart D, Velmurugan J, Milbourne D, Byrne SL, Barth S. Quantitative trait loci associated with different polar metabolites in perennial ryegrass - providing scope for breeding towards increasing certain polar metabolites. BMC Genet 2017; 18:84. [PMID: 29017444 PMCID: PMC5634963 DOI: 10.1186/s12863-017-0552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023] Open
Abstract
Background Recent advances in the mapping of biochemical traits have been reported in Lolium perenne. Although the mapped traits, including individual sugars and fatty acids, contribute greatly towards ruminant productivity, organic acids and amino acids have been largely understudied despite their influence on the ruminal microbiome. Results In this study, we used a targeted gas-chromatography mass spectrometry (GC-MS) approach to profile the levels of 25 polar metabolites from different classes (sugars, amino acids, phenolic acids, organic acids and other nitrogen-containing compounds) present in a L. perenne F2 population consisting of 325 individuals. A quantitative trait (QTL) mapping approach was applied and successfully identified QTLs regulating seven of those polar metabolites (L-serine, L-leucine, glucose, fructose, myo-inositol, citric acid and 2, 3-hydroxypropanoic acid).Two QTL mapping approaches were carried out using SNP markers on about half of the population only and an imputation approach using SNP and DArT markers on the entire population. The imputation approach confirmed the four QTLs found in the SNP-only analysis and identified a further seven QTLs. Conclusions These results highlight the potential of utilising molecular assisted breeding in perennial ryegrass to modulate a range of biochemical quality traits with downstream effects in livestock productivity and ruminal digestion. Electronic supplementary material The online version of this article (10.1186/s12863-017-0552-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandre Foito
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland.,Enhancing Crop Productivity and Utilisation, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Derek Stewart
- Enhancing Crop Productivity and Utilisation, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.,Norwegian Institute of Bioeconomy Research, Pb 115, -1431, Ås, NO, Norway
| | - Janaki Velmurugan
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Dan Milbourne
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Stephen L Byrne
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Susanne Barth
- Teagasc, Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland.
| |
Collapse
|
16
|
Abstract
The nutritional value of meat is an increasingly important factor influencing consumer preferences for poultry, red meat and processed meat products. Intramuscular fat content and composition, in addition to high quality protein, trace minerals and vitamins are important determinants of nutritional value. Fat content of meat at retail has decreased substantially over the past 40 years through advances in animal genetics, nutrition and management and changes in processing techniques. Evidence of the association between diet and the incidence of human non-communicable diseases has driven an interest in developing production systems for lowering total SFA and trans fatty acid (TFA) content and enrichment of n-3 PUFA concentrations in meat and meat products. Typically, poultry and pork has a lower fat content, containing higher PUFA and lower TFA concentrations than lamb or beef. Animal genetics, nutrition and maturity, coupled with their rumen microbiome, are the main factors influencing tissue lipid content and relative proportions of SFA, MUFA and PUFA. Altering the fatty acid (FA) profile of lamb and beef is determined to a large extent by extensive plant and microbial lipolysis and subsequent microbial biohydrogenation of dietary lipid in the rumen, and one of the major reasons explaining the differences in lipid composition of meat from monogastrics and ruminants. Nutritional strategies can be used to align the fat content and FA composition of poultry, pork, lamb and beef with Public Health Guidelines for lowering the social and economic burden of chronic disease.
Collapse
|
17
|
Abstract
The drive to increase the output of animal product in some sectors of ruminant livestock production has led to greater use of feeds such as cereal grains and soyabean meal that are potentially human-edible. This trend has caused concern since, by so doing, ruminants compete not only with monogastric livestock but also with the human population for a limited global area of cultivatable land on which to produce grain crops. Reasons for using potentially human-edible feeds in ruminant diets include increased total daily energy intake, greater supply of essential amino acids and improved ruminal balance between fermentable energy and degradable protein. Soyabean meal, produced on land that has been in arable cultivation for many years can fulfil a useful role as a supplier of undegraded dietary protein in diets for high-yielding dairy cows. However, in the context of sustaining the production of high-quality foods from livestock to meet the demands of a growing human population, the use of potentially human-edible feed resources by livestock should be restricted to livestock with the highest daily nutrient requirements; that is, potentially human-edible feed inputs should be constrained to meeting requirements for energy and protein and to rectifying imbalances in nutrient supply from pastures and forage crops such as high concentrations of nitrogen (N). There is therefore a role for human-edible feeds in milk production because forage-only systems are associated with relatively low output per head and also low N use efficiency compared with systems with greater reliance on human-edible feeds. Profitability on farm is driven by control of input costs as well as product value and examples are given of low-cost bovine milk and meat production with little or no reliance on potentially human-edible feeds. In beef production, the forage-only systems currently under detailed real-time life-cycle analysis at the North Wyke Farm Platform, can sustain high levels of animal growth at low feed cost. The potential of all-forage diets should be demonstrated for a wide range of ruminant milk and meat production systems. The challenge for the future development of ruminant systems is to ensure that potentially human-edible feeds, or preferably human-inedible by-products if available locally, are used to complement pastures and forage crops strategically rather than replace them.
Collapse
|
18
|
Talukder SK, Saha MC. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses. FRONTIERS IN PLANT SCIENCE 2017; 8:1317. [PMID: 28798766 PMCID: PMC5526908 DOI: 10.3389/fpls.2017.01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/12/2017] [Indexed: 05/13/2023]
Abstract
Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.
Collapse
|
19
|
Castanheira NL, Dourado AC, Pais I, Semedo J, Scotti-Campos P, Borges N, Carvalho G, Barreto Crespo MT, Fareleira P. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiol Res 2017; 198:47-55. [DOI: 10.1016/j.micres.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
|
20
|
Abstract
Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for sampling genome-wide genetic variation, performing genome-wide association mapping, and conducting genomic selection. It is a combined one-step process of SNP marker discovery and genotyping through genome reduction with restriction enzymes and SNP calling with or without a sequenced genome. This approach has the advantage of being rapid, high throughput, cost effective, and applicable to organisms without sequenced genomes. It has been increasingly applied to generate SNP genotype data for plant genetic and genomic studies. To facilitate a wider GBS application, particularly in oat genetic and genomic research, we describe the GBS approach, review the current applications of GBS in plant species, and highlight some applications of GBS to oat research. We also discuss issues in various applications of GBS and provide some perspectives in GBS research. Recent developments of bioinformatics pipelines in high-quality SNP discovery for polyploid crops will enhance the application of GBS to oat genetic and genomic research.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2.
| | - Mo-Hua Yang
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
21
|
Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M, Wusiman N, Yu S. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics 2016; 17:909. [PMID: 27835938 PMCID: PMC5106845 DOI: 10.1186/s12864-016-3269-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Gossypium hirsutum L., or upland cotton, is an important renewable resource for textile fiber. To enhance understanding of the genetic basis of cotton earliness, we constructed an intra-specific recombinant inbred line population (RIL) containing 137 lines, and performed linkage map construction and quantitative trait locus (QTL) mapping. Results Using restriction-site associated DNA sequencing, a genetic map composed of 6,434 loci, including 6,295 single nucleotide polymorphisms and 139 simple sequence repeat loci, was developed from RIL population. This map spanned 4,071.98 cM, with an average distance of 0.63 cM between adjacent markers. A total of 247 QTLs for six earliness-related traits were detected in 6 consecutive years. In addition, 55 QTL coincidence regions representing more than 60 % of total QTLs were found on 22 chromosomes, which indicated that several earliness-related traits might be simultaneously improved. Fine-mapping of a 2-Mb region on chromosome D3 associated with five stable QTLs between Marker25958 and Marker25963 revealed that lines containing alleles derived from CCRI36 in this region exhibited smaller phenotypes and earlier maturity. One candidate gene (EMF2) was predicted and validated by quantitative real-time PCR in early-, medium- and late-maturing cultivars from 3- to 6-leaf stages, with highest expression level in early-maturing cultivar, CCRI74, lowest expression level in late-maturing cultivar, Bomian1. Conclusions We developed an SNP-based genetic map, and this map is the first high-density genetic map for short-season cotton and has the potential to provide deeper insights into earliness. Cotton earliness-related QTLs and QTL coincidence regions will provide useful materials for QTL fine mapping, gene positional cloning and MAS. And the gene, EMF2, is promising for further study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3269-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Jia
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Jilong Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuaishuai Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Junji Su
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Nusireti Wusiman
- Institute of Industrial Crops of Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
22
|
Zhao X, Huang L, Zhang X, Wang J, Yan D, Li J, Tang L, Li X, Shi T. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Sci Rep 2016; 6:29345. [PMID: 27389619 PMCID: PMC4937404 DOI: 10.1038/srep29345] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is one of the most economically important perennial, cool-season forage species grown and pastured worldwide. High-density genetic linkage mapping is a valuable and effective method for exploring complex quantitative traits. In this study, we developed 447,177 markers based on SLAF-seq and used them to perform a comparative genomics analysis. Perennial ryegrass sequences were the most similar (5.02%) to orchardgrass sequences. A high-density linkage map of orchardgrass was constructed using 2,467 SLAF markers and 43 SSRs, which were distributed on seven linkage groups spanning 715.77 cM. The average distance between adjacent markers was 0.37 cM. Based on phenotyping in four environments, 11 potentially significant quantitative trait loci (QTLs) for two target traits–heading date (HD) and flowering time (FT)–were identified and positioned on linkage groups LG1, LG3, and LG5. Significant QTLs explained 8.20–27.00% of the total phenotypic variation, with the LOD ranging from 3.85–12.21. Marker167780 and Marker139469 were associated with FT and HD at the same location (Ya’an) over two different years. The utility of SLAF markers for rapid generation of genetic maps and QTL analysis has been demonstrated for heading date and flowering time in a global forage grass.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianping Wang
- Agronomy Department, University of Florida, FL, 32610, USA
| | - Defei Yan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji Li
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Tang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Tongwei Shi
- Biomarker Technologies Corporation, Beijing, 101300, China
| |
Collapse
|
23
|
Fu B, Liu H, Yu X, Tong J. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis). Sci Rep 2016; 6:28679. [PMID: 27345016 PMCID: PMC4921863 DOI: 10.1038/srep28679] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022] Open
Abstract
Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp.
Collapse
Affiliation(s)
- Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| |
Collapse
|
24
|
Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q, Gong J, Liu A, Chen T, Wang D, Wang Y, Palanga KK, Muhammad J, Li W, Lu Q, Deng X, Tan Y, Song W, Cai J, Li P, Rashid HO, Gong W, Yuan Y. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC PLANT BIOLOGY 2016; 16:79. [PMID: 27067834 PMCID: PMC4827241 DOI: 10.1186/s12870-016-0741-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. RESULTS In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. CONCLUSIONS This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Collapse
Affiliation(s)
- Zhen Zhang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Haihong Shang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yuzhen Shi
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Long Huang
- />Biomarker Technologies Corporation, Beijing, 103100 China
| | - Junwen Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Qun Ge
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Juwu Gong
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Aiying Liu
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Tingting Chen
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Dan Wang
- />Biomarker Technologies Corporation, Beijing, 103100 China
| | - Yanling Wang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Koffi Kibalou Palanga
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Jamshed Muhammad
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Weijie Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Quanwei Lu
- />Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Xiaoying Deng
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yunna Tan
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Weiwu Song
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Juan Cai
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Pengtao Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Harun or Rashid
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Wankui Gong
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Youlu Yuan
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
25
|
Blackmore T, Thorogood D, Skøt L, McMahon R, Powell W, Hegarty M. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne. Sci Rep 2016; 6:22603. [PMID: 26935901 PMCID: PMC4776279 DOI: 10.1038/srep22603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass.
Collapse
Affiliation(s)
- T. Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - D. Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - L. Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - R. McMahon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - W. Powell
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - M. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| |
Collapse
|
26
|
Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding. PLoS One 2016; 11:e0147187. [PMID: 26799713 PMCID: PMC4723255 DOI: 10.1371/journal.pone.0147187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.
Collapse
|
27
|
Xiao B, Tan Y, Long N, Chen X, Tong Z, Dong Y, Li Y. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. ACTA ACUST UNITED AC 2015; 22:11. [PMID: 26473145 PMCID: PMC4607152 DOI: 10.1186/s40709-015-0034-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022]
Abstract
Background Tobacco (Nicotiana tabacum L.) is an important model system, which has been widely used in plant physiological studies and it is particularly useful as a bioreactor. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping and breeding. Restriction-site associated DNA sequencing (RAD-seq) is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis through linkage mapping. Results We constructed a RAD library using genomic DNA from a BC1 backcross population. Sequencing of 196 individuals was performed on an Illumina HiSeq 2500. Two linkage maps were constructed, one with a reference genome and another, termed as de novo identification of single nucleotide polymorphism (SNP) by RAD-seq, without a reference genome. Overall, 4138 and 2162 SNP markers with a total length of 1944.74 and 2000.9 cM were mapped to 24 linkage groups in the genetic maps based on reference genome and without reference, respectively. Conclusions Using two different SNP discovery methods based on next generation RAD sequencing technology, we have respectively mapped 2162 and 4318 SNPs in our backcross population. This study gives an excellent example for high density linkage map construction, irrespective of genome sequence availability, and provides saturated information for downstream genetic investigations such as quantitative trait locus analyses or genomic selection (e.g. bioreactor suitable cultivars). Electronic supplementary material The online version of this article (doi:10.1186/s40709-015-0034-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Yuntao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Ni Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Xuejun Chen
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| |
Collapse
|
28
|
Blackmore T, Thomas I, McMahon R, Powell W, Hegarty M. Genetic-geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1917-1932. [PMID: 26093611 PMCID: PMC4572065 DOI: 10.1007/s00122-015-2556-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/05/2015] [Indexed: 05/29/2023]
Abstract
Publically available SNP array increases the marker density for genotyping of forage crop, Lolium perenne. Applied to 90 European ecotypes composed of 716 individuals identifies a significant genetic-geographic correlation. Grassland ecosystems are ubiquitous across temperate and tropical regions, totalling 37% of the terrestrial land cover of the planet, and thus represent a global resource for understanding local adaptations to environment. However, genomic resources for grass species (outside cereals) are relatively poor. The advent of next-generation DNA sequencing and high-density SNP genotyping platforms enables the development of dense marker assays for population genetics analyses and genome-wide association studies. A high-density SNP marker resource (Illumina Infinium assay) for perennial ryegrass (Lolium perenne) was created and validated in a broad ecotype collection of 716 individuals sampled from 90 sites across Europe. Genetic diversity within and between populations was assessed. A strong correlation of geographic origin to genetic structure was found using principal component analysis, with significant correlation to longitude and latitude (P < 0.001). The potential of this array as a resource for studies of germplasm diversity and identifying traits underpinning adaptive variation is highlighted.
Collapse
Affiliation(s)
- T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK.
| | - I Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - R McMahon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - W Powell
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK.
| |
Collapse
|
29
|
Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich. PLoS One 2015; 10:e0138942. [PMID: 26398819 PMCID: PMC4580594 DOI: 10.1371/journal.pone.0138942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.
Collapse
|
30
|
Alvarenga TIRC, Chen Y, Furusho-Garcia IF, Perez JRO, Hopkins DL. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Compr Rev Food Sci Food Saf 2015; 14:189-204. [DOI: 10.1111/1541-4337.12131] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Tharcilla Isabella Rodrigues Costa Alvarenga
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| | - Yizhou Chen
- NSW Dept. of Primary Industries; Elizabeth Macarthur Agricultural Inst; Menangle NSW 2568 Australia
| | - Iraides Ferreira Furusho-Garcia
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - Juan Ramon Olalquiaga Perez
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - David L. Hopkins
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| |
Collapse
|
31
|
Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 2015; 16:98. [PMID: 25765114 PMCID: PMC4336685 DOI: 10.1186/s12864-015-1326-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/06/2015] [Indexed: 01/09/2023] Open
Abstract
Background Pistachio (Pistacia vera L.) is a dioecious species that has a long juvenility period. Therefore, development of marker-assisted selection (MAS) techniques would greatly facilitate pistachio cultivar-breeding programs. The sex determination mechanism is presently unknown in pistachio. The generation of sex-linked markers is likely to reduce time, labor, and costs associated with breeding programs, and will help to clarify the sex determination system in pistachio. Results Restriction site-associated DNA (RAD) markers were used to identify sex-linked markers and to elucidate the sex determination system in pistachio. Eight male and eight female F1 progenies from a Pistacia vera L. Siirt × Bağyolu cross, along with the parents, were subjected to RAD sequencing in two lanes of a Hi-Seq 2000 sequencing platform. This generated 449 million reads, comprising approximately 37.7 Gb of sequences. There were 33,757 polymorphic single nucleotide polymorphism (SNP) loci between the parents. Thirty-eight of these, from 28 RAD reads, were detected as putative sex-associated loci in pistachio. Validation was performed by SNaPshot analysis in 42 mature F1 progenies and in 124 cultivars and genotypes in a germplasm collection. Eight loci could distinguish sex with 100% accuracy in pistachio. To ascertain cost-effective application of markers in a breeding program, high-resolution melting (HRM) analysis was performed; four markers were found to perfectly separate sexes in pistachio. Because of the female heterogamety in all candidate SNP loci, we report for the first time that pistachio has a ZZ/ZW sex determination system. As the reported female-to-male segregation ratio is 1:1 in all known segregating populations and there is no previous report of super-female genotypes or female heteromorphic chromosomes in pistachio, it appears that the WW genotype is not viable. Conclusion Sex-linked SNP markers were identified and validated in a large germplasm and proved their suitability for MAS in pistachio. HRM analysis successfully validated the sex-linked markers for MAS. For the first time in dioecious pistachio, a female heterogamety ZW/ZZ sex determination system is suggested.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| |
Collapse
|
32
|
Barrett BA, Faville MJ, Nichols SN, Simpson WR, Bryan GT, Conner AJ. Breaking through the feed barrier: options for improving forage genetics. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14833] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pasture based on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) is the foundation for production and profit in the Australasian pastoral sectors. The improvement of these species offers direct opportunities to enhance sector performance, provided there is good alignment with industry priorities as quantified by means such as the forage value index. However, the rate of forage genetic improvement must increase to sustain industry competitiveness. New forage technologies and breeding strategies that can complement and enhance traditional approaches are required to achieve this. We highlight current and future research in plant breeding, including genomic and gene technology approaches to improve rate of genetic gain. Genomic diversity is the basis of breeding and improvement. Recent advances in the range and focus of introgression from wild Trifolium species have created additional specific options to improve production and resource-use-efficiency traits. Symbiont genetic resources, especially advances in grass fungal endophytes, make a critical contribution to forage, supporting pastoral productivity, with benefits to both pastures and animals in some dairy regions. Genomic selection, now widely used in animal breeding, offers an opportunity to lift the rate of genetic gain in forages as well. Accuracy and relevance of trait data are paramount, it is essential that genomic breeding approaches be linked with robust field evaluation strategies including advanced phenotyping technologies. This requires excellent data management and integration with decision-support systems to deliver improved effectiveness from forage breeding. Novel traits being developed through genetic modification include increased energy content and potential increased biomass in ryegrass, and expression of condensed tannins in forage legumes. These examples from the wider set of research emphasise forage adaptation, yield and energy content, while covering the spectrum from exotic germplasm and symbionts through to advanced breeding strategies and gene technologies. To ensure that these opportunities are realised on farm, continuity of industry-relevant delivery of forage-improvement research is essential, as is sustained research input from the supporting pasture and plant sciences.
Collapse
|
33
|
Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y, Zhao Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC PLANT BIOLOGY 2014; 14:274. [PMID: 25300176 PMCID: PMC4200128 DOI: 10.1186/s12870-014-0274-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 26) is an important oilseed crop with an estimated genome size of 369 Mb. The genetic basis, including the number and locations of quantitative trait loci (QTLs) of sesame grain yield and quality remain poorly understood, due in part to the lack of reliable markers and genetic maps. Here we report on the construction of a hitherto most high-density genetic map of sesame using the restriction-site associated DNA sequencing (RAD-seq) combined with 89 PCR markers, and the identification of grain yield-related QTLs using a recombinant inbred line (RIL) population. RESULT In total, 3,769 single-nucleotide polymorphism (SNP) markers were identified from RAD-seq, and 89 polymorphic PCR markers were identified including 44 expressed sequence tag-simple sequence repeats (EST-SSRs), 10 genomic-SSRs and 35 Insertion-Deletion markers (InDels). The final map included 1,230 markers distributed on 14 linkage groups (LGs) and was 844.46 cM in length with an average of 0.69 cM between adjacent markers. Using this map and RIL population, we detected 13 QTLs on 7 LGs and 17 QTLs on 10 LGs for seven grain yield-related traits by the multiple interval mapping (MIM) and the mixed linear composite interval mapping (MCIM), respectively. Three major QTLs had been identified using MIM with R2 > 10.0% or MCIM with ha 2 > 5.0%. Two co-localized QTL groups were identified that partially explained the correlations among five yield-related traits. CONCLUSION Three thousand eight hundred and four pairs of new DNA markers including SNPs and InDels were developed by RAD-seq, and a so far most high-density genetic map was constructed based on these markers in combination with SSR markers. Several grain yield-related QTLs had been identified using this population and genetic map. We report here the first QTL mapping of yield-related traits with a high-density genetic map using a RIL population in sesame. Results of this study solidified the basis for studying important agricultural traits and implementing marker-assisted selection (MAS) toward genetic improvement in sesame.
Collapse
Affiliation(s)
- Kun Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Hongyan Liu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Minmin Yang
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Ye Tao
- />Shanghai Major Biological Medicine Technology Co., Ltd., Shanghai, 201203 China
| | - Huihui Ma
- />Fuyang Academy of Agricultural Sciences, Fuyang, Anhui 236065 China
| | - Wenxiong Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yang Zuo
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yingzhong Zhao
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| |
Collapse
|
34
|
Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, Qin D, Lu Z, Li G. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:430-42. [PMID: 24320550 DOI: 10.1111/tpj.12370] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
Restriction site-associated DNA sequencing (RAD-Seq), a next-generation sequencing-based genome 'complexity reduction' protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low-to-medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F₂ population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high-density genetic map. Low-depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD-Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub-gene pools were suggested for association with fruit shape. The two sub-gene pools were moderately differentiated, as reflected by the Hudson's F(ST) value of 0.14, and they represent regions on LG7 with strikingly elevated F(ST) values. Seven-fold reduction in heterozygosity and two times increase in LD (r²) were observed in the same region for the round-fruited sub-gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD-Seq to population genomic studies for non-model species even under low-to-medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS One 2014; 9:e87138. [PMID: 24498029 PMCID: PMC3907450 DOI: 10.1371/journal.pone.0087138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023] Open
Abstract
Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.
Collapse
|
36
|
Hirsch CD, Evans J, Buell CR, Hirsch CN. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes. Brief Funct Genomics 2014; 13:257-67. [PMID: 24395692 DOI: 10.1093/bfgp/elt051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security.
Collapse
|
37
|
Kopecký D, Studer B. Emerging technologies advancing forage and turf grass genomics. Biotechnol Adv 2013; 32:190-9. [PMID: 24309540 DOI: 10.1016/j.biotechadv.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications.
Collapse
Affiliation(s)
- David Kopecký
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371, Olomouc-Holice, Czech Republic
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
38
|
Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ. The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1282-9. [PMID: 23686420 PMCID: PMC3707558 DOI: 10.1104/pp.113.219840] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/16/2013] [Indexed: 05/20/2023]
Abstract
There has been considerable interest recently in the prospect of engineering crops to produce triacylglycerol (TAG) in their vegetative tissues as a means to achieve a step change in oil yield. Here, we show that disruption of TAG hydrolysis in the Arabidopsis (Arabidopsis thaliana) lipase mutant sugar-dependent1 (sdp1) leads to a substantial accumulation of TAG in roots and stems but comparatively much lower TAG accumulation in leaves. TAG content in sdp1 roots increases with the age of the plant and can reach more than 1% of dry weight at maturity, a 50-fold increase over the wild type. TAG accumulation in sdp1 roots requires both ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL ACYLTRANSFERASE1 and can also be strongly stimulated by the provision of exogenous sugar. In transgenic plants constitutively coexpressing WRINKLED1 and DGAT1, sdp1 also doubles the accumulation of TAG in roots, stems, and leaves, with levels ranging from 5% to 8% of dry weight. Finally, provision of 3% (w/v) exogenous Suc can further boost root TAG content in these transgenic plants to 17% of dry weight. This level of TAG is similar to seed tissues in many plant species and establishes the efficacy of an engineering strategy to produce oil in vegetative tissues that involves simultaneous manipulation of carbohydrate supply, fatty acid synthesis, TAG synthesis, and also TAG breakdown.
Collapse
|