1
|
de Jesus Vieira Teixeira C, Bellande K, van der Schuren A, O'Connor D, Hardtke CS, Vermeer JEM. An atlas of Brachypodium distachyon lateral root development. Biol Open 2024; 13:bio060531. [PMID: 39158386 PMCID: PMC11391822 DOI: 10.1242/bio.060531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
The root system of plants is a vital part for successful development and adaptation to different soil types and environments. A major determinant of the shape of a plant root system is the formation of lateral roots, allowing for expansion of the root system. Arabidopsis thaliana, with its simple root anatomy, has been extensively studied to reveal the genetic program underlying root branching. However, to get a more general understanding of lateral root development, comparative studies in species with a more complex root anatomy are required. Here, by combining optimized clearing methods and histology, we describe an atlas of lateral root development in Brachypodium distachyon, a wild, temperate grass species. We show that lateral roots initiate from enlarged phloem pole pericycle cells and that the overlying endodermis reactivates its cell cycle and eventually forms the root cap. In addition, auxin signaling reported by the DR5 reporter was not detected in the phloem pole pericycle cells or young primordia. In contrast, auxin signaling was activated in the overlying cortical cell layers, including the exodermis. Thus, Brachypodium is a valuable model to investigate how signaling pathways and cellular responses have been repurposed to facilitate lateral root organogenesis.
Collapse
Affiliation(s)
| | - Kevin Bellande
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Alja van der Schuren
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Devin O'Connor
- Sainsbury Lab, University of Cambridge, CB2 1LR Cambridge, UK
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joop E M Vermeer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
2
|
Zeffa DM, Júnior LP, de Assis R, Delfini J, Marcos AW, Koltun A, Baba VY, Constantino LV, Uhdre RS, Nogueira AF, Moda-Cirino V, Scapim CA, Gonçalves LSA. Multi-locus genome-wide association study for phosphorus use efficiency in a tropical maize germplasm. FRONTIERS IN PLANT SCIENCE 2024; 15:1366173. [PMID: 39246817 PMCID: PMC11380136 DOI: 10.3389/fpls.2024.1366173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 09/10/2024]
Abstract
Phosphorus (P) is an essential macronutrient for maize (Zea mays L.) growth and development. Therefore, generating cultivars with upgraded P use efficiency (PUE) represents one of the main strategies to reduce the global agriculture dependence on phosphate fertilizers. In this work, genome-wide association studies (GWAS) were performed to detect quantitative trait nucleotide (QTN) and potential PUE-related candidate genes and associated traits in greenhouse and field trials under contrasting P conditions. The PUE and other agronomy traits of 132 maize inbred lines were assessed in low and normal P supply through the greenhouse and field experiments and Multi-locus GWAS was used to map the associated QTNs. Wide genetic variability was observed among the maize inbred lines under low and normal P supply. In addition, we confirm the complex and quantitative nature of PUE. A total of 306 QTNs were associated with the 24 traits evaluated using different multi-locus GWAS methods. A total of 186 potential candidate genes were identified, mainly involved with transcription regulator, transporter, and transference activity. Further studies are still needed to elucidate the functions and relevance of these genes regarding PUE. Nevertheless, pyramiding the favorable alleles pinpointed in the present study can be considered an efficient strategy for molecular improvement to increase maize PUE.
Collapse
Affiliation(s)
- Douglas Mariani Zeffa
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Luiz Perini Júnior
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Rafael de Assis
- Departamento de Biologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Jéssica Delfini
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Antoni Wallace Marcos
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alessandra Koltun
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Viviane Yumi Baba
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Renan Santos Uhdre
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Vania Moda-Cirino
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Paraná, Brazil
| | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
3
|
Jan M, Muhammad S, Jin W, Zhong W, Zhang S, Lin Y, Zhou Y, Liu J, Liu H, Munir R, Yue Q, Afzal M, Wang G. Modulating root system architecture: cross-talk between auxin and phytohormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1343928. [PMID: 38390293 PMCID: PMC10881875 DOI: 10.3389/fpls.2024.1343928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant-microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.
Collapse
Affiliation(s)
- Mehmood Jan
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sajid Muhammad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weicai Jin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Wenhao Zhong
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolong Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Yanjie Lin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yueni Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinlong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haifeng Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Raheel Munir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Muhammad Afzal
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| |
Collapse
|
4
|
Motte H, Parizot B, Xuan W, Chen Q, Maere S, Bensmihen S, Beeckman T. Interspecies co-expression analysis of lateral root development using inducible systems in rice, Medicago, and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1052-1063. [PMID: 37793018 DOI: 10.1111/tpj.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Lateral roots are crucial for plant growth and development, making them an important target for research aiming to improve crop yields and food security. However, their endogenous ontogeny and, as it were, stochastic appearance challenge their study. Lateral Root Inducible Systems (LRIS) can be used to overcome these challenges by inducing lateral roots massively and synchronously. The combination of LRISs with transcriptomic approaches significantly advanced our insights in the molecular control of lateral root formation, in particular for Arabidopsis. Despite this success, LRISs have been underutilized for other plant species or for lateral root developmental stages later than the initiation. In this study, we developed and/or adapted LRISs in rice, Medicago, and Arabidopsis to perform RNA-sequencing during time courses that cover different developmental stages of lateral root formation and primordium development. As such, our study provides three extensive datasets of gene expression profiles during lateral root development in three different plant species. The three LRISs are highly effective but timing and spatial distribution of lateral root induction vary among the species. Detailed characterization of the stages in time and space in the respective species enabled an interspecies co-expression analysis to identify conserved players involved in lateral root development, as illustrated for the AUX/IAA and LBD gene families. Overall, our results provide a valuable resource to identify potentially conserved regulatory mechanisms in lateral root development, and as such will contribute to a better understanding of the complex regulatory network underlying lateral root development.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Sandra Bensmihen
- INRAE, CNRS, LIPME, Université de Toulouse, F-31326, Castanet-Tolosan, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
5
|
Motte H, Fang T, Parizot B, Smet W, Yang X, Poelmans W, Walker L, Njo M, Bassel GW, Beeckman T. Cellular and gene expression patterns associated with root bifurcation in Selaginella. PLANT PHYSIOLOGY 2022; 190:2398-2416. [PMID: 36029252 PMCID: PMC9706437 DOI: 10.1093/plphys/kiac402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tao Fang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Xilan Yang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liam Walker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
6
|
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved superlocus regulates above- and belowground root initiation. Science 2022; 375:eabf4368. [PMID: 35239373 DOI: 10.1101/2020.11.11.377937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evyatar Steiner
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Idan Efroni
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Ravazzolo L, Boutet-Mercey S, Perreau F, Forestan C, Varotto S, Ruperti B, Quaggiotti S. Strigolactones and Auxin Cooperate to Regulate Maize Root Development and Response to Nitrate. PLANT & CELL PHYSIOLOGY 2021; 62:610-623. [PMID: 33508105 DOI: 10.1093/pcp/pcab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/20/2021] [Indexed: 05/12/2023]
Abstract
In maize, nitrate regulates root development thanks to the coordinated action of many players. In this study, the involvement of strigolactones (SLs) and auxin as putative components of the nitrate regulation of lateral root (LR) was investigated. To this aim, the endogenous SL content of maize root in response to nitrate was assessed by liquid chromatography with tandem mass Spectrometry (LC-MS/MS) and measurements of LR density in the presence of analogues or inhibitors of auxin and SLs were performed. Furthermore, an untargeted RNA-sequencing (RNA-seq)-based approach was used to better characterize the participation of auxin and SLs to the transcriptional signature of maize root response to nitrate. Our results suggested that N deprivation induces zealactone and carlactonoic acid biosynthesis in root, to a higher extent if compared to P-deprived roots. Moreover, data on LR density led to hypothesize that the induction of LR development early occurring upon nitrate supply involves the inhibition of SL biosynthesis, but that the downstream target of SL shutdown, besides auxin, also includes additional unknown players. Furthermore, RNA-seq results provided a set of putative markers for the auxin- or SL-dependent action of nitrate, meanwhile also allowing to identify novel components of the molecular regulation of maize root response to nitrate. Globally, the existence of at least four different pathways was hypothesized: one dependent on auxin, a second one mediated by SLs, a third deriving from the SL-auxin interplay, and a last one attributable to nitrate itself through further downstream signals. Further work will be necessary to better assess the reliability of the model proposed.
Collapse
Affiliation(s)
- Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, Bologna 40127, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
8
|
Kumar V, Singh D, Majee A, Singh S, Asif MH, Sane AP, Sane VA. Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1173-1189. [PMID: 34177143 PMCID: PMC8212336 DOI: 10.1007/s12298-021-01015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01015-0.
Collapse
Affiliation(s)
- Vinod Kumar
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Integral University, Lucknow, 226026 India
| | - Adity Majee
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shikha Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mehar Hasan Asif
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
9
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
10
|
Yu P, Hochholdinger F, Li C. Plasticity of Lateral Root Branching in Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:363. [PMID: 30984221 PMCID: PMC6449698 DOI: 10.3389/fpls.2019.00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/08/2019] [Indexed: 05/11/2023]
Abstract
Extensively branched root systems can efficiently capture soil resources by increasing their absorbing surface in soil. Lateral roots are the roots formed from pericycle cells of other roots that can be of any type. As a consequence, lateral roots provide a higher surface to volume ratio and are important for water and nutrients acquisition. Discoveries from recent studies have started to shed light on how plant root systems respond to environmental changes in order to improve capture of soil resources. In this Mini Review, we will mainly focus on the spatial distribution of lateral roots of maize and their developmental plasticity in response to the availability of water and nutrients.
Collapse
Affiliation(s)
- Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Kortz A, Hochholdinger F, Yu P. Cell Type-Specific Transcriptomics of Lateral Root Formation and Plasticity. FRONTIERS IN PLANT SCIENCE 2019; 10:21. [PMID: 30809234 PMCID: PMC6379339 DOI: 10.3389/fpls.2019.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Lateral roots are a major determinant of root architecture and are instrumental for the efficient uptake of water and nutrients. Lateral roots consist of multiple cell types each expressing a unique transcriptome at a given developmental stage. Therefore, transcriptome analyses of complete lateral roots provide only average gene expression levels integrated over all cell types. Such analyses have the risk to mask genes, pathways and networks specifically expressed in a particular cell type during lateral root formation. Cell type-specific transcriptomics paves the way for a holistic understanding of the programming and re-programming of cells such as pericycle cells, involved in lateral root initiation. Recent discoveries have advanced the molecular understanding of the intrinsic genetic control of lateral root initiation and elongation. Moreover, the impact of nitrate availability on the transcriptional regulation of lateral root formation in Arabidopsis and cereals has been studied. In this review, we will focus on the systemic dissection of lateral root formation and its interaction with environmental nitrate through cell type-specific transcriptome analyses. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in plants.
Collapse
Affiliation(s)
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Motte H, Beeckman T. The evolution of root branching: increasing the level of plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:785-793. [PMID: 30481325 DOI: 10.1093/jxb/ery409] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/26/2023]
Abstract
Plant roots and root systems are indispensable for water and nutrient foraging, and are a major evolutionary achievement for plants to cope with dry land conditions. The ability of roots to branch contributes substantially to their capacity to explore the soil for water and nutrients, and led ~400 million years ago to the successful colonization of land by plants, eventually even in arid regions. During this colonization, different forms of root branching evolved, reinforcing step by step the phenotypic plasticity of the root system. Whereas the lycophytes, the most ancient land plants with roots, only branch at the root tip, ferns are able to form roots laterally in a fixed pattern along the main root. Finally, roots of seed plants show the highest phenotypic plasticity, because lateral roots can possibly, dependent on internal and/or external signals, be produced at almost any position along the main root. The competence to form lateral roots in seed plants is based on the presence of internal cell files with stem cell-like features. Despite the dissimilarities between the different clades, a number of genetic modules seem to be co-opted in order to acquire root branching capacity. In this review, starting from the lateral root pathways in seed plants, we review root branching in the different land plant lineages and discuss the hitherto described genetic modules that contribute to their root branching capacity. We try to obtain insight into how land plants have acquired an increasing root branching plasticity during evolution that contributed to the successful colonization of our planet by seed plants.
Collapse
Affiliation(s)
- Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
13
|
Shu W, Zhou H, Jiang C, Zhao S, Wang L, Li Q, Yang Z, Groover A, Lu M. The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:338-349. [PMID: 29949229 PMCID: PMC6335065 DOI: 10.1111/pbi.12980] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 05/18/2023]
Abstract
Adventitious roots occur naturally in many species and can also be induced from explants of some tree species including Populus, providing an important means of clonal propagation. Auxin has been identified as playing a crucial role in adventitious root formation, but the associated molecular regulatory mechanisms need to be elucidated. In this study, we examined the role of PagFBL1, the hybrid poplar (Populus alba × P. glandulosa clone 84K) homolog of Arabidopsis auxin receptor TIR1, in adventitious root formation in poplar. Similar to the distribution pattern of auxin during initiation of adventitious roots, PagFBL1 expression was concentrated in the cambium and secondary phloem in stems during adventitious root induction and initiation phases, but decreased in emerging adventitious root primordia. Overexpressing PagFBL1 stimulated adventitious root formation and increased root biomass, while knock-down of PagFBL1 transcript levels delayed adventitious root formation and decreased root biomass. Transcriptome analyses of PagFBL1 overexpressing lines indicated that an extensive remodelling of gene expression was stimulated by auxin signalling pathway during early adventitious root formation. In addition, PagIAA28 was identified as downstream targets of PagFBL1. We propose that the PagFBL1-PagIAA28 module promotes adventitious rooting and could be targeted to improve Populus propagation by cuttings.
Collapse
Affiliation(s)
- Wenbo Shu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Guangxi Academy of ForestryNanningGuangxiChina
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Cheng Jiang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | | | - Andrew Groover
- US Forest ServicePacific Southwest Research StationDavisCAUSA
| | - Meng‐Zhu Lu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
14
|
Zhang Y, Wang C, Xu H, Shi X, Zhen W, Hu Z, Huang J, Zheng Y, Huang P, Zhang KX, Xiao X, Hao X, Wang X, Zhou C, Wang G, Li C, Zheng L. HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. FRONTIERS IN PLANT SCIENCE 2019; 10:1490. [PMID: 31850011 PMCID: PMC6892842 DOI: 10.3389/fpls.2019.01490] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Light is essential for plant organogenesis and development. Light-regulated shoot morphogenesis has been extensively studied; however, the mechanisms by which plant roots perceive and respond to aboveground light are largely unknown, particularly because the roots of most terrestrial plants are usually located underground in darkness. To mimic natural root growth conditions, we developed a root-covered system (RCS) in which the shoots were illuminated and the plant roots could be either exposed to light or cultivated in darkness. Using the RCS, we observed that root growth of wild-type plants was significantly promoted when the roots were in darkness, whereas it was inhibited by direct light exposure. This growth change seems to be regulated by ELONGATED HYPOCOTYL 5 (HY5), a master regulator of photomorphogenesis. Light was found to regulate HY5 expression in the roots, while a HY5 deficiency partially abolished the inhibition of growth in roots directly exposed to light, suggesting that HY5 expression is induced by direct light exposure and inhibits root growth. However, no differences in HY5 expression were observed between illuminated and dark-grown cop1 roots, indicating that HY5 may be regulated by COP1-mediated proteasome degradation. We confirmed the crucial role of HY5 in regulating root development in response to light under soil-grown conditions. A transcriptomic analysis revealed that light controls the expression of numerous genes involved in phytohormone signaling, stress adaptation, and metabolic processes in a HY5-dependent manner. In combination with the results of the flavonol quantification and exogenous quercetin application, these findings suggested that HY5 regulates the root response to light through a complex network that integrates flavonol biosynthesis and reactive oxygen species signaling. Collectively, our results indicate that HY5 is a master regulator of root photomorphogenesis.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chunfei Wang
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Xu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Weibo Zhen
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhubing Hu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ping Huang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| |
Collapse
|
15
|
Lavarenne J, Guyomarc'h S, Sallaud C, Gantet P, Lucas M. The Spring of Systems Biology-Driven Breeding. TRENDS IN PLANT SCIENCE 2018; 23:706-720. [PMID: 29764727 DOI: 10.1016/j.tplants.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 05/08/2023]
Abstract
Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France; Biogemma, Centre de Recherches de Chappes, Route d'Ennezat, 63720 Chappes, France
| | - Soazig Guyomarc'h
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | - Christophe Sallaud
- Biogemma, Centre de Recherches de Chappes, Route d'Ennezat, 63720 Chappes, France
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France.
| | - Mikaël Lucas
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| |
Collapse
|
16
|
Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 2018; 18:315-326. [PMID: 29511998 PMCID: PMC6463493 DOI: 10.1007/s10142-018-0594-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
Abstract
Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Megan J Bowman
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Andres Vega
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
17
|
Adapting the Lateral Root-Inducible System to Medicago truncatula. Methods Mol Biol 2018. [PMID: 29525949 DOI: 10.1007/978-1-4939-7747-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Almost all legume plants have the capacity to form two types of root organs: lateral roots and nodules (that will host rhizobia that fix nitrogen). Transcriptomic analyses are useful to understand both the similarities and differences between nodule and LR formation and to compare the LR developmental programs used by Arabidopsis and model legumes such as Medicago truncatula. However, in M. truncatula as in Arabidopsis, root cells "committed" to LR formation programs are scattered along the primary root and localized in the inner most layers of the root. To gain access to these cells, a lateral root-inducible system (LRIS) was first developed in Arabidopsis. This LRIS was recently shown to be effective in maize as well. Here we present a LRIS protocol adapted to the model legume Medicago truncatula. Using the same auxin transporter inhibitor and permeant auxin molecules used for Arabidopsis and maize but with slight modifications in their concentrations, we obtained very efficient enrichment and synchronization in LR development stages in M. truncatula.
Collapse
|
18
|
Stoeckle D, Thellmann M, Vermeer JE. Breakout-lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:67-72. [PMID: 28968512 DOI: 10.1016/j.pbi.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
Lateral roots are determinants of plant root system architecture. Besides providing anchorage, they are a plant's means to explore the soil environment for water and nutrients. Lateral roots form post-embryonically and initiate deep within the root. On its way to the surface, the newly formed organ needs to grow through three overlying cell layers; the endodermis, cortex and epidermis. A picture is emerging that a tight integration of chemical and mechanical signalling between the lateral root and the surrounding tissue is essential for proper organogenesis. Here we review the latest progress made towards our understanding of the fascinating biology underlying lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Dorothee Stoeckle
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Joop Em Vermeer
- Department of Plant and Microbial Biology, University of Zurich, Switzerland; Cell Biology and Developmental Biology, Wageningen University, The Netherlands.
| |
Collapse
|
19
|
Jia H, Sun W, Li M, Zhang Z. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. J Proteome Res 2018; 17:822-833. [DOI: 10.1021/acs.jproteome.7b00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haitao Jia
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei Sun
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Manfei Li
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zuxin Zhang
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
20
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
21
|
Napsucialy-Mendivil S, Dubrovsky JG. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana. Methods Mol Biol 2018; 1761:47-75. [PMID: 29525948 DOI: 10.1007/978-1-4939-7747-5_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.
Collapse
Affiliation(s)
- Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
22
|
Herrbach V, Chirinos X, Rengel D, Agbevenou K, Vincent R, Pateyron S, Huguet S, Balzergue S, Pasha A, Provart N, Gough C, Bensmihen S. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:569-583. [PMID: 28073951 PMCID: PMC6055581 DOI: 10.1093/jxb/erw474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 05/29/2023]
Abstract
Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula. This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes.
Collapse
Affiliation(s)
| | - Ximena Chirinos
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Rémy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Stéphanie Huguet
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Sandrine Balzergue
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Asher Pasha
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
23
|
Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic Control of Lateral Root Formation in Cereals. TRENDS IN PLANT SCIENCE 2016; 21:951-961. [PMID: 27524642 DOI: 10.1016/j.tplants.2016.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.
Collapse
Affiliation(s)
- Peng Yu
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China; University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany
| | | | - Chunjian Li
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China.
| | - Frank Hochholdinger
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany.
| |
Collapse
|
24
|
Crombez H, Roberts I, Vangheluwe N, Motte H, Jansen L, Beeckman T, Parizot B. Lateral Root Inducible System in Arabidopsis and Maize. J Vis Exp 2016:e53481. [PMID: 26862837 DOI: 10.3791/53481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Ianto Roberts
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Nick Vangheluwe
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Hans Motte
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Leentje Jansen
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University;
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| |
Collapse
|
25
|
Ranjan A, Sawant S. Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress. 3 Biotech 2015; 5:585-596. [PMID: 28324561 PMCID: PMC4522718 DOI: 10.1007/s13205-014-0257-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, the 454 pyrosequencing platform was used for analyzing the comparative transcriptomic profiles of leaf and root tissues of 1-month-old cotton (Gossypium herbaceum) plants under drought stress. A total of 56,354 and 49,308 reads were generated from leaf and root tissues, respectively, and clustered into 6,313 and 5,858 unigenes. The differentially expressed unigenes that showed up-regulation (≥2-fold) or down-regulation (2≤-fold) were considered for further analysis. A total of 3,517 unigenes were differentially expressed in both tissues. The 1,528 genes specific to leaves and 1,128 specific to roots were obtained. The 28 biological pathways in two tissues were found to respond significantly to drought stress. A total of 289 in leaf and 277 in root unknown (novel) unigenes were found to be remarkably regulated by drought stress. Some key regulatory genes involved in abiotic stress such as WRKY, ERF, AP2 EREBP, MYB, and LEA were highly expressed in leaves. The genes RHD3, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in root. The genes related to chlorophyll a/b binding protein and photosystem-related proteins showed significant higher expression in roots and as compared to leaves. It can be concluded that cotton leaves are distinct from roots in terms of molecular mechanisms for responses to drought stress.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Samir Sawant
- National Botanical Research Institute, CSIR, Lucknow, 226001, UP, India
| |
Collapse
|
26
|
Huang L, Schiefelbein J. Conserved Gene Expression Programs in Developing Roots from Diverse Plants. THE PLANT CELL 2015; 27:2119-32. [PMID: 26265761 PMCID: PMC4568505 DOI: 10.1105/tpc.15.00328] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.
Collapse
Affiliation(s)
- Ling Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
27
|
Martínez-de la Cruz E, García-Ramírez E, Vázquez-Ramos JM, Reyes de la Cruz H, López-Bucio J. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:147-56. [PMID: 25615607 DOI: 10.1016/j.jplph.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 05/26/2023]
Abstract
Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins.
Collapse
Affiliation(s)
- Enrique Martínez-de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Morelia 58030, Michoacán, Mexico
| | - Elpidio García-Ramírez
- Departamento de Bioquímica, Facultad de Química, UNAM, Ciudad Universitaria, México DF C.P. 04510, Mexico
| | - Jorge M Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, UNAM, Ciudad Universitaria, México DF C.P. 04510, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Morelia 58030, Michoacán, Mexico.
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Morelia 58030, Michoacán, Mexico.
| |
Collapse
|
28
|
Affiliation(s)
- Tom Beeckman
- Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
29
|
Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X, Zhu L. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6679-92. [PMID: 25326626 PMCID: PMC4246195 DOI: 10.1093/jxb/eru393] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Verticillium wilt causes dramatic cotton yield loss in China. Although some genes or biological processes involved in the interaction between cotton and Verticillium dahliae have been identified, the molecular mechanism of cotton resistance to this disease is still poorly understood. The basic innate immune response for defence is somewhat conserved among plant species to defend themselves in complex environments, which makes it possible to characterize genes involved in cotton immunity based on information from model plants. With the availability of Arabidopsis databases, a data-mining strategy accompanied by virus-induced gene silencing (VIGS) and heterologous expression were adopted in cotton and tobacco, respectively, for global screening and gene function characterization. A total of 232 Arabidopsis genes putatively involved in basic innate immunity were screened as candidate genes, and bioinformatic analysis suggested a role of these genes in the immune response. In total, 38 homologous genes from cotton were singled out to characterize their response to V. dahliae and methyl jasmonate treatment through quantitative real-time PCR. The results revealed that 24 genes were differentially regulated by pathogen inoculation, and most of these genes responded to both Verticillium infection and jasmonic acid stimuli. Furthermore, the efficiency of the strategy was illustrated by the functional identification of six candidate genes via heterologous expression in tobacco or a knock-down approach using VIGS in cotton. Functional categorization of these 24 differentially expressed genes as well as functional analysis suggest that reactive oxygen species, salicylic acid- and jasmonic acid-signalling pathways are involved in the cotton disease resistance response to V. dahliae. Our data demonstrate how information from model plants can allow the rapid translation of information into non-model species without complete genome sequencing, via high-throughput screening and functional identification of target genes based on data-mining and VIGS.
Collapse
Affiliation(s)
- Lian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Min Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Kun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jiachen Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yijing Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
30
|
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ. Branching out in roots: uncovering form, function, and regulation. PLANT PHYSIOLOGY 2014; 166:538-50. [PMID: 25136060 PMCID: PMC4213086 DOI: 10.1104/pp.114.245423] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.
Collapse
Affiliation(s)
- Jonathan A Atkinson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Amanda Rasmussen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Richard Traini
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Craig Sturrock
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| |
Collapse
|
31
|
Microarray expression analysis of the main inflorescence in Brassica napus. PLoS One 2014; 9:e102024. [PMID: 25007212 PMCID: PMC4090195 DOI: 10.1371/journal.pone.0102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 01/13/2023] Open
Abstract
The effect of the number of pods on the main inflorescence (NPMI) on seed yield in Brassica napus plants grown at high density is a topic of great economic and scientific interest. Here, we sought to identify patterns of gene expression that determine the NPMI during inflorescence differentiation. We monitored gene expression profiles in the main inflorescence of two B. napus F6 RIL pools, each composed of nine lines with a low or high NPMI, and their parental lines, Zhongshuang 11 (ZS11) and 73290, using a Brassica 90K elements oligonucleotide array. We identified 4,805 genes that were differentially expressed (≥1.5 fold-change) between the low- and high-NPMI samples. Of these, 82.8% had been annotated and 17.2% shared no significant homology with any known genes. About 31 enriched GO clusters were identified amongst the differentially expressed genes (DEGs), including those involved in hormone responses, development regulation, carbohydrate metabolism, signal transduction, and transcription regulation. Furthermore, 92.8% of the DEGs mapped to chromosomes that originated from B. rapa and B. oleracea, and 1.6% of the DEGs co-localized with two QTL intervals (PMI10 and PMI11) known to be associated with the NPMI. Overexpression of BnTPI, which co-localized with PMI10, in Arabidopsis suggested that this gene increases the NPMI. This study provides insight into the molecular factors underlying inflorescence architecture, NPMI determination and, consequently, seed yield in B. napus.
Collapse
|
32
|
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:639-66. [PMID: 24555710 DOI: 10.1146/annurev-arplant-050213-035645] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
Collapse
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE90187 Umeå, Sweden; , ,
| | | | | |
Collapse
|