1
|
Yousaf A, Baldi P, Piazza S, Gualandri V, Komjanc M, Dalla Costa L, Patocchi A, Malnoy M. The Hansen's baccata #2 gene Rvi12_Cd5 confers scab resistance to the susceptible apple cultivar "Gala Galaxy". THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39693099 DOI: 10.1111/tpj.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
To enhance the breeding of new scab-resistant apple cultivars, a comprehensive understanding of the mechanisms governing major scab resistance genes is essential. Rvi12_Cd5 was previously identified as the best candidate gene for the Rvi12 scab resistance of the crab apple "Hansen's baccata #2" by gene prediction and in silico analysis. In the present study, Rvi12_Cd5 was used to transform the scab-susceptible apple cultivar "Gala Galaxy." Two constructs were prepared: the first carrying Rvi12_Cd5 under the control of a 35S promoter and E9 terminator, and the second carrying Rvi12_Cd5 under the control of its native promoter and terminator. All the transgenic lines were analyzed for T-DNA integration, copy number, and expression of Rvi12_Cd5 and phenotypically evaluated for scab resistance. The "Gala Galaxy" lines carrying the 35S promoter expressed Rvi12_Cd5 at a high level, showing partial to high resistance against a mixed inoculum of Venturia inaequalis, with symptoms ranging from class 0 to 3b on the Chevalier scale. The transgenic lines carrying the native promoter showed a lower expression of Rvi12_Cd5 compared with the 35S lines. Nevertheless, the low expression was sufficient to induce a resistance level comparable to that of the transgenic lines carrying the 35S promoter. These results indicate that Rvi12_Cd5 confers scab resistance to a susceptible apple cultivar and that even a low level of gene transcript can trigger a plant response to V. inaequalis infection. After HcrVf2 and Vr2-C, Rvi12_Cd5 is the third major apple scab resistance gene being functionally proven.
Collapse
Affiliation(s)
- Ayesha Yousaf
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, Università Degli Studi di Udine, Udine, Italy
| | - Paolo Baldi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Valeria Gualandri
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Matteo Komjanc
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Andrea Patocchi
- Fruit Breeding Group, Department of Plant Breeding, Agroscope, Waedenswil, Switzerland
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
2
|
Súnico V, Piunti I, Bhattacharjee M, Mezzetti B, Caballero JL, Muñoz-Blanco J, Ricci A, Sabbadini S. Overview on Current Selectable Marker Systems and Novel Marker Free Approaches in Fruit Tree Genetic Engineering. Int J Mol Sci 2024; 25:11902. [PMID: 39595971 PMCID: PMC11594270 DOI: 10.3390/ijms252211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells. Genes that allow the visual recognition of engineered tissues without using any selective agent, such as morphogenic regulators and reporter genes, are also used as selection tools to in vitro identify genetically modified regenerated lines. As final step, genetic engineered plants should be tested in field conditions, where selectable marker genes are no longer necessary, and strongly unpopular especially for the commercial development of the new products. Thus, different approaches, mainly based on the use of site-specific recombinases and/or editing nucleases, are being now used to recover marker-free fruit crops. This review describes and comments the most used and suitable selection tools of interest, particularly for fruit tree genetic engineering. Lastly, a spotlight highlights the biosafety aspects related to the use of selectable marker genes exploited for fruit species genetic engineering.
Collapse
Affiliation(s)
- Victoria Súnico
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Irene Piunti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Mamta Bhattacharjee
- DBT-NECAB, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - José L. Caballero
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Angela Ricci
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| |
Collapse
|
3
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
4
|
Švara A, De Storme N, Carpentier S, Keulemans W, De Coninck B. Phenotyping, genetics, and "-omics" approaches to unravel and introgress enhanced resistance against apple scab ( Venturia inaequalis) in apple cultivars ( Malus × domestica). HORTICULTURE RESEARCH 2024; 11:uhae002. [PMID: 38371632 PMCID: PMC10873587 DOI: 10.1093/hr/uhae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Apple scab disease, caused by the fungus Venturia inaequalis, endangers commercial apple production globally. It is predominantly managed by frequent fungicide sprays that can harm the environment and promote the development of fungicide-resistant strains. Cultivation of scab-resistant cultivars harboring diverse qualitative Rvi resistance loci and quantitative trait loci associated with scab resistance could reduce the chemical footprint. A comprehensive understanding of the host-pathogen interaction is, however, needed to efficiently breed cultivars with enhanced resistance against a variety of pathogenic strains. Breeding efforts should not only encompass pyramiding of Rvi loci and their corresponding resistance alleles that directly or indirectly recognize pathogen effectors, but should also integrate genes that contribute to effective downstream defense mechanisms. This review provides an overview of the phenotypic and genetic aspects of apple scab resistance, and currently known corresponding defense mechanisms. Implementation of recent "-omics" approaches has provided insights into the complex network of physiological, molecular, and signaling processes that occur before and upon scab infection, thereby revealing the importance of both constitutive and induced defense mechanisms. Based on the current knowledge, we outline advances toward more efficient introgression of enhanced scab resistance into novel apple cultivars by conventional breeding or genetic modification techniques. However, additional studies integrating different "-omics" approaches combined with functional studies will be necessary to unravel effective defense mechanisms as well as key regulatory genes underpinning scab resistance in apple. This crucial information will set the stage for successful knowledge-based breeding for enhanced scab resistance.
Collapse
Affiliation(s)
- Anže Švara
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Genetic resources, Bioversity International, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Barbara De Coninck
- Laboratory of Plant Health and Protection, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
6
|
A paired-end whole-genome sequencing approach enables comprehensive characterization of transgene integration in rice. Commun Biol 2022; 5:667. [PMID: 35790849 PMCID: PMC9256713 DOI: 10.1038/s42003-022-03608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient, accurate molecular characterization of genetically modified (GM) organisms is challenging, especially for those transgenic events transferred with genes/elements of recipient species. Herein, we decipher the comprehensive molecular characterization of one novel GM rice event G281 which was transferred with native promoters and an RNA interference (RNAi) expression cassette using paired-end whole genome sequencing (PE-WGS) and modified TranSeq approach. Our results show that transgenes integrate at rice chromosome 3 locus 16,439,674 included a 36 bp deletion of rice genomic DNA, and the whole integration contains two copies of the complete transfer DNA (T-DNA) in a head-to-head arrangement. No unintended insertion or backbone sequence of the transformed plasmid is observed at the whole genome level. Molecular characterization of the G281 event will assist risk assessment and application for a commercial license. In addition, we speculate that our approach could be further used for identifying the transgene integration of cisgenesis/intragenesis crops since both ends of T-DNA in G281 rice were from native gene or elements which is similar with that of cisgenesis/intrasgenesis. Our results from the in silico mimicking cisgenesis event confirm that the mimic rice Gt1 gene insertion and its flanking sequences are successfully identified, demonstrating the applicability of PE-WGS for molecular characterization of cisgenesis/intragenesis crops. Coupling paired-end whole-genome sequencing with droplet digital PCR enabled precise identification of a transgene insertion in the genetically modified rice event G281 on chromosome 3 and the potential for exploring the native gene integration.
Collapse
|
7
|
Identification and Characterization of Two Putative Citrus Phosphomannose Isomerase (CsPMI) Genes as Selectable Markers for Mature Citrus Transformation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two Citrus sinensis (L.) phosphomannose isomerase (PMI) genes, CsPMI1 and CsPMI2, were evaluated as novel selectable markers in mature citrus transformation. Transgenic shoots produced after transformation of Kuharske rootstock with each PMI construct were selected on six treatments of mannose and sucrose. For CsPMI1, there were no significant differences among the various mannose and sucrose treatments for the mean number of positive shoots (PS), the mean transformation efficiency based on the number of shoots (TES), or the mean transformation efficiency based on the number of explants (TEE). However, for the CsPMI2 gene, the number of transgenics produced in two treatments (7.5 g L−1 mannose + 22.5 g L−1 sucrose and 15 g L−1 mannose + 15 g L−1 sucrose) was significantly greater than the sucrose control for TES at 4.2% and 3.7%, respectively. Moreover, TEE at 4.2% in the 15 g L−1 mannose + 15 g L−1 sucrose treatment, supported the TES value. Most of the transgenic lines demonstrated higher in vivo and in vitro enzyme assays compared with the wild-type control. CsPMI2 provided acceptable selection in mature citrus, and it will be applied in future intragenic research.
Collapse
|
8
|
Súnico V, Higuera JJ, Molina-Hidalgo FJ, Blanco-Portales R, Moyano E, Rodríguez-Franco A, Muñoz-Blanco J, Caballero JL. The Intragenesis and Synthetic Biology Approach towards Accelerating Genetic Gains on Strawberry: Development of New Tools to Improve Fruit Quality and Resistance to Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010057. [PMID: 35009061 PMCID: PMC8747664 DOI: 10.3390/plants11010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/13/2023]
Abstract
Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry (Fragaria spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of these innovative approaches to create four RNAi intragenic silencing cassettes by combining specific strawberry new promoters and pathogen defense-related candidate DNA sequences to increase strawberry fruit quality and resistance by silencing their corresponding endogenous genes, mainly during fruit ripening stages, thus avoiding any unwanted effect on plant growth and development. Using a fruit transient assay, GUS expression was detected by the two synthetic FvAAT2 and FvDOF2 promoters, both by histochemical assay and qPCR analysis of GUS transcript levels, thus ensuring the ability of the same to drive the expression of the silencing cassettes in this strawberry tissue. The approaches described here represent valuable new tools for the rapid development of improved strawberry lines.
Collapse
|
9
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
10
|
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, Licciardello C. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1234. [PMID: 32922420 PMCID: PMC7456868 DOI: 10.3389/fpls.2020.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
New plant breeding techniques (NPBTs) aim to overcome traditional breeding limits for fruit tree species, in order to obtain new varieties with improved organoleptic traits and resistance to biotic and abiotic stress, and to maintain fruit quality achieved over centuries by (clonal) selection. Knowledge on the gene(s) controlling a specific trait is essential for the use of NPBTs, such as genome editing and cisgenesis. In the framework of the international scientific community working on fruit tree species, including citrus, NPBTs have mainly been applied to address pathogen threats. Citrus could take advantage of NPBTs because of its complex species biology (seedlessness, apomixis, high heterozygosity, and long juvenility phase) and aptitude for in vitro manipulation. To our knowledge, genome editing in citrus via transgenesis has successful for induced resistance to Citrus bacterial canker in sweet orange and grapefruit using the resistance gene CsLOB1. In the future, NPBTs will also be used to improve fruit traits, making them healthier. The regeneration of plants following the application of NPBTs is a bottleneck, making it necessary to optimize the efficiency of current protocols. The strengths and weaknesses of using explants from young in vitro plantlets, and from mature plants, will be discussed. Other major issues addressed in this review are related to the requirement for marker-free systems and shortening the long juvenility phase. This review aims to summarize methods and approaches available in the literature that are suitable to citrus, focusing on the principles observed before the use of NPBTs.
Collapse
Affiliation(s)
- Fabrizio Salonia
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| | - Concetta Licciardello
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| |
Collapse
|
11
|
Teotia D, Gaid M, Saini SS, Verma A, Yennamalli RM, Khare SP, Ambatipudi K, Mir JI, Beuerle T, Hänsch R, Roy P, Agrawal PK, Beerhues L, Sircar D. Cinnamate-CoA ligase is involved in biosynthesis of benzoate-derived biphenyl phytoalexin in Malus × domestica 'Golden Delicious' cell cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1176-1192. [PMID: 31437324 DOI: 10.1111/tpj.14506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/09/2023]
Abstract
Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.
Collapse
Affiliation(s)
- Deepa Teotia
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Shashank S Saini
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Aparna Verma
- Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International, Lavale, MH-412115, India
| | - Kiran Ambatipudi
- Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, Jammu and Kashmir, India
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Partha Roy
- Molecular Endocrinology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pawan Kumar Agrawal
- Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
12
|
Timerbaev V, Mitiouchkina T, Pushin A, Dolgov S. Production of Marker-Free Apple Plants Expressing the Supersweet Protein Gene Driven by Plant Promoter. FRONTIERS IN PLANT SCIENCE 2019; 10:388. [PMID: 30984230 PMCID: PMC6449483 DOI: 10.3389/fpls.2019.00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 05/30/2023]
Abstract
The presence of antibiotic resistance and other marker genes in genetically modified plants causes concern in society because of perceived risks for the environment and human health. The creation of transgenic plants that do not contain foreign genetic material, especially that of bacterial and viral origin, largely alleviates the tension and makes the plants potentially more attractive for consumers. To produce marker-free transgenic apple plants, we used the pMF1 vector, which combines Zygosaccharomyces rouxii recombinaseR and a CodA-nptII bifunctional selectable gene. The thaumatin II gene from the tropical plant Thaumatococcus daniellii, which is under the control of the plant E8 gene (a predominantly fruit-specific promoter) and rbsS3A terminator, was taken as the gene of interest for modification of the fruit taste and enhancing its sweetness. Exploitation of this gene in our laboratory has allowed enhancing the sweetness, as well as improving the taste characteristics, of fruits and vegetables of plants such as strawberry, carrot, tomato and pear. We have obtained three independent transgenic apple lines that have been analyzed by PCR and Southern blot analyses for the presence of T-DNA sequences. Two of them contained a partial sequence of the T-DNA. With one line containing the full insert we then used a delayed strategy for the selection of marker-free plants. After induction of recombinase activity in leaf explants on selective media with 5-fluorocytosine (5-FC) we obtained more than 30 sublines, most of which lost their resistance to kanamycin. Most of the apple sublines showed the expression of the supersweet protein gene in a wide range of levels as detected by RNA accumulation. The plants from the group with the highest transcript level were propagated and grafted onto dwarf rootstocks for early fruit production for future estimates of protein levels and organoleptic analyses. Thus, we developed a protocol that allowed the production of marker-free apple plants expressing the supersweet protein.
Collapse
Affiliation(s)
- Vadim Timerbaev
- Laboratory of Expression Systems and Modification of the Plant Genome “Biotron”, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Laboratory of Plant Bioengineering, Nikita Botanical Gardens – National Scientific Center, Russian Academy of Sciences, Yalta, Russia
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Mitiouchkina
- Laboratory of Expression Systems and Modification of the Plant Genome “Biotron”, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Laboratory of Plant Bioengineering, Nikita Botanical Gardens – National Scientific Center, Russian Academy of Sciences, Yalta, Russia
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Pushin
- Laboratory of Expression Systems and Modification of the Plant Genome “Biotron”, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Modification of the Plant Genome “Biotron”, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Laboratory of Plant Bioengineering, Nikita Botanical Gardens – National Scientific Center, Russian Academy of Sciences, Yalta, Russia
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Front Bioeng Biotechnol 2019; 7:31. [PMID: 30891445 PMCID: PMC6413072 DOI: 10.3389/fbioe.2019.00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
The question whether new genetic modification techniques (nGM) in plant development might result in non-negligible negative effects for the environment and/or health is significant for the discussion concerning their regulation. However, current knowledge to address this issue is limited for most nGMs, particularly for recently developed nGMs, like genome editing, and their newly emerging variations, e.g., base editing. This leads to uncertainties regarding the risk/safety-status of plants which are developed with a broad range of different nGMs, especially genome editing, and other nGMs such as cisgenesis, transgrafting, haploid induction or reverse breeding. A literature survey was conducted to identify plants developed by nGMs which are relevant for future agricultural use. Such nGM plants were analyzed for hazards associated either (i) with their developed traits and their use or (ii) with unintended changes resulting from the nGMs or other methods applied during breeding. Several traits are likely to become particularly relevant in the future for nGM plants, namely herbicide resistance (HR), resistance to different plant pathogens as well as modified composition, morphology, fitness (e.g., increased resistance to cold/frost, drought, or salinity) or modified reproductive characteristics. Some traits such as resistance to certain herbicides are already known from existing GM crops and their previous assessments identified issues of concern and/or risks, such as the development of herbicide resistant weeds. Other traits in nGM plants are novel; meaning they are not present in agricultural plants currently cultivated with a history of safe use, and their underlying physiological mechanisms are not yet sufficiently elucidated. Characteristics of some genome editing applications, e.g., the small extent of genomic sequence change and their higher targeting efficiency, i.e., precision, cannot be considered an indication of safety per se, especially in relation to novel traits created by such modifications. All nGMs considered here can result in unintended changes of different types and frequencies. However, the rapid development of nGM plants can compromise the detection and elimination of unintended effects. Thus, a case-specific premarket risk assessment should be conducted for nGM plants, including an appropriate molecular characterization to identify unintended changes and/or confirm the absence of unwanted transgenic sequences.
Collapse
Affiliation(s)
| | - Marion Dolezel
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Marianne Miklau
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | - Wolfram Reichenbecher
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| | | | - Friedrich Waßmann
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| |
Collapse
|
14
|
Ortega JL, Rajapakse W, Bagga S, Apodaca K, Lucero Y, Sengupta-Gopalan C. An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein. PLoS One 2018; 13:e0194666. [PMID: 29649228 PMCID: PMC5896900 DOI: 10.1371/journal.pone.0194666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 11/24/2022] Open
Abstract
Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein.
Collapse
Affiliation(s)
- Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Wathsala Rajapakse
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Suman Bagga
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Kimberly Apodaca
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Yvonne Lucero
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
15
|
Limera C, Sabbadini S, Sweet JB, Mezzetti B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1418. [PMID: 28861099 PMCID: PMC5559511 DOI: 10.3389/fpls.2017.01418] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 05/09/2023]
Abstract
The improvement of woody fruit species by traditional plant breeding techniques has several limitations mainly caused by their high degree of heterozygosity, the length of their juvenile phase and auto-incompatibility. The development of new biotechnological tools (NBTs), such as RNA interference (RNAi), trans-grafting, cisgenesis/intragenesis, and genome editing tools, like zinc-finger and CRISPR/Cas9, has introduced the possibility of more precise and faster genetic modifications of plants. This aspect is of particular importance for the introduction or modification of specific traits in woody fruit species while maintaining unchanged general characteristics of a selected cultivar. Moreover, some of these new tools give the possibility to obtain transgene-free modified fruit tree genomes, which should increase consumer's acceptance. Over the decades biotechnological tools have undergone rapid development and there is a continuous addition of new and valuable techniques for plant breeders. This makes it possible to create desirable woody fruit varieties in a fast and more efficient way to meet the demand for sustainable agricultural productivity. Although, NBTs have a common goal i.e., precise, fast, and efficient crop improvement, individually they are markedly different in approach and characteristics from each other. In this review we describe in detail their mechanisms and applications for the improvement of fruit trees and consider the relationship between these biotechnological tools and the EU biosafety regulations applied to the plants and products obtained through these techniques.
Collapse
Affiliation(s)
- Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Jeremy B. Sweet
- J. T. Environmental Consultants LtdCambridge, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
16
|
Cusin R, Revers LF, Maraschin FDS. New biotechnological tools to accelerate scab-resistance trait transfer to apple. Genet Mol Biol 2017; 40:305-311. [PMID: 28199444 PMCID: PMC5452129 DOI: 10.1590/1678-4685-gmb-2016-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Apple is a fruit crop cultivated worldwide. Apple orchards are exposed to a diverse set of environmental and biological factors that affect the productivity and sustainability of the culture. Many of the efforts and costs for apple production rely on reducing the incidence of fungal diseases, and one of the main diseases is apple scab caused by the fungus Venturia inaequalis. The economic impact of scab on apple productivity has guided many breeding programs to search for cultivars resistant to apple scab. Introgression from wild relatives has been successful to some extent, and genetic engineering for resistant cultivars has even been employed. This review presents the techniques used to the present time to obtain pathogen-resistant apple cultivars and introduces new biotechnological approaches based on plant plasmids that show promising results for delivering genetic traits with a short-term perspective.
Collapse
Affiliation(s)
- Roberta Cusin
- Plant Physiology Laboratory, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luís Fernando Revers
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, RS, Brazil
| | - Felipe dos Santos Maraschin
- Plant Physiology Laboratory, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Almeraya EV, Sánchez-de-Jiménez E. Intragenic modification of maize. J Biotechnol 2016; 238:35-41. [PMID: 27641689 DOI: 10.1016/j.jbiotec.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
The discovery of plant DNA recombination techniques triggered the development of a wide range of genetically modified crops. The transgenics were the first generation of modified plants; however, these crops were quickly questioned due to the artificial combination of DNA between different species. As a result, the second generation of modified plants known as cisgenic and/or intragenic crops arose as an alternative to genetic plant engineering. Cisgenic and/or intragenic crops development establishes the combination of DNA from the plant itself or related species avoiding the introduction of foreign genetic material, such as selection markers and/or reporter genes. Nowadays it has been made successful cisgenic and/or intragenic modifications in crops such as potato and apple. The present study shows the possibility of reaching similar approach in corn plants. This research was focused on achieve intragenic overexpression of the maize Rubisco activase (Rca) protein. The results were compared with changes in the expression of the same protein, in maize plants grown after 23 cycles of conventional selection and open field planting. Experimental evidence shows that maize intragenic modification is possible for increasing specific gene expression, preserving plant genome free of foreign DNA and achieving further significant savings in time and man labor for crop improvement.
Collapse
|
18
|
Klocko AL, Borejsza-Wysocka E, Brunner AM, Shevchenko O, Aldwinckle H, Strauss SH. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness. PLoS One 2016; 11:e0159421. [PMID: 27500731 PMCID: PMC4976969 DOI: 10.1371/journal.pone.0159421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022] Open
Abstract
We investigated the ability of RNA interference (RNAi) directed against two co-orthologs of AGAMOUS (AG) from Malus domestica (domestic apple, MdAG) to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These “double-flowers” had strongly reduced expression of both MdAG-like genes. Members of the two other clades within in the MdAG subfamily showed mild to moderate differences in gene expression, or were unchanged, with the level of suppression approximately proportional to the level of sequence identity between the gene analyzed and the RNAi fragment. The double-flowers also exhibited reduced male and female fertility, had few viable pollen grains, a decreased number of stigmas, and produced few viable seeds after cross-pollination. Despite these floral alterations, RNAi-AG trees with double-flowers set full-sized fruit. Suppression or mutation of apple AG-like genes appears to be a promising method for combining genetic containment with improved floral attractiveness.
Collapse
Affiliation(s)
- Amy L. Klocko
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America
| | - Ewa Borejsza-Wysocka
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Olga Shevchenko
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America
| | - Herb Aldwinckle
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
19
|
Chizzali C, Gusberti M, Schouten HJ, Gessler C, Broggini GAL. Cisgenic Rvi6 scab-resistant apple lines show no differences in Rvi6 transcription when compared with conventionally bred cultivars. PLANTA 2016; 243:635-644. [PMID: 26586177 DOI: 10.1007/s00425-015-2432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The expression of the apple scab resistance gene Rvi6 in different apple cultivars and lines is not modulated by biotic or abiotic factors. All commercially important apple cultivars are susceptible to Venturia inaequalis, the causal organism of apple scab. A limited number of apple cultivars were bred to express the resistance gene Vf from the wild apple genotype Malus floribunda 821. Positional cloning of the Vf locus allowed the identification of the Rvi6 (formerly HcrVf2) scab resistance gene that was subsequently used to generate cisgenic apple lines. It is important to understand and compare how this resistance gene is transcribed and modulated during infection in conventionally bred cultivars and in cisgenic lines. The aim of this work was to study the transcription pattern of Rvi6 in three classically bred apple cultivars and six lines of 'Gala' genetically modified to express Rvi6. Rvi6 transcription was analyzed at two time points using quantitative real-time PCR (RT-qPCR) following inoculation with V. inaequalis conidia or water. Rvi6 transcription was assessed in relation to five reference genes. β-Actin, RNAPol, and UBC were the most suited to performing RT-qPCR experiments on Malus × domestica. Inoculation with V. inaequalis conidia under conditions conducive to scab infection failed to produce any significant changes to the transcription level of Rvi6. Rvi6 expression levels were inconsistent in response to external treatments in the different apple cultivars, and transgenic, intragenic or cisgenic lines.
Collapse
Affiliation(s)
- Cornelia Chizzali
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, 07745, Jena, Germany.
| | - Michele Gusberti
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Henk J Schouten
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Cesare Gessler
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Giovanni A L Broggini
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
- Agroscope, Institute for Plant Production Sciences, Schloss 1, 8820, Wädenswil, Switzerland
| |
Collapse
|
20
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
21
|
Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL. Development of the First Cisgenic Apple with Increased Resistance to Fire Blight. PLoS One 2015; 10:e0143980. [PMID: 26624292 PMCID: PMC4666654 DOI: 10.1371/journal.pone.0143980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
The generation and selection of novel fire blight resistant apple genotypes would greatly improve the management of this devastating disease, caused by Erwinia amylovora. Such resistant genotypes are currently developed by conventional breeding, but novel breeding technologies including cisgenesis could be an alternative approach. A cisgenic apple line C44.4.146 was regenerated using the cisgene FB_MR5 from wild apple Malus ×robusta 5 (Mr5), and the previously established method involving A. tumefaciens-mediated transformation of the fire blight susceptible cultivar 'Gala Galaxy' using the binary vector p9-Dao-FLPi. The line C44.4.146 was shown to carry only the cisgene FB_MR5, controlled by its native regulatory sequences and no transgenes were detected by PCR or Southern blot following heat induced recombinase-mediated elimination of the selectable markers. Although this line contains up to 452 bp of vector sequences, it still matches the original definition of cisgenesis. A single insertion of T-DNA into the genome of 'Gala Galaxy' in chromosome 16 was identified. Transcription of FB_MR5 in line C44.4.146 was similar to the transcription in classically bred descendants of Mr5. Three independent shoot inoculation experiments with a Mr5 avirulent strain of Erwinia amylovora were performed using scissors or syringe. Significantly lower disease symptoms were detected on shoots of the cisgenic line compared to those of untransformed 'Gala Galaxy'. Despite the fact that the pathogen can overcome this resistance by a single nucleotide mutation, this is, to our knowledge, the first prototype of a cisgenic apple with increased resistance to fire blight.
Collapse
Affiliation(s)
- Thomas D. Kost
- Plant Pathology, Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Cesare Gessler
- Plant Pathology, Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Melanie Jänsch
- Agroscope, Institute for Plant Production Sciences, Wädenswil, Switzerland
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andrea Patocchi
- Agroscope, Institute for Plant Production Sciences, Wädenswil, Switzerland
| | - Giovanni A. L. Broggini
- Plant Pathology, Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
- Agroscope, Institute for Plant Production Sciences, Wädenswil, Switzerland
| |
Collapse
|
22
|
Gusberti M, Klemm U, Meier MS, Maurhofer M, Hunger-Glaser I. Fire Blight Control: The Struggle Goes On. A Comparison of Different Fire Blight Control Methods in Switzerland with Respect to Biosafety, Efficacy and Durability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11422-47. [PMID: 26378562 PMCID: PMC4586684 DOI: 10.3390/ijerph120911422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/03/2022]
Abstract
Fire blight (FB), caused by Erwinia amylovora, is one of the most important pome fruit pathogens worldwide. To control this devastating disease, various chemical and biological treatments are commonly applied in Switzerland, but they fail to keep the infection at an acceptable level in years of heavy disease pressure. The Swiss authorities therefore currently allow the controlled use of the antibiotic streptomycin against FB in years that are predicted to have heavy infection periods, but only one treatment per season is permitted. Another strategy for controlling Erwinia is to breed resistant/tolerant apple cultivars. One way of accelerating the breeding process is to obtain resistant cultivars by inserting one or several major resistance genes, using genetic engineering. To date, no study summarizing the impact of different FB control measures on the environment and on human health has been performed. This study consequently aims to compare different disease-control measures (biological control, chemical control, control by antibiotics and by resistant/tolerant apple cultivars obtained through conventional or molecular breeding) applied against E. amylovora, considering different protection goals (protection of human health, environment, agricultural diversity and economic interest), with special emphasis on biosafety aspects. Information on each FB control measure in relation to the specified protection goal was assessed by literature searches and by interviews with experts. Based on our results it can be concluded that the FB control measures currently applied in Switzerland are safe for consumers, workers and the environment. However, there are several gaps in our knowledge of the human health and environmental impacts analyzed: data are missing (1) on long term studies on the efficacy of most of the analyzed FB control measures; (2) on the safety of operators handling streptomycin; (3) on residue analyses of Equisetum plant extract, the copper and aluminum compounds used in apple production; and (4) on the effect of biological and chemical control measures on non-target fauna and flora. These gaps urgently need to be addressed in the near future.
Collapse
Affiliation(s)
- Michele Gusberti
- Institute of Integrative Biology Zurich, Plant Pathology Group, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland.
| | - Urs Klemm
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
| | - Matthias S Meier
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
- Research Institute of Organic Agriculture (FiBL), Frick CH-5070, Switzerland.
| | - Monika Maurhofer
- Institute of Integrative Biology Zurich, Plant Pathology Group, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland.
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
| | | |
Collapse
|
23
|
Krens FA, Schaart JG, van der Burgh AM, Tinnenbroek-Capel IEM, Groenwold R, Kodde LP, Broggini GAL, Gessler C, Schouten HJ. Cisgenic apple trees; development, characterization, and performance. FRONTIERS IN PLANT SCIENCE 2015; 6:286. [PMID: 25964793 PMCID: PMC4410516 DOI: 10.3389/fpls.2015.00286] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 05/20/2023]
Abstract
Two methods were developed for the generation of cisgenic apples. Both have been successfully applied producing trees. The first method avoids the use of any foreign selectable marker genes; only the gene-of-interest is integrated between the T-DNA border sequences. The second method makes use of recombinase-based marker excision. For the first method we used the MdMYB10 gene from a red-fleshed apple coding for a transcription factor involved in regulating anthocyanin biosynthesis. Red plantlets were obtained and presence of the cisgene was confirmed. Plantlets were grafted and grown in a greenhouse. After 3 years, the first flowers appeared, showing red petals. Pollination led to production of red-fleshed cisgenic apples. The second method used the pM(arker)F(ree) vector system, introducing the scab resistance gene Rvi6, derived from apple. Agrobacterium-mediated transformation, followed by selection on kanamycin, produced genetically modified apple lines. Next, leaves from in vitro material were treated to activate the recombinase leading to excision of selection genes. Subsequently, the leaf explants were subjected to negative selection for marker-free plantlets by inducing regeneration on medium containing 5-fluorocytosine. After verification of the marker-free nature, the obtained plants were grafted onto rootstocks. Young trees from four cisgenic lines and one intragenic line, all containing Rvi6, were planted in an orchard. Appropriate controls were incorporated in this trial. We scored scab incidence for three consecutive years on leaves after inoculations with Rvi6-avirulent strains. One cisgenic line and the intragenic line performed as well as the resistant control. In 2014 trees started to overcome their juvenile character and formed flowers and fruits. The first results of scoring scab symptoms on apple fruits were obtained. Apple fruits from susceptible controls showed scab symptoms, while fruits from cisgenic and intragenic lines were free of scab.
Collapse
Affiliation(s)
- Frans A. Krens
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
- *Correspondence: Frans A. Krens, Wageningen UR Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ Wageningen, Netherlands
| | - Jan G. Schaart
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Aranka M. van der Burgh
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | | | - Remmelt Groenwold
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Linda P. Kodde
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | | | - Cesare Gessler
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Henk J. Schouten
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| |
Collapse
|
24
|
Kondo K, Nakamura K. [Scientific review on novel genome editing techniques]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2014; 55:231-46. [PMID: 25743586 DOI: 10.3358/shokueishi.55.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|