1
|
Liu C, Yan S, Mao F, Sun T, Liang H, Liu Q, Qian Q, Wang K. Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. PLANT COMMUNICATIONS 2024:101067. [PMID: 39180215 DOI: 10.1016/j.xplc.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Song Yan
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fangming Mao
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Tingting Sun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Huan Liang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Yazhouwan National Laboratory, Sanya 572024, China.
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
2
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Foster TL, Kloiber-Maitz M, Gilles L, Frei UK, Pfeffer S, Chen YR, Dutta S, Seetharam AS, Hufford MB, Lübberstedt T. Fine mapping of major QTL qshgd1 for spontaneous haploid genome doubling in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:117. [PMID: 38700534 DOI: 10.1007/s00122-024-04615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/09/2024]
Abstract
KEY MESSAGE A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.
Collapse
Affiliation(s)
- Tyler L Foster
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | | | - Laurine Gilles
- Limagrain Europe SAS, Research Centre, 63720, Chappes, France
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Sarah Pfeffer
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
4
|
Sahana KP, Srivastava A, Khar A, Jain N, Jain PK, Bharti H, Harun M, Mangal M. Anther-derived microspore embryogenesis in pepper hybrids orobelle and Bomby. BOTANICAL STUDIES 2024; 65:1. [PMID: 38175359 PMCID: PMC10766580 DOI: 10.1186/s40529-023-00408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Traditional breeding methods have long been employed worldwide for the evaluation and development of pepper cultivars. However, these methods necessitate multiple generations of screening, line development, evaluation, recognition, and crossing to obtain highly homozygous lines. In contrast, in vitro anther-derived microspore culture represents a rapid method to generate homozygous lines within a single generation. In the present study, we have optimized a protocol for microspore embryogenesis from anther cultures of pepper hybrids Orobelle and Bomby. RESULTS We achieved early and successful embryo formation from both genotypes by subjecting the buds to a cold pretreatment at 4 °C for 4 days. Our optimized culture medium, comprised of MS medium supplemented with 4 mg/L NAA, 1 mg/L BAP, 0.25% activated charcoal, 2.6 g/L gelrite, 30 g/L sucrose, and 15 mg/L silver nitrate, exhibited the highest efficiency in embryo formation (1.85% and 1.46%) for Orobelle and Bomby, respectively. Furthermore, successful plant regeneration from the anther derived microspore embryos was accomplished using half-strength MS medium fortified with 2% sucrose and 0.1 mg/L 6-benzylaminopurine (BA), solidified with 2.6 g/L gelrite. The ploidy status of the microspore-derived plantlets was analyzed using flow cytometry technique. Notably, the haploid plants exhibited distinct characteristics such as reduced plant height, leaf length, leaf width, and shorter internode length when compared to their diploid counterparts derived from seeds. CONCLUSION Our findings highlight the potential of anther culture and microspore embryogenesis as an advanced method for accelerating pepper breeding programs, enabling the rapid production of superior homozygous lines.
Collapse
Affiliation(s)
- K P Sahana
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - P K Jain
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Hemlata Bharti
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mohd Harun
- Division of Design and Experiments, ICAR-IASRI, Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
5
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
6
|
Ghalagi C, Namratha MR, Kotyal K, Prakash S, Raju BM. A novel visual marker to distinguish haploids from doubled haploids in rice (Oryza sativa, L) at early growth stages. PLANT METHODS 2023; 19:137. [PMID: 38041143 PMCID: PMC10691067 DOI: 10.1186/s13007-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Doubled haploid technology, which enables the generation of homozygous lines in a single step, is one of the modern tools being employed for accelerating breeding processes in different crops. In rice, a globally important staple food crop, doubled haploid production through androgenesis is increasingly being employed in breeding programs. Amongst the androgenic rice lines, doubled haploids are formed spontaneously at about 50-60%, while the remaining 40-50% of plants remain as haploids. As haploids cannot be easily identified, it is routine to grow all the rice androgenic lines till maturity and harvest the seeds from the fertile doubled haploids. Therefore, the methods that facilitate easy identification of haploids at an early developmental stage in rice would enable treatment of such haploid lines with colchicine, to increase the efficiency of doubled haploid production. Further, it would also help in eliminating the operational cost involved in maintaining them till maturity. In the above context, a systematic study to identify easily observable physiological and morphological differences between haploid and doubled haploid rice lines was undertaken. Rice haploids were found to be noticeably different from doubled haploids in photosynthetic rate, transpiration rate, stomatal conductance, and morphology of lodicules, stigma and style, features which have not been reported before. Most importantly, rice haploids invariably have acute leaf apex which is easily distinguishable from the doubled haploids that have attenuated leaf apex shape. Very high per cent accuracy in the prediction of ploidy level was observed when haploids were identified at an early developmental stage based on leaf apex shape, and the results verified with flow cytometry perfectly matches with leaf apex shape. The study establishes 'acute leaf apex' shape as an accurate visual marker to rapidly identify haploid rice lines at an early developmental stage in a cost-effective manner.
Collapse
Affiliation(s)
- Chaitanya Ghalagi
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | | | - Kavita Kotyal
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Shiva Prakash
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Basavaiah Mohan Raju
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.
| |
Collapse
|
7
|
Xu H, Halford NG, Guo G, Chen Z, Li Y, Zhou L, Liu C, Xu R. Transcriptomic and Metabolomic Analyses Reveal the Importance of Lipid Metabolism and Photosynthesis Regulation in High Salinity Tolerance in Barley ( Hordeum vulgare L.) Leaves Derived from Mutagenesis Combined with Microspore Culture. Int J Mol Sci 2023; 24:16757. [PMID: 38069082 PMCID: PMC10705989 DOI: 10.3390/ijms242316757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Barley is the most salt-tolerant cereal crop. However, little attention has been paid to the salt-tolerant doubled haploids of barley derived from mutagenesis combined with isolated microspore culture. In the present study, barley doubled haploid (DH) line 20, which was produced by mutagenesis combined with isolated microspore culture, showed stably and heritably better salt tolerance than the wild type H30 in terms of fresh shoot weight, dry shoot weight, K+/Na+ ratio and photosynthetic characteristics. Transcriptome and metabolome analyses were performed to compare the changes in gene expression and metabolites between DH20 and H30. A total of 462 differentially expressed genes (DEGs) and 152 differentially accumulated metabolites (DAMs) were identified in DH20 compared to H30 under salt stress. Among the DAMs, fatty acids were the most accumulated in DH20 under salt stress. The integration of transcriptome and metabolome analyses revealed that nine key biomarkers, including two metabolites and seven genes, could distinguish DH20 and H30 when exposed to high salt. The pathways of linoleic acid metabolism, alpha-linolenic acid metabolism, glycerolipid metabolism, photosynthesis, and alanine, aspartate and glutamate metabolism were significantly enriched in DH20 with DEGs and DAMs in response to salt stress. These results suggest that DH20 may enhance resilience by promoting lipid metabolism, maintaining energy metabolism and decreasing amino acids metabolism. The study provided novel insights for the rapid generation of homozygous mutant plants by mutagenesis combined with microspore culture technology and also identified candidate genes and metabolites that may enable the mutant plants to cope with salt stress.
Collapse
Affiliation(s)
- Hongwei Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | | | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yingbo Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Meyer CM, Goldman IL, Krysan PJ. Chromosome-level changes and genome elimination by manipulation of CENH3 in carrot ( Daucus carota). FRONTIERS IN PLANT SCIENCE 2023; 14:1294551. [PMID: 38034555 PMCID: PMC10684906 DOI: 10.3389/fpls.2023.1294551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Hybrid cultivars are valuable in many crop species due to their high yield, uniformity, and other desirable traits. Doubled haploids, which have two identical sets of chromosomes, are valuable for hybrid breeding because they can be produced in one generation, in comparison to the multigenerational process typically used to produce inbred parents for hybrid production. One method to produce haploid plants is manipulation of centromeric histone H3 (CENH3). This method of producing haploids has so far been successful in Arabidopsis, maize (Zea mays), and wheat (Triticum aestivum). Here we describe modification of CENH3 in carrot (Daucus carota) to test for the ability of these modifications to induce uniparental genome elimination, which is the basis for haploid induction. Base editing was used to make cenh3 mutant plants with amino acid substitutions in the region of CENH3 encoding the histone fold domain. These cenh3 mutant plants were then outcrossed with CENH3 wild-type plants. Using PCR-based genotyping assays, we identified two candidates for genome elimination. One candidate was classified as a putative aneuploid plant in which chromosome 7 is in a single copy state. The other candidate was characterized as a putative tetraploid that was likely haploid during its genesis. Our results suggest that this putative tetraploid inherited all of its chromosomes from the CENH3 wild-type parent and that the genome of the cenh3 mutant plant was lost. This study provides evidence that modification of CENH3 in carrot has the potential to induce genome elimination and ploidy changes in carrot.
Collapse
Affiliation(s)
| | | | - Patrick J. Krysan
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Stajič E, Kunej U. Optimization of cabbage ( Brassica oleracea var. capitata L.) protoplast transformation for genome editing using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1245433. [PMID: 37849838 PMCID: PMC10577288 DOI: 10.3389/fpls.2023.1245433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Genome editing techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9) are undoubtedly becoming an indispensable tool for improving food crops and tackling agricultural challenges. In the present study, key factors affecting transformation efficiency, such as PEG4000 concentration, incubation time, and plasmid amount were evaluated to achieve efficient delivery of CRISPR/Cas9 vector into cabbage protoplasts. Using amplicon sequencing, we confirmed a significant effect of PEG4000 concentration and incubation time on the induced target mutations. By optimizing the transformation protocol, editing efficiency of 26.4% was achieved with 40 µg of plasmid and 15 minutes incubation with 50% PEG4000. While these factors strongly affected the mutation rate, the viability of the transformed protoplasts remained high. Our findings would be useful for successful genome editing in cabbage and other brassicas, as well as in research areas such as gene function analysis and subcellular localization that rely on transient transformation methods in protoplasts.
Collapse
Affiliation(s)
- Ester Stajič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Huang L, Gao G, Jiang C, Guo G, He Q, Zong Y, Liu C, Yang P. Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment. ABIOTECH 2023; 4:202-212. [PMID: 37970468 PMCID: PMC10638298 DOI: 10.1007/s42994-023-00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/31/2023] [Indexed: 11/17/2023]
Abstract
Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar 'Hua30' and landrace 'HTX'. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).
Collapse
Affiliation(s)
- Linli Huang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Guimei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yingjie Zong
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
11
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
12
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
13
|
Wang H, Hou H, Jan CC, Chao WS. Irradiated Pollen-Induced Parthenogenesis for Doubled Haploid Production in Sunflowers ( Helianthus spp.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2430. [PMID: 37446990 DOI: 10.3390/plants12132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Doubled haploid (DH) technology is a tool used to develop large numbers of inbred lines and increase the rate of genetic gain by shortening the breeding cycles. However, previous attempts to produce DH sunflower plants (Helianthus spp.) have resulted in limited success. In this research, we applied gamma-induced parthenogenesis to assist the production of DH sunflowers. The objectives of the study included (1) identifying optimal gamma ray doses for inducing DH sunflowers using two cytoplasmic male sterility (CMS) lines as female plants and two male pollinators with recognizable morphological markers, (2) selecting new male pollinators from wild sunflower varieties, and (3) testing the efficacy of the selected male pollinators using emasculated non-male sterile sunflower lines as female plants. In these experiments, pollen grains were irradiated with gamma ray doses ranging from 50 to 200 Gy. The optimal gamma ray dose for pollen grain irradiation and DH plant production was identified to be 100 Gy. In addition, a cultivated (G11/1440) and a wild-type (ANN1811) sunflower line can be used as common male pollinators for their distinctive morphological markers and wide capacity for DH induction by gamma-irradiated pollen grains.
Collapse
Affiliation(s)
- Hongxia Wang
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Hongyan Hou
- Mathematics Department, Minnesota State University, Moorhead, MN 56563, USA
| | - Chao-Chien Jan
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Wun S Chao
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| |
Collapse
|
14
|
Wang D, Zhong Y, Feng B, Qi X, Yan T, Liu J, Guo S, Wang Y, Liu Z, Cheng D, Zhang Y, Shi Y, Zhang S, Pan R, Liu C, Chen S. The RUBY reporter enables efficient haploid identification in maize and tomato. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37195892 PMCID: PMC10363758 DOI: 10.1111/pbi.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
In vivo haploid induction has been extended from maize to monocotyledonous plants like rice, wheat, millet and dicotyledonous plants such as tomato, rapeseed, tobacco and cabbage. Accurate identification of haploids is a crucial step of doubled haploid technology, where a useful identification marker is very pivotal. R1-nj is an extensively used visual marker for haploid identification in maize. RFP and eGFP have been shown to be feasible in identifying haploid. However, these methods are either limited to specific species, or require specific equipment. It still lacks an efficient visual marker that is practical across different crop species. In this study, we introduced the RUBY reporter, a betalain biosynthesis system, into maize and tomato haploid inducers as a new marker for haploid identification. Results showed that expression of RUBY could result in deep betalain pigmentation in maize embryos as early as 10 days after pollination, and enabled 100% accuracy of immature haploid embryo identification. Further investigation in tomato revealed that the new marker led to deep red pigmentation in radicles and haploids can be identified easily and accurately. The results demonstrated that the RUBY reporter is a background-independent and efficient marker for haploid identification and would be promising in doubled haploid breeding across different crop species.
Collapse
Affiliation(s)
- Dong Wang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Zhong
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bin Feng
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolong Qi
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Tongzheng Yan
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinchu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuwei Guo
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuwen Wang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zongkai Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dehe Cheng
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuling Zhang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Shuaisong Zhang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - RuXue Pan
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
15
|
Shrestha S, Koo DH, Evers B, Wu S, Walkowiak S, Hucl P, Pozniak C, Fritz A, Poland J. Wheat doubled haploids have a marked prevalence of chromosomal aberrations. THE PLANT GENOME 2023:e20309. [PMID: 37128182 DOI: 10.1002/tpg2.20309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 05/03/2023]
Abstract
Double haploid (DH) population development is widely used in many crops, including wheat (Triticum aestivum L.), to rapidly produce fixed germplasm for breeding and genetic studies. The genome shock that takes place during DH induction could induce chromosomal aberrations that can impact genome integrity and subsequently plant fitness and agronomic performance. To evaluate the extent of chromosomal aberrations that exist as a result of the DH process, we studied two wheat DH populations: CDC Stanley×CDC Landmark and KS13H9×SYMonument. We utilized high-throughput skim sequencing to construct digital karyotypes of these populations to quantify deletions and aneuploidy with high resolution and accuracy, which was confirmed in selected plants by cytological analysis. The two populations studied showed high proportion of abnormal primary DH lines, 55 and 45%, respectively, based on at least one abnormality per progeny. The chromosomal abnormalities are genetically unstable and were observed segregating in the subsequent generations. These observations have important implications for the use of DH lines in genetics and breeding.
Collapse
Affiliation(s)
- Sandesh Shrestha
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Byron Evers
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Shuangye Wu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Sean Walkowiak
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
| | - Pierre Hucl
- Crop Development Centre (CDC), University of Saskatchewan, Saskatoon, SK, Canada
| | - Curtis Pozniak
- Crop Development Centre (CDC), University of Saskatchewan, Saskatoon, SK, Canada
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Kaur H, Kyum M, Sandhu S, Singh G, Sharma P. Protocol optimization and assessment of genotypic response for inbred line development through doubled haploid production in maize. BMC PLANT BIOLOGY 2023; 23:219. [PMID: 37098500 PMCID: PMC10131367 DOI: 10.1186/s12870-023-04228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Doubled haploid technology offers the fastest route of inbred line development by rapidly fixing the desirable combinations in a single year. However, the differential response of haploid induction to genetic background of maternal lines accompanied with low induction rate and high mortality rate due to artificial chromosomal doubling of haploid seedlings creates hindrance in doubled haploid production on a commercial scale under tropical conditions. To speed up the hybrid breeding programme in sub-tropical maize, efforts are reported here to optimize the protocol for efficient production of fixed lines using haploid inducers. The second-generation haploid inducers i.e. CIM2GTAILs obtained from CIMMYT, Mexico were used for haploid induction in 13 F1s of diverse backgrounds. For standardization of chromosomal doubling protocol, various concentrations of colchicine and two seedling growth stages were used to determine the extent of chromosomal doubling and survival rate of doubled haploid plants. RESULTS A high mean haploid induction rate is obtained from CIM2GTAIL P2 (10%) as compared to CIM2GTAIL P1 (7.46%). Out of four treatments, CIMMYT reported protocol of chromosome doubling in tropical maize comprising combination of 0.07% colchicine and 0.1% DMSO at V2 stage is highly effective for acquiring doubled haploid plants in sub-tropical adapted maize with high survival rate of 52.7%. However, increasing the colchicine concentration from 0.07 to 0.1% led to high mortality rate. CONCLUSION According to the findings, the haploid induction rate, survival rate and overall success rate varied depending upon the genotype of the inducer and the source population along with the concentrations of chemical used. The optimized protocol developed using CIMMYT haploid inducer CIM2GTAIL P2 for efficient doubled haploid production will not only fasten the breeding programme but will also reduce the production cost of doubled haploid with great efficiency in sub-tropical maize.
Collapse
Affiliation(s)
- Harjot Kaur
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Mohammed Kyum
- Department of Agronomy, University of Florida, Gainesville, FL, 32608, USA
| | - Surinder Sandhu
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Gagandeep Singh
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
17
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life (Basel) 2023; 13:988. [PMID: 37109518 PMCID: PMC10144025 DOI: 10.3390/life13040988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Chickpea is an important leguminous crop with potential to provide dietary proteins to both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation. The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and 1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different conventional breeding methods is very time consuming and depends upon the environment. Modern technologies can improve conventional methods to solve these major constraints. Understanding the molecular response of chickpea to Fusarium wilt can help to provide effective management strategies. The identification of molecular markers closely linked to genes/QTLs has provided great potential for chickpea improvement programs. Moreover, omics approaches, including transcriptomics, metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review, we will discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Vinod Patel
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - R. S. Sikarwar
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
18
|
Li J, Cheng D, Guo S, Chen C, Wang Y, Zhong Y, Qi X, Liu Z, Wang D, Wang Y, Liu W, Liu C, Chen S. Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations. FRONTIERS IN PLANT SCIENCE 2023; 14:1109116. [PMID: 36778694 PMCID: PMC9908600 DOI: 10.3389/fpls.2023.1109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Southern corn rust (SCR), caused by Puccinia polysora Underw, is a destructive disease that can severely reduce grain yield in maize (Zea mays L.). Owing to P. polysora being multi-racial, it is very important to explore more resistance genes and develop more efficient selection approaches in maize breeding programs. Here, four Doubled Haploid (DH) populations with 384 accessions originated from selected parents and their 903 testcross hybrids were used to perform genome-wide association (GWAS). Three GWAS processes included the additive model in the DH panel, additive and dominant models in the hybrid panel. As a result, five loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values ranging from 4.83×10-7 to 2.46×10-41. In all association analyses, a highly significant locus on chromosome 10 was detected, which was tight chained with the known SCR resistance gene RPPC and RPPK. Genomic prediction (GP), has been proven to be effective in plant breeding. In our study, several models were performed to explore predictive ability in hybrid populations for SCR resistance, including extended GBLUP with different genetic matrices, maker based prediction models, and mixed models with QTL as fixed factors. For GBLUP models, the prediction accuracies ranged from 0.56-0.60. Compared with traditional prediction only with additive effect, prediction ability was significantly improved by adding additive-by-additive effect (P-value< 0.05). For maker based models, the accuracy of BayesA and BayesB was 0.65, 8% higher than other models (i.e., RRBLUP, BRR, BL, BayesC). Finally, by adding QTL into the mixed linear prediction model, the accuracy can be further improved to 0.67, especially for the G_A model, the prediction performance can be increased by 11.67%. The prediction accuracy of the BayesB model can be further improved significantly by adding QTL information (P-value< 0.05). This study will provide important valuable information for understanding the genetic architecture and the application of GP for SCR in maize breeding.
Collapse
Affiliation(s)
- Jinlong Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Dehe Cheng
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Shuwei Guo
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Chen Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuwen Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Yu Zhong
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Xiaolong Qi
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Zongkai Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Dong Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Yuandong Wang
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenxin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Chenxu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization Ministry of Education (MOE), China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
20
|
Shen K, Qu M, Zhao P. The Roads to Haploid Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:243. [PMID: 36678955 PMCID: PMC9865920 DOI: 10.3390/plants12020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 05/31/2023]
Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
Collapse
Affiliation(s)
- Kun Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxue Qu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Chen C, Zhang Y, Fu X, Chen C, Wu S, Zhang C, Zhang H, Chang Y, Chen S, Zhao J, Liu C, Wang Y. Influential factors and transcriptome analyses of immature diploid embryo anthocyanin accumulation in maize. BMC PLANT BIOLOGY 2022; 22:609. [PMID: 36564721 PMCID: PMC9789580 DOI: 10.1186/s12870-022-03971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/30/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Anthocyanins are widely applied as a marker for haploid identification after haploid induction in maize. However, the factors affecting anthocyanin biosynthesis in immature embryos and the genes regulating this process remain unclear. RESULTS In this study, we analyzed the influence of genetic background of the male and female parents, embryo age and light exposure on anthocyanin accumulation in embryos. The results showed that light exposure was the most crucial factor enhancing the pigmentation of immature embryos. The identification accuracy of haploid embryos reached 96.4% after light exposure, but was only 11.0% following dark treatment. The total anthocyanin content was 7-fold higher in immature embryos cultured for 24 h under light conditions compared to embryos cultured in the dark. Transcriptome analysis revealed that the differentially expressed genes between immature embryos cultured for 24 h in dark and light chambers were significantly enriched in the pathways of flavonoid, flavone, flavonol and anthocyanin biosynthesis. Among the genes involved in anthocyanin biosynthesis, five up-regulated genes were identified: F3H, DFR, ANS, F3'H and the MYB transcription factor-encoding gene C1. The expression patterns of 14 selected genes were confirmed using quantitative reverse transcription-polymerase chain reaction. CONCLUSION Light is the most important factor facilitating anthocyanin accumulation in immature embryos. After 24 h of exposure to light, the expression levels of the structural genes F3H, DFR, ANS, F3'H and transcription factor gene C1 were significantly up-regulated. This study provides new insight into the factors and key genes regulating anthocyanin biosynthesis in immature embryos, and supports improved efficiency of immature haploid embryo selection during doubled haploid breeding of maize.
Collapse
Affiliation(s)
- Chen Chen
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuling Zhang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, Sanya Research Institute, China Agricultural University, Beijing, 100193, China
| | - Xiuyi Fu
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuanyong Chen
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shanshan Wu
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunyuan Zhang
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huasheng Zhang
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yiyao Chang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, Sanya Research Institute, China Agricultural University, Beijing, 100193, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, Sanya Research Institute, China Agricultural University, Beijing, 100193, China
| | - Jiuran Zhao
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, Sanya Research Institute, China Agricultural University, Beijing, 100193, China.
| | - Yuandong Wang
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
22
|
Chen C, Liu X, Li S, Liu C, Zhang Y, Luo L, Miao L, Yang W, Xiao Z, Zhong Y, Li J, Chen R, Chen S. Co-expression of transcription factors ZmC1 and ZmR2 establishes an efficient and accurate haploid embryo identification system in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1296-1307. [PMID: 35793378 DOI: 10.1111/tpj.15888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Because of their high efficiency during chromosome doubling, immature haploid maize (Zea mays L.) embryos are useful for doubled haploid production. The R1-nj marker is commonly used in doubled haploid breeding and has improved the efficiency of haploid identification. However, its effectiveness is limited by genetic background and environmental factors. We addressed this technical challenge by developing an efficient and accurate haploid embryo identification marker through co-expression of two transcription factor genes (ZmC1 and ZmR2) driven by the embryo-aleurone-specific bidirectional promoter PZmBD1 ; these factors can activate anthocyanin biosynthesis in the embryo and aleurone layer during early seed development. We developed a new haploid inducer, Maize Anthocyanin Gene InduCer 1 (MAGIC1), by introducing the transgenes into the haploid inducer line CAU6. MAGIC1 could identify haploids at 12 days after pollination, which is nine days earlier than CAU6. Importantly, MAGIC1 increased haploid identification accuracy to 99.1%, compared with 88.3% for CAU6. In addition, MAGIC1 could effectively overcome the inhibition of anthocyanin synthesis in some germplasms. Furthermore, an upgraded anthocyanin marker was developed from ZmC1 and ZmR2 to generate MAGIC2, which could identify haploids from diploids due to differential anthocyanin accumulation in immature embryos, coleoptiles, sheaths, roots, leaves, and dry seeds. This haploid identification system is more efficient and accurate than the conventional R1-nj-based method, and it simplifies the haploid identification process. Therefore, this system provides technical support for large-scale doubled haploid line production.
Collapse
Affiliation(s)
- Chen Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuling Zhang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lili Luo
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqing Miao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zijian Xiao
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yu Zhong
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
24
|
Theoretical and experimental assessment of genome-based prediction in landraces of allogamous crops. Proc Natl Acad Sci U S A 2022; 119:e2121797119. [PMID: 35486687 PMCID: PMC9170147 DOI: 10.1073/pnas.2121797119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceGenetic variation inherent in landraces is essential for broadening the genetic diversity of our crops. This study pioneers the development of a theoretical framework to link molecular inventories of plant genetic resources to phenotypic variation, allowing an informed choice of landraces and their crossing partners. We show that genome-based prediction of genetic values can be implemented successfully in landrace-derived material, despite a strongly reduced level of relatedness compared with elite germplasm. Theoretical derivations are validated with unique experimental data collected on two different landraces. Our results are a pivotal contribution toward the optimization of genome-enabled prebreeding schemes.
Collapse
|
25
|
Patial M, Chauhan R, Chaudhary HK, Pramanick KK, Shukla AK, Kumar V, Verma RPS. Au-courant and novel technologies for efficient doubled haploid development in barley ( Hordeum vulgare L.). Crit Rev Biotechnol 2022; 43:575-593. [PMID: 35435095 DOI: 10.1080/07388551.2022.2050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bounteous modern and innovative biotechnological tools have resulted in progressive development in the barley breeding program. Doubled haploids developed (homozygous lines) in a single generation is significant. Since the first discovery of haploid plants in 1920 and, in particular, after discovering in vitro androgenesis in 1964 by Guha and Maheshwari, the doubled haploidy techniques have been progressively developed and constantly improved. It has shortened the cultivar development time and has been extensively used in: genetic studies, gene mapping, marker/trait association, and QTL studies. In barley, the haploid occurrence developed gradually from being a sporadic and random process (spontaneous) to haploid development by in vivo method of modified pollination or by in vitro culture of immature male or female gametophytes. Although significant improvement in DH induction protocols has been made, challenges still exist for improvement in areas such as: low efficiency, albinism, genotypic specificity etc. Here, the paper focuses on: haploidization via different in vitro, in vivo techniques, the recent advances technologies like centromere-mediated haploidization, hap induction gene, and Doubled haploid CRISPR. The au-courant work of different researchers in barley using these technologies is reviewed. Studies on different factors affecting haploid induction and work on genome doubling of barley haploids to produce DH lines via spontaneous and induced technologies has also been highlighted.
Collapse
Affiliation(s)
- Madhu Patial
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | - Ruchi Chauhan
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | | | - Kallol K Pramanick
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | - Arun K Shukla
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | | | | |
Collapse
|
26
|
Sun G, Geng S, Zhang H, Jia M, Wang Z, Deng Z, Tao S, Liao R, Wang F, Kong X, Fu M, Liu S, Li A, Mao L. Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. THE NEW PHYTOLOGIST 2022; 233:2405-2414. [PMID: 35015909 DOI: 10.1111/nph.17963] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) play important roles during anther and pollen development. DNA damage may cause chromosome fragmentation that is considered to underlie chromosome elimination for haploid induction by matrilineal pollen, a key step in MATRILINEAL-based double haploid breeding technology. But when and how DNA damage occurs is unknown. We performed comparative studies of wheat pollens from the wild-type and the CRISPR/Cas9 edited matrilineal mutant (mMTL). Chemical assays detected a second wave of ROS in mMTL pollen at the three-nuclei-stage and subsequently, along with reduced antioxidant enzyme activities. RNA-seq analysis revealed disturbed expression of genes for fatty acid biosynthesis and ROS homoeostasis. Gas chromatography-mass spectrometry measurement identified abnormal fatty acid metabolism that may contribute to defective mMTL pollen walls as observed using electron microscopy, consistent with the function of MTL as a phospholipase. Moreover, DNA damage was identified using TdT-mediated dUTP nick-end labelling and quantified using comet assays. Velocity patterns showed that ROS increments preceded that of DNA damage over the course of pollen maturation. Our work hypothesises that mMTL-triggered later-stage-specific ROS causes DNA damage that may contribute to chromosome fragmentation and hence chromosome elimination during haploid induction. These findings may provide more ways to accelerate double haploid-based plant breeding.
Collapse
Affiliation(s)
- Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxue Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoshuai Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Hale B, Ferrie AMR, Chellamma S, Samuel JP, Phillips GC. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:751230. [PMID: 35069615 PMCID: PMC8777211 DOI: 10.3389/fpls.2021.751230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
Androgenesis, which entails cell fate redirection within the microgametophyte, is employed widely for genetic gain in plant breeding programs. Moreover, androgenesis-responsive species provide tractable systems for studying cell cycle regulation, meiotic recombination, and apozygotic embryogenesis within plant cells. Past research on androgenesis has focused on protocol development with emphasis on temperature pretreatments of donor plants or floral buds, and tissue culture optimization because androgenesis has different nutritional requirements than somatic embryogenesis. Protocol development for new species and genotypes within responsive species continues to the present day, but slowly. There is more focus presently on understanding how protocols work in order to extend them to additional genotypes and species. Transcriptomic and epigenetic analyses of induced microspores have revealed some of the cellular and molecular responses required for or associated with androgenesis. For example, microRNAs appear to regulate early microspore responses to external stimuli; trichostatin-A, a histone deacetylase inhibitor, acts as an epigenetic additive; ά-phytosulfokine, a five amino acid sulfated peptide, promotes androgenesis in some species. Additionally, present work on gene transfer and genome editing in microspores suggest that future endeavors will likely incorporate greater precision with the genetic composition of microspores used in doubled haploid breeding, thus likely to realize a greater impact on crop improvement. In this review, we evaluate basic breeding applications of androgenesis, explore the utility of genomics and gene editing technologies for protocol development, and provide considerations to overcome genotype specificity and morphogenic recalcitrance in non-model plant systems.
Collapse
Affiliation(s)
- Brett Hale
- Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, United States
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | | | | | | | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
- College of Agriculture, Arkansas State University, Jonesboro, AR, United States
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR, United States
| |
Collapse
|
28
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
29
|
Li Y, Lin Z, Yue Y, Zhao H, Fei X, E L, Liu C, Chen S, Lai J, Song W. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. NATURE PLANTS 2021; 7:1579-1588. [PMID: 34887519 PMCID: PMC8677622 DOI: 10.1038/s41477-021-01037-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Doubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zhen Lin
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Xiaohong Fei
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Longping Agriculture Science Co. Ltd., Beijing, P. R. China
| | - Lizhu E
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Chenxu Liu
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Shaojiang Chen
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
30
|
Wang C, Su B, Lu S, Han S, Jiang H, Li Z, Liu Y, Liu H, Yang Y. Effects of Glutathione on Growth, Intestinal Antioxidant Capacity, Histology, Gene Expression, and Microbiota of Juvenile Triploid Oncorhynchus mykiss. Front Physiol 2021; 12:784852. [PMID: 34925074 PMCID: PMC8680104 DOI: 10.3389/fphys.2021.784852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
This study aimed to demonstrate the effects of dietary glutathione (GSH) on growth, intestinal antioxidant capacity, histology, gene expression, and microbiota in juvenile triploid rainbow trout (Oncorhynchus mykiss). Different diets (G0-control, G100, G200, G400, and G800) containing graded levels of GSH (0, 100, 200, 400, and 800mgkg-1) were fed to triplicate groups of 30 fish (initial mean weight 4.12±0.04g) for 56days. G400 had significantly improved weight gain and feed conversion rate. Based on the broken-line regression analysis, the optimum dietary GSH level was 447.06mgkg-1. Catalase and superoxide dismutase activities were significantly higher in G200-G800. G200 had significantly lower malondialdehyde content. The height of the intestinal muscular layer in G400 was significantly higher than that of the control group. Intestinal PepT1 and SLC1A5 gene expression was significantly increased, and the highest was observed in G400. TNF-α, IL-1β, IL-2, and IL-8 expression were significantly decreased than that of G0. Next-generation sequencing of the 16S rDNA showed a significant difference in alpha diversity whereas no differences in beta diversity. On the genus level, LefSe analysis of indicator OTUs showed Ilumatobacter, Peptoniphilus, Limnobacter, Mizugakiibacter, Chelatococcus, Stella, Filimonas, and Streptosporangium were associated with the treatment diet, whereas Arcobacter, Ferrovibrio, Buchnera, Chitinophaga, Stenotrophobacter, Solimonadaceae, Polycyclovorans, Rhodococcus, Ramlibacter, and Azohydromonas were associated with the control diet. In summary, feeding juvenile triploid O. mykiss 200-800mgkg-1 GSH improved growth and intestinal health.
Collapse
Affiliation(s)
- Chang’an Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Baohui Su
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Shaoxia Lu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhuang Li
- Fishery Technical Extension Station of Jilin Province, Changchun, China
| | - Yang Liu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Hongbai Liu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuhong Yang
- College of Animal Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Cheng Q, Jiang S, Xu F, Wang Q, Xiao Y, Zhang R, Zhao J, Yan J, Ma C, Wang X. Genome optimization via virtual simulation to accelerate maize hybrid breeding. Brief Bioinform 2021; 23:6407728. [PMID: 34676389 DOI: 10.1093/bib/bbab447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes due to the high expense of field phenotyping. In this work, we implemented 'genome optimization via virtual simulation (GOVS)' using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' or 'advantageous alleles' in a genetic pool. Such a virtually optimized genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will ultimately improve genomically designed breeding in maize. Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' in a breeding population, and then assists in selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuqing Jiang
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Feng Xu
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Qian Wang
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology at Huazhong Agricultural University, Wuhan, China
| | - Ruyang Zhang
- Maize Research Center at Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuran Zhao
- Maize Research Center at Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology at Huazhong Agricultural University, Wuhan, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Xiangfeng Wang
- Sanya Institute of China Agricultural University, Hainan, China
| |
Collapse
|
32
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
33
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
34
|
Rapid Generation and Analysis of a Barley Doubled Haploid Line with Higher Nitrogen Use Efficiency Than Parental Lines by F1 Microspore Embryogenesis. PLANTS 2021; 10:plants10081588. [PMID: 34451633 PMCID: PMC8401716 DOI: 10.3390/plants10081588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022]
Abstract
Creating varieties with high nitrogen use efficiency (NUE) is crucial for sustainable agriculture development. In this study, a superior barley doubled haploid line (named DH45) with improved NUE was produced via F1 microspore embryogenesis with three rounds of screening in different nitrogen levels by hydroponic and field experiments. The molecular mechanisms responsible for the NUE of DH45 surpassing that of its parents were investigated by RNA-seq analysis. A total of 1027 differentially expressed genes (DEGs) were identified that were up- or down-regulated in DH45 under low nitrogen conditions but showed no significant differences in the parents. GO analysis indicated that genes involved in nitrogen compound metabolic processes were significantly enriched in DH45 compared with the parents. KEGG analysis showed the MAPK signaling pathway plant to be highly enriched in DH45 relative to its parents, as well as genes involved in alanine, aspartate and glutamate metabolism, and arginine biosynthesis. In conclusion, our study revealed the potential to fix trait superiority in a line by combining crossing with F1 microspore culture technologies in future crop breeding and also identified several candidate genes that are expressed in shoots and may enable barley to cope with low-nitrogen stress.
Collapse
|
35
|
Mir R, Calabuig-Serna A, Seguí-Simarro JM. Doubled Haploids in Eggplant. BIOLOGY 2021; 10:685. [PMID: 34356540 PMCID: PMC8301345 DOI: 10.3390/biology10070685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
Eggplant is a solanaceous crop cultivated worldwide for its edible fruit. Eggplant breeding programs are mainly aimed to the generation of F1 hybrids by crossing two highly homozygous, pure lines, which are traditionally obtained upon several self crossing generations, which is an expensive and time consuming process. Alternatively, fully homozygous, doubled haploid (DH) individuals can be induced from haploid cells of the germ line in a single generation. Several attempts have been made to develop protocols to produce eggplant DHs principally using anther culture and isolated microspore culture. Eggplant could be considered a moderately recalcitrant species in terms of ability for DH production. Anther culture stands nowadays as the most valuable technology to obtain eggplant DHs. However, the theoretical possibility of having plants regenerated from somatic tissues of the anther walls cannot be ruled out. For this reason, the use of isolated microspores is recommended when possible. This approach still has room for improvement, but it is largely genotype-dependent. In this review, we compile the most relevant advances made in DH production in eggplant, their application to breeding programs, and the future perspectives for the development of other, less genotype-dependent, DH technologies.
Collapse
Affiliation(s)
| | | | - Jose M. Seguí-Simarro
- Cell Biology Group—COMAV Institute, Universitat Politècnica de València, 46011 Valencia, Spain; (R.M.); (A.C.-S.)
| |
Collapse
|
36
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
37
|
Zhu M, Tong L, Xu M, Zhong T. Genetic dissection of maize disease resistance and its applications in molecular breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:32. [PMID: 37309327 PMCID: PMC10236108 DOI: 10.1007/s11032-021-01219-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 06/14/2023]
Abstract
Disease resistance is essential for reliable maize production. In a long-term tug-of-war between maize and its pathogenic microbes, naturally occurring resistance genes gradually accumulate and play a key role in protecting maize from various destructive diseases. Recently, significant progress has been made in deciphering the genetic basis of disease resistance in maize. Enhancing disease resistance can now be explored at the molecular level, from marker-assisted selection to genomic selection, transgenesis technique, and genome editing. In view of the continuing accumulation of cloned resistance genes and in-depth understanding of their resistance mechanisms, coupled with rapid progress of biotechnology, it is expected that the large-scale commercial application of molecular breeding of resistant maize varieties will soon become a reality.
Collapse
Affiliation(s)
- Mang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Lixiu Tong
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Tao Zhong
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
38
|
Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice ( Oryza sativa L.). PLANTS 2021; 10:plants10050839. [PMID: 33921954 PMCID: PMC8143452 DOI: 10.3390/plants10050839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
Anther culture technique is the most viable and efficient method of producing homozygous doubled haploid plants within a short period. However, the practical application of this technology in rice improvement is still limited by various factors that influence culture efficiency. The present study was conducted to determine the effects of two improved anther culture media, Ali-1 (A1) and Ali-2 (A2), a modified N6 medium, to enhance the callus formation and plant regeneration of japonica, indica, and hybrids of indica and japonica cross. The current study demonstrated that genotype and media had a significant impact (p < 0.001) on both callus induction frequency and green plantlet regeneration efficiency. The use of the A1 and A2 medium significantly enhanced callus induction frequency of japonica rice type, Nipponbare, and the hybrids of indica × japonica cross (CXY6, CXY24, and Y2) but not the indica rice type, NSIC Rc480. However, the A1 medium is found superior to the N6 medium as it significantly improved the green plantlet regeneration efficiency of CXY6, CXY24, and Y2 by almost 36%, 118%, and 277%, respectively. Furthermore, it substantially reduced the albino plantlet regeneration of the induced callus in two hybrids (CXY6 and Y2). Therefore, the improved anther culture medium A1 can produce doubled haploid rice plants for indica × japonica, which can be useful in different breeding programs that will enable the speedy development of rice varieties for resource-poor farmers.
Collapse
|
39
|
Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, Xiong Z, VanBuren R, Edger PP. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. THE NEW PHYTOLOGIST 2021; 230:354-371. [PMID: 33280122 PMCID: PMC7986222 DOI: 10.1111/nph.17137] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is 'dominant' over the other subgenome, often being more highly expressed. Here, we 'replayed the evolutionary tape' with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation. These findings demonstrate that 'replaying the evolutionary tape' in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.
Collapse
Affiliation(s)
- Kevin A. Bird
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolutionary Biology and BehaviorMichigan State UniversityEast LansingMI48824USA
| | - Chad E. Niederhuth
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Shujun Ou
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Malia Gehan
- Donald Danforth Plant Science CenterSt LouisMO63123USA
| | - J. Chris Pires
- Division of Biological SciencesUniversity of MissouriColumbiaMO65211USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop BiotechnologyInner Mongolia UniversityHohhot010070China
| | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolutionary Biology and BehaviorMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
40
|
Adhikary D, Kulkarni M, El-Mezawy A, Mobini S, Elhiti M, Gjuric R, Ray A, Polowick P, Slaski JJ, Jones MP, Bhowmik P. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:627240. [PMID: 33747008 PMCID: PMC7968383 DOI: 10.3389/fpls.2021.627240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 05/22/2023]
Abstract
In recent years high-THC (psychoactive) and low-THC (industrial hemp) type cannabis (Cannabis sativa L.) have gained immense attention in medical, food, and a plethora of other consumer product markets. Among the planting materials used for cultivation, tissue culture clones provide various advantages such as economies of scale, production of disease-free and true-to-type plants for reducing the risk of GMP-EuGMP level medical cannabis production, as well as the development and application of various technologies for genetic improvement. Various tissue culture methods have the potential application with cannabis for research, breeding, and novel trait development, as well as commercial mass propagation. Although tissue culture techniques for plant regeneration and micropropagation have been reported for different cannabis genotypes and explant sources, there are significant variations in the response of cultures and the morphogenic pathway. Methods for many high-yielding elite strains are still rudimentary, and protocols are not established. With a recent focus on sequencing and genomics in cannabis, genetic transformation systems are applied to medical cannabis and hemp for functional gene annotation via traditional and transient transformation methods to create novel phenotypes by gene expression modulation and to validate gene function. This review presents the current status of research focusing on different aspects of tissue culture, including micropropagation, transformation, and the regeneration of medicinal cannabis and industrial hemp transformants. Potential future tissue culture research strategies helping elite cannabis breeding and propagation are also presented.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food, & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Manoj Kulkarni
- Canadian Cannabis Breeding Consortium, Edmonton, AB, Canada
| | | | - Saied Mobini
- Canadian Cannabis Breeding Consortium, Edmonton, AB, Canada
| | | | - Rale Gjuric
- Farmers Business Network Inc., Winnipeg, MB, Canada
| | - Anamika Ray
- Canadian Cannabis Breeding Consortium, Edmonton, AB, Canada
| | | | | | - Maxwell P. Jones
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
41
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:629314. [PMID: 33763090 PMCID: PMC7982899 DOI: 10.3389/fpls.2021.629314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Northern Center of China National Rice Research Institute, Shuangyashan, China
| |
Collapse
|
42
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
43
|
Hooghvorst I, Nogués S. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. PLANT CELL REPORTS 2021; 40:255-270. [PMID: 32975636 DOI: 10.1007/s00299-020-02605-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/14/2020] [Indexed: 05/11/2023]
Abstract
The doubled haploid technique aims to generate pure inbred lines for basic research and as commercial cultivars. The doubled haploid technique first generates haploid plants and is followed by chromosome doubling, which can be separated in time or overlapped, depending the procedure for each species. For a long time, much effort has been focused on haploid production via androgenesis, gynogenesis, or parthenogenesis. The obtention of haploid plants has frequently required more optimization and has lagged behind research and improvements in chromosome doubling methods. Nevertheless, chromosome doubling has recently been of renewed interest to increase the rates and efficiency of doubled haploid plant production through trialing and optimizing of different procedures. New antimitotic compounds and application methods are being studied to ensure the success of chromosome doubling once haploid material has been regenerated. Moreover, a haploid inducer-mediated CRISPR/Cas9 genome-editing system is a breakthrough method in the production of haploid plant material and could be of great importance for species where traditional haploid regeneration methods have not been successful, or for recalcitrant species. In all cases, the new deployment of this system will demand a suitable chromosome doubling protocol. In this review, we explore the existing doubled haploid and chromosome doubling methods to identify opportunities to enhance the breeding process in major crops.
Collapse
Affiliation(s)
- Isidre Hooghvorst
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, Spain.
- Rocalba S.A., c/Barcelona 15 PO BOX 156, 17002, Girona, Spain.
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
44
|
Karimi-Ashtiyani R. Centromere Engineering as an Emerging Tool for Haploid Plant Production: Advances and Challenges. Methods Mol Biol 2021; 2289:3-22. [PMID: 34270060 DOI: 10.1007/978-1-0716-1331-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Haploid production is of great importance in plant breeding programs. Doubled haploid technology accelerates the generation of inbred lines with homozygosity in all loci in a single year. Haploids can be induced in vitro via cultivating the haploid gametes or in vivo through inter- and intraspecific hybridization. Haploid induction through centromere engineering is a novel system that is theoretically applicable to many plant species. The present review chapter discusses the proposed molecular mechanisms of selective chromosome elimination in early embryogenesis and the effects of kinetochore component modifications on proper chromosome segregation. Finally, the advantages and limitations of the CENH3-mediated haploidization approach and its applications are highlighted.
Collapse
|
45
|
Abstract
The completely homozygous genetic background of doubled haploids (DHs) has many applications in breeding programs and research studies. Haploid induction and chromosome doubling of induced haploids are the two main steps of doubled haploid creation. Both steps have their own complexities. Chromosome doubling of induced haploids may happen spontaneously, although usually at a low rate. Therefore, artificial/induced chromosome doubling of haploid cells/plantlets is necessary to produce DHs at an acceptable level. The most common method is using some mitotic spindle poisons that target the organization of the microtubule system. Colchicine is a well-known and widely used antimitotic. However, there are substances alternative to colchicine in terms of efficiency, toxicity, safety, and genetic stability, which can be applied in in vitro and in vivo pathways. Both pathways have their own advantages and disadvantages. However, in vitro-induced chromosome doubling has been much preferred in recent years, maybe because of the dual effect of antimitotic agents (haploid induction and chromosome doubling) in just one step, and the reduced generation of chimeras. Plant genotype, the developmental stage of initial haploids, and type-concentration-duration of application of antimitotic agents, are top influential parameters on chromosome doubling efficiency. In this review, we highlight different aspects related to antimitotic agents and to plant parameters for successful chromosome doubling and high DH yield.
Collapse
Affiliation(s)
- Mehran E Shariatpanahi
- Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
| | - Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran
| |
Collapse
|
46
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
47
|
Calvo‐Baltanás V, Wijnen CL, Yang C, Lukhovitskaya N, de Snoo CB, Hohenwarter L, Keurentjes JJB, de Jong H, Schnittger A, Wijnker E. Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1437-1452. [PMID: 32955759 PMCID: PMC7756339 DOI: 10.1111/tpj.14990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 05/16/2023]
Abstract
Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Present address:
Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Cris L. Wijnen
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Chao Yang
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Nina Lukhovitskaya
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des PlantesUniversité de Strasbourg12, rue du général ZimmerStrasbourg67084France
- Present address:
Division of VirologyDepartment of PathologyUniversity of CambridgeTennis Court RdCambridgeCB2 1QPUK
| | - C. Bastiaan de Snoo
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Rijk Zwaan R&D FijnaartEerste Kruisweg 9Fijnaart4793 RSthe Netherlands
| | - Linus Hohenwarter
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Hans de Jong
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Arp Schnittger
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
48
|
Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2068-2080. [PMID: 32096293 PMCID: PMC7540420 DOI: 10.1111/pbi.13365] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mily Ron
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mohan P.A. Marimuthu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Glenda Li
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Amy Huddleson
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | | | - Joshua Terry
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Ryan Buchner
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Nitzan Shabek
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Anne B. Britt
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
49
|
Jiao Y, Li J, Li W, Chen M, Li M, Liu W, Liu C, Chen S. QTL Mapping and Prediction of Haploid Male Fertility Traits in Maize ( Zea mays L.). PLANTS 2020; 9:plants9070836. [PMID: 32635223 PMCID: PMC7411584 DOI: 10.3390/plants9070836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Chromosome doubling of maize haploids is a bottleneck in the large-scale application of doubled haploid (DH) technology. Spontaneous chromosome doubling (SCD) of haploid has been taken as an important method in the production of DH lines and low haploid male fertility (HMF) is a main limiting factor for the use of SCD. To study its genetic basis, haploids of 119 DH lines derived from a cross between inbred lines Qi319 and Chang7-2 were used to map the quantitative trait locus (QTL) contributing to HMF. Three traits including anther emergence rate (AER), anther emergence score (AES) and pollen production score (PPS) of the haploid population were evaluated at two locations. The heritability of the three traits ranged from 0.70 to 0.81. The QTL contributing to AER, AES and PPS were identified on the chromosomes 1, 2, 3, 4, 5, 7, 9 and 10. Five major QTL, qAER5-1, qAER5-2, qAES3, qPPS1 and qPPS5, were found and each could explain more than 15% of the phenotypic variance at least in one environment. Two major QTL, qPPS1 and qPPS5, and two minor QTL, qAES2 and qAER3, were repeatedly detected at both locations. To increase the application efficiency of HMF in breeding programs, genomic prediction for the three traits were carried out with ridge regression best linear unbiased prediction (rrBLUP) and rrBLUP adding QTL effects (rrBLUP-QTL). The prediction accuracies of rrBLUP-QTL were significantly higher than that by rrBLUP for three traits (p < 0.001), which indirectly indicates these QTL were effective. The prediction accuracies for PPS were 0.604 (rrBLUP) and 0.703 (rrBLUP-QTL) across both locations, which were higher than that of AER and AES. Overall, this study provides important information to understand the genetic architecture of SCD of maize haploids.
Collapse
|
50
|
Chen C, Xiao Z, Zhang J, Li W, Li J, Liu C, Chen S. Development of in Vivo Haploid Inducer Lines for Screening Haploid Immature Embryos in Maize. PLANTS 2020; 9:plants9060739. [PMID: 32545450 PMCID: PMC7356152 DOI: 10.3390/plants9060739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Doubled haploid technology is widely applied in maize. The haploid inducer lines play critical roles in doubled haploid breeding. We report the development of specialized haploid inducer lines that enhance the purple pigmentation of crossing immature embryos. During the development of haploid inducer lines, two breeding populations derived from the CAU3/S23 and CAU5/S23 were used. Molecular marker-assisted selection for both qhir1 and qhir8 was used from BC1F1 to BC1F4. Evaluation of the candidate individuals in each generation was carried out by pollinating to the tester of ZD958. Individuals with fast and clear pigmentation of the crossing immature embryos, high number of haploids per ear, and high haploid induction rate were considered as candidates. Finally, three new haploid inducer lines (CS1, CS2, and CS3) were developed. The first two (CS1 and CS2) were from the CAU3/S23, with a haploid induction rate of 8.29%–13.25% and 11.54%–15.54%, respectively. Meanwhile, the CS3 was from the CAU5/S23. Its haploid induction rate was 8.14%–12.28%. In comparison with the donor haploid inducer lines, the 24-h purple embryo rates of the newly developed haploid inducer lines were improved by 10%–20%, with a ~90% accuracy for the identification of haploid immature embryos. These new haploid inducer lines will further improve the efficiency of doubled haploid breeding of maize.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenxu Liu
- Correspondence: (C.L.); (S.C.); Tel.: 010-62732333 (C.L.)
| | - Shaojiang Chen
- Correspondence: (C.L.); (S.C.); Tel.: 010-62732333 (C.L.)
| |
Collapse
|