1
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
2
|
Fan S, Zhang Z, Song Y, Zhang J, Wang P. CRISPR/Cas9-mediated targeted mutagenesis of GmTCP19L increasing susceptibility to Phytophthora sojae in soybean. PLoS One 2022; 17:e0267502. [PMID: 35679334 PMCID: PMC9182224 DOI: 10.1371/journal.pone.0267502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors is one of the superfamilies of plant-specific transcription factors involved in plant growth, development, and biotic and abiotic stress. However, there is no report on the research of the TCP transcription factors in soybean response to Phytophthora sojae. In this study, Agrobacterium-mediated transformation was used to introduce the CRISPR/Cas9 expression vector into soybean cultivar "Williams 82" and generated targeted mutants of GmTCP19L gene, which was previously related to involve in soybean responses to P. sojae. We obtained the tcp19l mutants with 2-bp deletion at GmTCP19L coding region, and the frameshift mutations produced premature translation termination codons and truncated GmTCP19L proteins, increasing susceptibility to P. sojae in the T2-generation. These results suggest that GmTCP19L encodes a TCP transcription factor that affects plant defense in soybean. The new soybean germplasm with homozygous tcp19l mutations but the BAR and Cas9 sequences were undetectable using strip and PCR methods, respectively, suggesting directions for the breeding or genetic engineering of disease-resistant soybean plants.
Collapse
Affiliation(s)
- Sujie Fan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
- Crop Science Post-doctoral Station, Jilin Agricultural University, Changchun, Jilin, People’s Republic of China
| | - Zhuo Zhang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Yang Song
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Jun Zhang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Piwu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
3
|
Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng. J Ginseng Res 2021; 46:505-514. [PMID: 35818421 PMCID: PMC9270645 DOI: 10.1016/j.jgr.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/25/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR–Cas9 system.
Collapse
|
4
|
Abd-Elsalam KA, Lim KT. Can CRISPRized crops save the global food supply? CRISPR AND RNAI SYSTEMS 2021:1-14. [DOI: 10.1016/b978-0-12-821910-2.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
6
|
Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. PLANT COMMUNICATIONS 2020; 1:100005. [PMID: 33404534 PMCID: PMC7747995 DOI: 10.1016/j.xplc.2019.100005] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although long-term genetic gain has been achieved through increasing use of modern breeding methods and technologies, the rate of genetic gain needs to be accelerated to meet humanity's demand for agricultural products. In this regard, genomic selection (GS) has been considered most promising for genetic improvement of the complex traits controlled by many genes each with minor effects. Livestock scientists pioneered GS application largely due to livestock's significantly higher individual values and the greater reduction in generation interval that can be achieved in GS. Large-scale application of GS in plants can be achieved by refining field management to improve heritability estimation and prediction accuracy and developing optimum GS models with the consideration of genotype-by-environment interaction and non-additive effects, along with significant cost reduction. Moreover, it would be more effective to integrate GS with other breeding tools and platforms for accelerating the breeding process and thereby further enhancing genetic gain. In addition, establishing an open-source breeding network and developing transdisciplinary approaches would be essential in enhancing breeding efficiency for small- and medium-sized enterprises and agricultural research systems in developing countries. New strategies centered on GS for enhancing genetic gain need to be developed.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- CIMMYT-China Tropical Maize Research Center, Foshan University, Foshan 528231, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Xiaogang Liu
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwu Wang
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiankang Wang
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Huang
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Boddupalli M. Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Michael S. Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Guoying Wang
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aimin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Hameed A, Shan-E-Ali Zaidi S, Sattar MN, Iqbal Z, Tahir MN. CRISPR technology to combat plant RNA viruses: A theoretical model for Potato virus Y (PVY) resistance. Microb Pathog 2019; 133:103551. [PMID: 31125685 DOI: 10.1016/j.micpath.2019.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
RNA viruses are the most diverse phytopathogens which cause severe epidemics in important agricultural crops and threaten the global food security. Being obligatory intracellular pathogens, these viruses have developed fine-tuned evading mechanisms and are non-responsive to most of the prophylactic treatments. Additionally, their sprint ability to overcome host defense demands a broad-spectrum and durable mechanism of resistance. In context of CRISPR-Cas discoveries, some variants of Cas effectors have been characterized as programmable RNA-guided RNases in the microbial genomes and could be reprogramed in mammalian and plant cells with guided RNase activity. Recently, the RNA variants of CRISPR-Cas systems have been successfully employed in plants to engineer resistance against RNA viruses. Some variants of CRISPR-Cas9 have been tamed either for directly targeting plant RNA viruses' genome or through targeting the host genes/factors assisting in viral proliferation. The new frontiers in CRISPR-Cas discoveries, and more importantly shifting towards RNA targeting will pyramid the opportunities in plant virus research. The current review highlights the probable implications of CRISPR-Cas system to confer the pathogen-derived or host-mediated resistance against phytopathogenic RNA viruses. Furthermore, a multiplexed CRISPR-Cas13a methodology is proposed here to combat Potato virus Y (PVY); a globally diverse phytopathogen infecting multiple crops.
Collapse
Affiliation(s)
- Amir Hameed
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan; Department of Bioinformatics & Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
| | | | - Muhammad Naeem Sattar
- Department of Biotechnology, College of Agriculture and Food Science, King Faisal University, Box 400, Al-Ahsa, 3192, Saudi Arabia
| | - Zafar Iqbal
- Department of Plant Pathology, University of Florida, Gainesville, 32611, FL, USA
| | | |
Collapse
|
8
|
Wayne LL, Gachotte DJ, Walsh TA. Transgenic and Genome Editing Approaches for Modifying Plant Oils. Methods Mol Biol 2019; 1864:367-394. [PMID: 30415347 DOI: 10.1007/978-1-4939-8778-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vegetable oils are important for human and animal nutrition and as renewable resources for chemical feedstocks. We provide an overview of transgenic and genome editing approaches for modifying plant oils, describing useful model and crop systems and different strategies for transgenic modifications. We also describe new genome editing approaches that are beginning to be applied to oilseed plants and crops. These approaches are illustrated with examples for modifying the nutritional quality of vegetable oils by altering fatty acid desaturation, producing non-native fatty acids in oilseeds, and enhancing the overall accumulation of oil in seeds and leaves.
Collapse
Affiliation(s)
- Laura L Wayne
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Daniel J Gachotte
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Terence A Walsh
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
9
|
Hameed A, Zaidi SSEA, Shakir S, Mansoor S. Applications of New Breeding Technologies for Potato Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:925. [PMID: 30008733 PMCID: PMC6034203 DOI: 10.3389/fpls.2018.00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/11/2018] [Indexed: 05/17/2023]
Abstract
The first decade of genetic engineering primarily focused on quantitative crop improvement. With the advances in technology, the focus of agricultural biotechnology has shifted toward both quantitative and qualitative crop improvement, to deal with the challenges of food security and nutrition. Potato (Solanum tuberosum L.) is a solanaceous food crop having potential to feed the populating world. It can provide more carbohydrates, proteins, minerals, and vitamins per unit area of land as compared to other potential food crops, and is the major staple food in many developing countries. These aspects have driven the scientific attention to engineer potato for nutrition improvement, keeping the yield unaffected. Several studies have shown the improved nutritional value of potato tubers, for example by enhancing Amaranth Albumin-1 seed protein content, vitamin C content, β-carotene level, triacylglycerol, tuber methionine content, and amylose content, etc. Removal of anti-nutritional compounds like steroidal glycoalkaloids, acrylamide and food toxins is another research priority for scientists and breeders to improve potato tuber quality. Trait improvement using genetic engineering mostly involved the generation of transgenic products. The commercialization of these engineered products has been a challenge due to consumer preference and regulatory/ethical restrictions. In this context, new breeding technolgies like TALEN (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated 9) have been employed to generate transgene-free products in a more precise, prompt and effective way. Moreover, the availability of potato genome sequence and efficient potato transformation systems have remarkably facilitated potato genetic engineering. Here we summarize the potato trait improvement and potential application of new breeding technologies (NBTs) to genetically improve the overall agronomic profile of potato.
Collapse
Affiliation(s)
- Amir Hameed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Sara Shakir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
10
|
Halewood M, Chiurugwi T, Sackville Hamilton R, Kurtz B, Marden E, Welch E, Michiels F, Mozafari J, Sabran M, Patron N, Kersey P, Bastow R, Dorius S, Dias S, McCouch S, Powell W. Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. THE NEW PHYTOLOGIST 2018; 217:1407-1419. [PMID: 29359808 DOI: 10.1111/nph.14993] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1407 I. Introduction 1408 II. Technological advances and their utility for gene banks and breeding, and longer-term contributions to SDGs 1408 III. The challenges that must be overcome to realise emerging R&D opportunities 1410 IV. Renewed governance structures for PGR (and related big data) 1413 V. Access and benefit sharing and big data 1416 VI. Conclusion 1417 Acknowledgements 1417 ORCID 1417 References 1417 SUMMARY: Over the last decade, there has been an ongoing revolution in the exploration, manipulation and synthesis of biological systems, through the development of new technologies that generate, analyse and exploit big data. Users of Plant Genetic Resources (PGR) can potentially leverage these capacities to significantly increase the efficiency and effectiveness of their efforts to conserve, discover and utilise novel qualities in PGR, and help achieve the Sustainable Development Goals (SDGs). This review advances the discussion on these emerging opportunities and discusses how taking advantage of them will require data integration and synthesis across disciplinary, organisational and international boundaries, and the formation of multi-disciplinary, international partnerships. We explore some of the institutional and policy challenges that these efforts will face, particularly how these new technologies may influence the structure and role of research for sustainable development, ownership of resources, and access and benefit sharing. We discuss potential responses to political and institutional challenges, ranging from options for enhanced structure and governance of research discovery platforms to internationally brokered benefit-sharing agreements, and identify a set of broad principles that could guide the global community as it seeks or considers solutions.
Collapse
Affiliation(s)
- Michael Halewood
- Bioversity International, Via dei Tre Denari, 472/a, 00054, Maccarese, Rome, Italy
| | | | - Ruaraidh Sackville Hamilton
- T. T. Chang Genetic Resources Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Brad Kurtz
- Independent Crop Biodiversity and Intellectual Property Expert, 25057 River Ridge Road, Adel, IA, 50003, USA
| | - Emily Marden
- University of British Columbia, Peter A. Allard School of Law, 1822 East Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Eric Welch
- School of Public Affairs, College of Public Programs, Arizona State University, 411 North Central Avenue, Suite 463, Phoenix, AZ, 85004-0687, USA
| | - Frank Michiels
- Independent Crop Biodiversity and Intellectual Property Expert, Technologiepark 38, 9052, Gent, Belgium
| | - Javad Mozafari
- Agricultural Research, Education and Extension Organization, Yemen St., Chamran Freeway, Tehran, Iran
| | - Muhamad Sabran
- Indonesian Centre for Biotechnology and Genetic Resources, JL Tentara Pelajar No. 3A, Kampus Penelitian Pertanian Cimanggu, Bogor, 16111, Indonesia
| | - Nicola Patron
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Kersey
- EMBL -The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Ruth Bastow
- Global Plant Council, Bow House, 1a Bow Lane, London, EC4M 9EE, UK
| | - Shawn Dorius
- Department of Sociology, Iowa State University, 308 East Hall, Ames, IA, 50010, USA
| | - Sonia Dias
- Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Susan McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 240 Emerson Hall, Ithaca, NY, 14853, USA
| | - Wayne Powell
- SRUC (Scotland's Rural College), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
11
|
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:268. [PMID: 29552023 PMCID: PMC5841092 DOI: 10.3389/fpls.2018.00268] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 05/19/2023]
Abstract
Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.
Collapse
Affiliation(s)
- Andrew S. Fister
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan
| |
Collapse
|
12
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
13
|
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 2017; 7:11606. [PMID: 28912524 PMCID: PMC5599503 DOI: 10.1038/s41598-017-11760-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing of plants has the potential to reshape global agriculture through the targeted engineering of endogenous pathways or the introduction of new traits. To develop a CRISPR nuclease-based platform that would enable higher efficiencies of precise gene insertion or replacement, we screened the Cpf1 nucleases from Francisella novicida and Lachnospiraceae bacterium ND2006 for their capability to induce targeted gene insertion via homology directed repair. Both nucleases, in the presence of a guide RNA and repairing DNA template flanked by homology DNA fragments to the target site, were demonstrated to generate precise gene insertions as well as indel mutations at the target site in the rice genome. The frequency of targeted insertion for these Cpf1 nucleases, up to 8%, is higher than most other genome editing nucleases, indicative of its effective enzymatic chemistry. Further refinements and broad adoption of the Cpf1 genome editing technology have the potential to make a dramatic impact on plant biotechnology.
Collapse
Affiliation(s)
- Matthew B Begemann
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA.
| | - Benjamin N Gray
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Emma January
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Gina C Gordon
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Yonghua He
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Haijun Liu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Xingrong Wu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Thomas P Brutnell
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Mohammed Oufattole
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| |
Collapse
|
14
|
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS. Enhancing genetic gain in the era of molecular breeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2641-2666. [PMID: 28830098 DOI: 10.1093/jxb/erx135] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 05/20/2023]
Abstract
As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary approaches, team breeding, will be required to address the challenge of maintaining a plentiful and safe food supply for future generations. New opportunities for enhancing genetic gain, a high efficiency breeding pipeline, and broad-sense genetic gain are also discussed prospectively.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Ping Li
- Nantong Xinhe Bio-Technology, Nantong 226019, PR China
| | - Cheng Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| |
Collapse
|
15
|
Collonnier C, Epert A, Mara K, Maclot F, Guyon‐Debast A, Charlot F, White C, Schaefer DG, Nogué F. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:122-131. [PMID: 27368642 PMCID: PMC5253467 DOI: 10.1111/pbi.12596] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 05/17/2023]
Abstract
The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable single-guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-induced double-strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR-induced HDR is only partially mediated by the classical homologous recombination pathway.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Aline Epert
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Kostlend Mara
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - François Maclot
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | | | - Florence Charlot
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Charles White
- Génétique, Reproduction et DéveloppementUMR CNRS 6293Clermont UniversitéINSERM U1103Université Blaise PascalClermont FerrandFrance
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et CellulaireInstitut de BiologieUniversité de NeuchâtelNeuchâtelSwitzerland
| | - Fabien Nogué
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| |
Collapse
|
16
|
Chaikind B, Bessen JL, Thompson DB, Hu JH, Liu DR. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016; 44:9758-9770. [PMID: 27515511 PMCID: PMC5175349 DOI: 10.1093/nar/gkw707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
Collapse
Affiliation(s)
- Brian Chaikind
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - Jeffrey L Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - David B Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Johnny H Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|