1
|
Yang R, Wu Z, Sun Y, Liu Y, Hang Y, Liu M, Liu Y, Wang X, Liu W, Fu C. miR156-PvSPL2 controls culm development by transcriptional repression of switchgrass CYTOKININ OXIDASE/DEHYDROGENASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2055-2067. [PMID: 38507513 DOI: 10.1111/tpj.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Culm development in grasses can be controlled by both miR156 and cytokinin. However, the crosstalk between the miR156-SPL module and the cytokinin metabolic pathway remains largely unknown. Here, we found CYTOKININ OXIDASE/DEHYDROGENASE4 (PvCKX4) plays a negative regulatory role in culm development of the bioenergy grass Panicum virgatum (switchgrass). Overexpression of PvCKX4 in switchgrass reduced the internode diameter and length without affecting tiller number. Interestingly, we also found that PvCKX4 was always upregulated in miR156 overexpressing (miR156OE) transgenic switchgrass lines. Additionally, upregulation of either miR156 or PvCKX4 in switchgrass reduced the content of isopentenyl adenine (iP) without affecting trans-zeatin (tZ) accumulation. It is consistent with the evidence that the recombinant PvCKX4 protein exhibited much higher catalytic activity against iP than tZ in vitro. Furthermore, our results showed that miR156-targeted SPL2 bound directly to the promoter of PvCKX4 to repress its expression. Thus, alleviating the SPL2-mediated transcriptional repression of PvCKX4 through miR156 overexpression resulted in a significant increase in cytokinin degradation and impaired culm development in switchgrass. On the contrary, suppressing PvCKX4 in miR156OE transgenic plants restored iP content, internode diameter, and length to wild-type levels. Most strikingly, the double transgenic lines retained the same increased tiller numbers as the miR156OE transgenic line, which yielded more biomass than the wild type. These findings indicate that the miR156-SPL module can control culm development through transcriptional repression of PvCKX4 in switchgrass, which provides a promising target for precise design of shoot architecture to yield more biomass from grasses.
Collapse
Affiliation(s)
- Ruijuan Yang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhenying Wu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Yangzhou University, Yangzhou, 225009, China
| | - Yuchen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yuqing Hang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Min Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yajun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Wenwen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
3
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Hu L, Kvitko B, Severns PM, Yang L. Shoot Maturation Strengthens FLS2-Mediated Resistance to Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:796-804. [PMID: 37638673 PMCID: PMC10989731 DOI: 10.1094/mpmi-02-23-0018-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Temporospatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and reactive oxygen species activation were comparable in juvenile and adult stages, but callose deposition was more evident in the adult stage than the juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, does not influence the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) but mildly suppresses callose deposition in juvenile leaves. Our experiments revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lanxi Hu
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Brian Kvitko
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Paul M. Severns
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Li Yang
- Department of plant pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
6
|
Hu L, Kvitko B, Yang L. Shoot maturation strengthens FLS2-mediated resistance to Pseudomonas syringae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528542. [PMID: 36824838 PMCID: PMC9949054 DOI: 10.1101/2023.02.14.528542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A temporal-spatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and ROS activation were comparable in juvenile and adult stage, but callose deposition was more evident in the adult stage than that of juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, suppressed callose deposition in juvenile leaves in response to flg22 but not the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) . Altogether, we revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging.
Collapse
|
7
|
Zhou Q, Shi J, Li Z, Zhang S, Zhang S, Zhang J, Bao M, Liu G. miR156/157 Targets SPLs to Regulate Flowering Transition, Plant Architecture and Flower Organ Size in Petunia. PLANT & CELL PHYSIOLOGY 2021; 62:839-857. [PMID: 33768247 DOI: 10.1093/pcp/pcab041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
miR156/157 plays multiple pivotal roles during plant growth and development. In this study, we identified 11 miR156- and 5 miR157-encoding loci from the genome of Petunia axillaris and Petunia inflata, designated as PaMIR0156/157s and PiMIR0156/157s, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated that PhmiR156/157 was expressed predominantly in cotyledons, germinating seeds, flower buds, young fruits and seedlings. PhmiR156/157 levels declined in shoot apical buds and leaves of petunia before flowering as the plant ages; moreover, the temporal expression patterns of most miR156/157-targeted PhSPLs were complementary to that of PhmiR156/157. Ectopic expression of PhMIR0157a in Arabidopsis and petunia resulted in delayed flowering, dwarf plant stature, increased branches and reduced organ size. However, PhMIR0156f-overexpressing Arabidopsis and petunia plants showed only delayed flowering. In addition, downregulation of PhmiR156/157 level by overexpressing STTM156/157 led to taller plants with less branches, longer internodes and precocious flowering. qRT-PCR analysis indicated that PhmiR156/157 modulates these traits mainly by downregulating their PhSPL targets and subsequently decreasing the expression of flowering regulatory genes. Our results demonstrate that the PhmiR156/157-PhSPL module has conserved but also divergent functions in growth and development, which will help us decipher the genetic basis for the improvement of flower transition, plant architecture and organ development in petunia.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan 430081, China
| | - Shuting Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
| |
Collapse
|
8
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, Poethig RS. Vegetative phase change in Populus tremula × alba. THE NEW PHYTOLOGIST 2021; 231:351-364. [PMID: 33660260 PMCID: PMC8353317 DOI: 10.1111/nph.17316] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R. Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Erin E. Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Jensen E, Shafiei R, Ma X, Serba DD, Smith DP, Slavov GT, Robson P, Farrar K, Thomas Jones S, Swaller T, Flavell R, Clifton‐Brown J, Saha MC, Donnison I. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GLOBAL CHANGE BIOLOGY. BIOENERGY 2021; 13:98-111. [PMID: 33381230 PMCID: PMC7756372 DOI: 10.1111/gcbb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.
Collapse
Affiliation(s)
- Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Reza Shafiei
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- University of Dundee at JHIDundeeUK
| | - Xue‐Feng Ma
- Ceres, Inc.Thousand OaksCAUSA
- Noble Research Institute, LLC.ArdmoreOKUSA
| | - Desalegn D. Serba
- Noble Research Institute, LLC.ArdmoreOKUSA
- Agricultural Research Center‐HaysKansas State UniversityHaysKSUSA
| | - Daniel P. Smith
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Gancho T. Slavov
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Sian Thomas Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Timothy Swaller
- Ceres, Inc.Thousand OaksCAUSA
- Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Richard Flavell
- Ceres, Inc.Thousand OaksCAUSA
- International Wheat Yield PartnershipTexas A&M UniversityCollege StationTXUSA
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| |
Collapse
|
10
|
Mazarei M, Baxter HL, Srivastava A, Li G, Xie H, Dumitrache A, Rodriguez M, Natzke JM, Zhang JY, Turner GB, Sykes RW, Davis MF, Udvardi MK, Wang ZY, Davison BH, Blancaflor EB, Tang Y, Stewart CN. Silencing Folylpolyglutamate Synthetase1 ( FPGS1) in Switchgrass ( Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. FRONTIERS IN PLANT SCIENCE 2020; 11:843. [PMID: 32636863 PMCID: PMC7317012 DOI: 10.3389/fpls.2020.00843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass PvFPGS1 gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The PvFPGS1-downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in PvFPGS1 expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in PvFPGS1 transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced PvFPGS1 transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate PvFPGS1-downregulated lines may suggest that partial downregulation of PvFPGS1 expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of PvFPGS1 expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Holly L. Baxter
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Avinash Srivastava
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Guifen Li
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Hongli Xie
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Alexandru Dumitrache
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jace M. Natzke
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Zeng-Yu Wang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Brian H. Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Elison B. Blancaflor
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
| | - Yuhong Tang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Noble Research Institute, Ardmore, OK, United States
- *Correspondence: Yuhong Tang,
| | - Charles Neal Stewart
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Charles Neal Stewart Jr.,
| |
Collapse
|
11
|
Babar U, Nawaz MA, Arshad U, Azhar MT, Atif RM, Golokhvast KS, Tsatsakis AM, Shcerbakova K, Chung G, Rana IA. Transgenic crops for the agricultural improvement in Pakistan: a perspective of environmental stresses and the current status of genetically modified crops. GM CROPS & FOOD 2019; 11:1-29. [PMID: 31679447 DOI: 10.1080/21645698.2019.1680078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transgenic technologies have emerged as a powerful tool for crop improvement in terms of yield, quality, and quantity in many countries of the world. However, concerns also exist about the possible risks involved in transgenic crop cultivation. In this review, literature is analyzed to gauge the real intensity of the issues caused by environmental stresses in Pakistan. In addition, the research work on genetically modified organisms (GMOs) development and their performance is analyzed to serve as a guide for the scientists to help them select useful genes for crop transformation in Pakistan. The funding of GMOs research in Pakistan shows that it does not follow the global trend. We also present socio-economic impact of GM crops and political dimensions in the seed sector and the policies of the government. We envisage that this review provides guidelines for public and private sectors as well as the policy makers in Pakistan and in other countries that face similar environmental threats posed by the changing climate.
Collapse
Affiliation(s)
- Usman Babar
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Amjad Nawaz
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Usama Arshad
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.,Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Kirill S Golokhvast
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Aristides M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Greece
| | - Kseniia Shcerbakova
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Iqrar Ahmad Rana
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan.,Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
12
|
Funnell-Harris DL, Sattler SE, O'Neill PM, Gries T, Tetreault HM, Clemente TE. Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk Rot Pathogens. PLANT DISEASE 2019; 103:2277-2287. [PMID: 31215851 DOI: 10.1094/pdis-09-18-1622-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for proteins related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia lyase), SbCCoAOMT (caffeoyl coenzyme A [CoA] 3-O-methyltransferase), Bmr2 (4-coumarate:CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluated for responses to stalk pathogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and one of two SbCCoAOMT lines. M. phaseolina-inoculated overexpression lines had lesions not significantly different from wild-type except one SbPAL line (of two lines studied) with mean lesion lengths significantly larger. Field-grown SbMyb60 and SbCCoAOMT overexpression plants were inoculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar to wild-type, but one SbCCoAOMT had larger lesions, whereas the other line was not significantly different than wild-type. Because overexpression of SbMyb60, Bmr2, or SbC3H may not render sorghum more susceptible to stalk rots, these lines may provide sources for development of sorghum with increased phenylpropanoid concentrations.
Collapse
Affiliation(s)
- Deanna L Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Scott E Sattler
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Patrick M O'Neill
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Hannah M Tetreault
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
13
|
Gou J, Tang C, Chen N, Wang H, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Allen RD, Wang ZY. SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. THE NEW PHYTOLOGIST 2019; 222:1610-1623. [PMID: 30688366 DOI: 10.1111/nph.15712] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chaorong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- Hainan University, Haiko, 570228, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang Sun
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Amy Flanagan
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
14
|
MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics 2018; 294:379-393. [DOI: 10.1007/s00438-018-1516-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
|
15
|
Zhang B, Unver T. A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:193-200. [PMID: 30080603 DOI: 10.1016/j.plantsci.2018.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 05/24/2023]
Abstract
MicroRNAs (miRNAs) lie at the center of gene regulation and, as such, have become novel targets for crop improvement including the enhancement of crop quality and yields as well as responses to environmental stresses. There are several major issues related to miRNA technology including the functional analysis of miRNAs and their nomenclature. In this critical and speculative review, we recommend several directions for future plant miRNA research and perspectives. Research on miRNA needs to be extended from merely descriptive studies to functional studies. More genetic tools, such as genome editing, should be developed for miRNA functional study. Obtaining transgenic plants is a bottleneck for plant miRNA functional studies and, hence, more reliable transformation methods need to be developed. We also propose a new terminology approach for miRNA nomenclature. The current miRNA nomenclature is confusing and has mislead much research. Here we suggest to name a miRNA as miR#-5p or -3p, and to name their opposite strand as miR#*-3p or -5p. The advantages of the new nomenclature is that it covers information on the history, relationship, family, and location of an individual miRNA. It recognizes both traditional and new discovery.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Turgay Unver
- International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylül University, Balcova 35340 Izmir, Turkey
| |
Collapse
|
16
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
17
|
|
18
|
Johnson CR, Millwood RJ, Wang Z, Stewart CN. Light and temperature effects on miR156 transgenic switchgrass flowering: A simulated latitudinal study. PLANT DIRECT 2017; 1:e00026. [PMID: 31245673 PMCID: PMC6508523 DOI: 10.1002/pld3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 06/09/2023]
Abstract
The control of flowering in perennial grasses is an important trait, especially among biofuel feedstocks. Lignocellulosic biomass may be increased commensurate with decreased or delayed flowering as the plant allocates energy for stems and leaves harvested for bioenergy at the end of the growing season. For transgenic feedstocks, such as switchgrass (Panicum virgatum L.) grown in its geographic center of distribution, it is foreseeable that regulators may require greatly decreased gene flow frequencies to enable commercialization. Transgenic switchgrass with various overexpression levels of a rice microRNA gene, miR156, when grown in field conditions, holds promise for decreased flowering, yielding high biomass, and altered cell wall traits, which renders it as a potential crossing partner for further breeding with switchgrass lines for decreased recalcitrance. In the current research, we simulated a latitudinal cline in controlled growth chamber experiments for various individual sites from the tropics to cool-temperate conditions which included weekly average high and low temperatures and day lengths over the switchgrass growing season for each simulated site: Guayaquil, Ecuador; Laredo, Texas, USA; and Brattleboro, Vermont, USA. Flowering and reproduction among transgenic lines with low (T-14 and T-35)-to-moderate (T-27 and T-37) overexpression of miR156 were assessed. Lower simulated latitudes (higher temperatures with low-variant day length) and long growing seasons promoted flowering of the miR156 transgenic switchgrass lines. Tropical conditions rescued the flowering phenotype in all transgenic lines except T-27. Higher numbers of plants in lines T-35 and T-37 and the controls produced panicles, which also occurred earlier in the study as temperatures increased and day length decreased. Line T-14 was the exception as more clonal replicates flowered in the cool-temperate (Vermont) conditions. Increased biomass was found in transgenic lines T-35 and T-37 in tropical conditions. No difference in biomass was found in subtropical (Texas) chambers, and two lines (T-14 and T-35) produced less biomass than the control in cool-temperate conditions. Our findings suggest that switchgrass plants engineered to overexpress miR156 for delayed flowering to promote bioconfinement and biomass production may be used for plant breeding at tropical sites.
Collapse
Affiliation(s)
| | - Reginald J. Millwood
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeTNUSA
| | - Zeng‐Yu Wang
- BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeTNUSA
- Noble Research InstituteArdmoreOKUSA
| | - Charles N. Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
19
|
Johnson CR, Millwood RJ, Tang Y, Gou J, Sykes RW, Turner GB, Davis MF, Sang Y, Wang ZY, Stewart CN. Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:255. [PMID: 29213314 PMCID: PMC5707911 DOI: 10.1186/s13068-017-0939-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/19/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. Depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. In this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutive maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons. RESULTS miR156 expression was positively associated with decreased and delayed flowering in switchgrass. Line T27 did not flower during the 2-year study. Line T37 did flower, but not all plants produced panicles. Flowering was delayed in T37, resulting in 70.6% fewer flowers than controls during the second field year with commensurate decreased seed yield: 1205 seeds per plant vs. 18,539 produced by each control. These results are notable given that line T37 produced equivalent vegetative aboveground biomass to the controls. miR156 transcript abundance of field-grown plants was congruent with greenhouse results. The five miR156 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) target genes had suppressed expression in one or more of the transgenic lines. Line T27, which had the highest miR156 overexpression, showed significant downregulation for all five SPL genes. On the contrary, line T35 had the lowest miR156 overexpression and had no significant change in any of the five SPL genes. CONCLUSIONS Because of the research field's geographical features, this study was the first instance of any genetically engineered trait in switchgrass, in which experimental plants were allowed to flower in the field in the eastern U.S.; USDA-APHIS-BRS regulators allowed open flowering. We found that medium overexpression of miR156, e.g., line T37, resulted in delayed and reduced flowering accompanied by high biomass production. We propose that induced miR156 expression could be further developed as a transgenic switchgrass bioconfinement tool to enable eventual commercialization.
Collapse
Affiliation(s)
- Chelsea R. Johnson
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Yuhong Tang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - Jiqing Gou
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Yi Sang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Zeng-Yu Wang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|