1
|
Apio HB, Elegba W, Nunekpeku W, Otu SA, Baguma JK, Alicai T, Danso KE, Bimpong IK, Ogwok E. Effect of gamma irradiation on proliferation and growth of friable embryogenic callus and in vitro nodal cuttings of ugandan cassava genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1414128. [PMID: 39351022 PMCID: PMC11439714 DOI: 10.3389/fpls.2024.1414128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Cassava (Manihot esculenta Crantz) production and productivity in Africa is affected by two viral diseases; cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Induced mutagenesis of totipotent/embryogenic tissues or in vitro plant material can lead to the generation of CMD and/or CBSD tolerant mutants. To massively produce non-chimeric plants timely and with less labor, totipotent cells or tissues are a pre-requisite. This study aimed to determine the effect of gamma radiation on the proliferation and growth of friable embryogenic callus (FEC) and in vitro nodal cuttings respectively. To obtain FEC, 2-6 mm sized leaf lobes of nine cassava genotypes were plated on Murashige and Skoog (MS) basal media supplemented with varying levels (37, 50, 70, 100) μM of picloram for production of organized embryogenic structures (OES). The OES of five cassava genotypes (Alado, CV-60444, NASE 3, NASE 13 and TME 204) were crushed and plated in Gresshoff and Doy (GD) basal media in combination with the amino acid tyrosine in varying concentrations for FEC production. FEC from five cassava genotypes and in vitro nodal cuttings of nine genotypes were irradiated using five different gamma doses (0, 5, 10, 15, 20 and 25 Gy) at a dose rate of 81Gy/hr. The lethal dose (LD)50 was determined using the number of roots produced and flow cytometry was done to determine the ploidy status of plants. The highest production of OES was noted in Alado across varying picloram concentrations, while TME 204 obtained the highest amount of FEC. The irradiated FEC gradually died and by 28 days post irradiation, FEC from all five cassava genotypes were lost. Conversely, the irradiated in vitro nodal cuttings survived and some produced roots, while others produced callus. The LD50 based on number of roots varied from genotype to genotype, but plants remained diploid post-irradiation. Accordingly, the effect of gamma irradiation on Ugandan cassava genotypes (UCGs) was genotype-dependent. This information is foundational for the use of in vitro tissues as target material for cassava mutation breeding.
Collapse
Affiliation(s)
- Hellen B. Apio
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Wilfred Elegba
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Wonder Nunekpeku
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Solomon Ayeboafo Otu
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Julius Karubanga Baguma
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Titus Alicai
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Kenneth Ellis Danso
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
- School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana
| | - Isaac Kofi Bimpong
- Plant Breeding and Genetics Section, Joint Food and Agricultural Organisation (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Emmanuel Ogwok
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
- Department of Science and Vocational Education, Faculty of Science, Lira University, Lira, Uganda
| |
Collapse
|
2
|
Till BJ. Identification of Induced Copy Number Variation from Low Coverage Sequence Data. Methods Mol Biol 2024; 2787:141-152. [PMID: 38656487 DOI: 10.1007/978-1-0716-3778-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.
Collapse
Affiliation(s)
- Bradley J Till
- Veterinary Genetics Laboratory, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Capo-Chichi DBE, Tchokponhoué DA, Sogbohossou DEO, Achigan-Dako EG. Narrow genetic diversity in germplasm from the Guinean and Sudano-Guinean zones in Benin indicates the need to broaden the genetic base of sweet fig banana (Musa acuminata cv Sotoumon). PLoS One 2023; 18:e0294315. [PMID: 37972084 PMCID: PMC10653437 DOI: 10.1371/journal.pone.0294315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Sweet fig (M. acuminata cv. Sotoumon) is an economically important dessert banana in Benin, with high nutritional, medicinal, and cultural values. Nevertheless, its productivity and yield are threatened by biotic and abiotic stresses. Relevant knowledge of the genetic diversity of this economically important crop is essential for germplasm conservation and the development of breeding programs. However, very little is known about the genetic makeup of this cultivar in Benin. To advance the understanding of genetic diversity in sweet fig banana germplasm, a Genotype-By-Sequencing (GBS) was performed on a panel of 273 accessions collected in different phytogeographical zones of Benin. GBS generated 8,457 quality SNPs, of which 1992 were used for analysis after filtering. The results revealed a low diversity in the studied germplasm (He = 0.0162). Genetic differentiation was overall very low in the collection as suggested by the negative differentiation index (Fstg = -0.003). The Analysis of Molecular Variance (AMOVA) indicated that the variation between accessions within populations accounted for 83.8% of the total variation observed (P < 0.001). The analysis of population structure and neighbor-joining tree partitioned the germplasm into three clusters out of which a predominant major one contained 98.1% of all accessions. These findings demonstrate that current sweet fig banana genotypes shared a common genetic background, which made them vulnerable to biotic and abiotic stress. Therefore, broadening the genetic base of the crop while maintaining its quality attributes and improving yield performance is of paramount importance. Moreover, the large genetic group constitutes an asset for future genomic selection studies in the crop and can guide the profiling of its conservation strategies.
Collapse
Affiliation(s)
- Dènoumi B. E. Capo-Chichi
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Dèdéou A. Tchokponhoué
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Dêêdi E. O. Sogbohossou
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| |
Collapse
|
4
|
Dolatabadian A, Yuan Y, Bayer PE, Petereit J, Severn-Ellis A, Tirnaz S, Patel D, Edwards D, Batley J. Copy Number Variation among Resistance Genes Analogues in Brassica napus. Genes (Basel) 2022; 13:2037. [PMID: 36360273 PMCID: PMC9690292 DOI: 10.3390/genes13112037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2024] Open
Abstract
Copy number variations (CNVs) are defined as deletions, duplications and insertions among individuals of a species. There is growing evidence that CNV is a major factor underlining various autoimmune disorders and diseases in humans; however, in plants, especially oilseed crops, the role of CNVs in disease resistance is not well studied. Here, we investigate the genome-wide diversity and genetic properties of CNVs in resistance gene analogues (RGAs) across eight Brassica napus lines. A total of 1137 CNV events (704 deletions and 433 duplications) were detected across 563 RGAs. The results show CNVs are more likely to occur across clustered RGAs compared to singletons. In addition, 112 RGAs were linked to a blackleg resistance QTL, of which 25 were affected by CNV. Overall, we show that the presence and abundance of CNVs differ between lines, suggesting that in B. napus, the distribution of CNVs depends on genetic background. Our findings advance the understanding of CNV as an important type of genomic structural variation in B. napus and provide a resource to support breeding of advanced canola lines.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Philipp Emanuel Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anita Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Dhwani Patel
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Sherpa R, Devadas R, Suprasanna P, Bolbhat SN, Nikam TD. First De novo whole genome sequencing and assembly of mutant Dendrobium hybrid cultivar 'Emma White'. GIGABYTE 2022; 2022:gigabyte66. [PMID: 36824506 PMCID: PMC9694038 DOI: 10.46471/gigabyte.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Dendrobium hybrid cultivar 'Emma White' is an ornamental, successfully commercialised orchid. We used a gamma ray-induced early flowering mutant and the Illumina HiSeqX10 sequencing platform to generate the first draft de novo whole genome sequence and assembly. The draft sequence was 678,650,699 bp in length, comprising 447,500 contigs with an N50 of 1423 and 33.48% GC content. Comparing 95,529 predicted genes against the Uniprot database revealed 60,741 potential genes governing molecular functions, biological processes and cellular components. We identified 216,232 simple sequence repeats and 138,856 microsatellite markers. Chromosome-level genome assembly of Dendrobium huoshanense was used to RagTag-scaffold available contigs of the mutant, revealing a total length of 687,254,899 bp with an N50 of 2096. The longest final contiguous length was 18,000,059 bp from 30,571 bp. BUSCO genome completeness was 93.6%. This study is valuable for investigating the mechanisms of mutation, and developing Dendrobium hybrid cultivars using mutation breeding.
Collapse
Affiliation(s)
- Rubina Sherpa
- Department of Botany, Annasaheb Awate College, Manchar, Ambegoan 410503, Maharashtra, India
- ICAR-National Research Centre on Orchids, Pakyong 737106, Sikkim, India
| | - Ramgopal Devadas
- ICAR-National Research Centre on Orchids, Pakyong 737106, Sikkim, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, BARC, Mumbai 400085, Maharashtra, India
| | | | | |
Collapse
|
6
|
Hou BH, Tsai YH, Chiang MH, Tsao SM, Huang SH, Chao CP, Chen HM. Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 2022; 23:470. [PMID: 35752751 PMCID: PMC9233791 DOI: 10.1186/s12864-022-08692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The selection of tissue culture–derived somaclonal variants of Giant Cavendish banana (Musa spp., Cavendish sub-group AAA) by the Taiwan Banana Research Institute (TBRI) has resulted in several cultivars resistant to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a destructive fungus threatening global banana production. However, the mutations in these somaclonal variants have not yet been determined. We performed an RNA-sequencing (RNA-seq) analysis of three TBRI Foc TR4–resistant cultivars: ‘Tai-Chiao No. 5’ (TC5), ‘Tai-Chiao No. 7’ (TC7), and ‘Formosana’ (FM), as well as their susceptible progenitor ‘Pei-Chiao’ (PC), to investigate the sequence variations among them and develop cultivar-specific markers. Results A group of single-nucleotide variants (SNVs) specific to one cultivar were identified from the analysis of RNA-seq data and validated using Sanger sequencing from genomic DNA. Several SNVs were further converted into cleaved amplified polymorphic sequence (CAPS) markers or derived CAPS markers that could identify the three Foc TR4–resistant cultivars among 6 local and 5 international Cavendish cultivars. Compared with PC, the three resistant cultivars showed a loss or alteration of heterozygosity in some chromosomal regions, which appears to be a consequence of single-copy chromosomal deletions. Notably, TC7 and FM shared a common deletion region on chromosome 5; however, different TC7 tissues displayed varying degrees of allele ratios in this region, suggesting the presence of chimerism in TC7. Conclusions This work demonstrates that reliable SNV markers of tissue culture–derived and propagated banana cultivars with a triploid genome can be developed through RNA-seq data analysis. Moreover, the analysis of sequence heterozygosity can uncover chromosomal deletions and chimerism in banana somaclonal variants. The markers obtained from this study will assist with the identification of TBRI Cavendish somaclonal variants for the quality control of tissue culture propagation, and the protection of breeders’ rights. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08692-5.
Collapse
Affiliation(s)
- Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Yi-Heng Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Ming-Hau Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Shu-Ming Tsao
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | | | - Chih-Ping Chao
- Taiwan Banana Research Institute, 90442, Pingtung, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
7
|
Genome sequencing-based coverage analyses facilitate high-resolution detection of deletions linked to phenotypes of gamma-irradiated wheat mutants. BMC Genomics 2022; 23:111. [PMID: 35139819 PMCID: PMC8827196 DOI: 10.1186/s12864-022-08344-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-irradiated mutants of Triticum aestivum L., hexaploid wheat, provide novel and agriculturally important traits and are used as breeding materials. However, the identification of causative genomic regions of mutant phenotypes is challenging because of the large and complicated genome of hexaploid wheat. Recently, the combined use of high-quality reference genome sequences of common wheat and cost-effective resequencing technologies has made it possible to evaluate genome-wide polymorphisms, even in complex genomes. RESULTS To investigate whether the genome sequencing approach can effectively detect structural variations, such as deletions, frequently caused by gamma irradiation, we selected a grain-hardness mutant from the gamma-irradiated population of Japanese elite wheat cultivar "Kitahonami." The Hardness (Ha) locus, including the puroindoline protein-encoding genes Pina-D1 and Pinb-D1 on the short arm of chromosome 5D, primarily regulates the grain hardness variation in common wheat. We performed short-read genome sequencing of wild-type and grain-hardness mutant plants, and subsequently aligned their short reads to the reference genome of the wheat cultivar "Chinese Spring." Genome-wide comparisons of depth-of-coverage between wild-type and mutant strains detected ~ 130 Mbp deletion on the short arm of chromosome 5D in the mutant genome. Molecular markers for this deletion were applied to the progeny populations generated by a cross between the wild-type and the mutant. A large deletion in the region including the Ha locus was associated with the mutant phenotype, indicating that the genome sequencing is a powerful and efficient approach for detecting a deletion marker of a gamma-irradiated mutant phenotype. In addition, we investigated a pre-harvest sprouting tolerance mutant and identified a 67.8 Mbp deletion on chromosome 3B where Viviparous-B1 and GRAS family transcription factors are located. Co-dominant markers designed to detect the deletion-polymorphism confirmed the association with low germination rate, leading to pre-harvest sprouting tolerance. CONCLUSIONS Short read-based genome sequencing of gamma-irradiated mutants facilitates the identification of large deletions linked to mutant phenotypes when combined with segregation analyses in progeny populations. This method allows effective application of mutants with agriculturally important traits in breeding using marker-assisted selection.
Collapse
|
8
|
Frequency and Spectrum of Mutations Induced by Gamma Rays Revealed by Phenotype Screening and Whole-Genome Re-Sequencing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23020654. [PMID: 35054839 PMCID: PMC8775868 DOI: 10.3390/ijms23020654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Genetic variations are an important source of germplasm diversity, as it provides an allele resource that contributes to the development of new traits for plant breeding. Gamma rays have been widely used as a physical agent for mutation creation in plants, and their mutagenic effect has attracted extensive attention. However, few studies are available on the comprehensive mutation profile at both the large-scale phenotype mutation screening and whole-genome mutation scanning. In this study, biological effects on M1 generation, large-scale phenotype screening in M2 generation, as well as whole-genome re-sequencing of seven M3 phenotype-visible lines were carried out to comprehensively evaluate the mutagenic effects of gamma rays on Arabidopsis thaliana. A total of 417 plants with visible mutated phenotypes were isolated from 20,502 M2 plants, and the phenotypic mutation frequency of gamma rays was 2.03% in Arabidopsis thaliana. On average, there were 21.57 single-base substitutions (SBSs) and 11.57 small insertions and deletions (InDels) in each line. Single-base InDels accounts for 66.7% of the small InDels. The genomic mutation frequency was 2.78 × 10−10/bp/Gy. The ratio of transition/transversion was 1.60, and 64.28% of the C > T events exhibited the pyrimidine dinucleotide sequence; 69.14% of the small InDels were located in the sequence with 1 to 4 bp terminal microhomology that was used for DNA end rejoining, while SBSs were less dependent on terminal microhomology. Nine genes, on average, were predicted to suffer from functional alteration in each re-sequenced line. This indicated that a suitable mutation gene density was an advantage of gamma rays when trying to improve elite materials for one certain or a few traits. These results will aid the full understanding of the mutagenic effects and mechanisms of gamma rays and provide a basis for suitable mutagen selection and parameter design, which can further facilitate the development of more controlled mutagenesis methods for plant mutation breeding.
Collapse
|
9
|
Meier B, Volkova NV, Wang B, González-Huici V, Bertolini S, Campbell PJ, Gerstung M, Gartner A. C. elegans genome-wide analysis reveals DNA repair pathways that act cooperatively to preserve genome integrity upon ionizing radiation. PLoS One 2021; 16:e0258269. [PMID: 34614038 PMCID: PMC8494335 DOI: 10.1371/journal.pone.0258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Ionizing radiation (IR) is widely used in cancer therapy and accidental or environmental exposure is a major concern. However, little is known about the genome-wide effects IR exerts on germ cells and the relative contribution of DNA repair pathways for mending IR-induced lesions. Here, using C. elegans as a model system and using primary sequencing data from our recent high-level overview of the mutagenic consequences of 11 genotoxic agents, we investigate in detail the genome-wide mutagenic consequences of exposing wild-type and 43 DNA repair and damage response defective C. elegans strains to a Caesium (Cs-137) source, emitting γ-rays. Cs-137 radiation induced single nucleotide variants (SNVs) at a rate of ~1 base substitution per 3 Gy, affecting all nucleotides equally. In nucleotide excision repair mutants, this frequency increased 2-fold concurrently with increased dinucleotide substitutions. As observed for DNA damage induced by bulky DNA adducts, small deletions were increased in translesion polymerase mutants, while base changes decreased. Structural variants (SVs) were augmented with dose, but did not arise with significantly higher frequency in any DNA repair mutants tested. Moreover, 6% of all mutations occurred in clusters, but clustering was not significantly altered in any DNA repair mutant background. Our data is relevant for better understanding how DNA repair pathways modulate IR-induced lesions.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Nadezda V. Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Bin Wang
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Víctor González-Huici
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Simone Bertolini
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Peter J. Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
10
|
Wang X, Wang A, Li Y, Xu Y, Wei Q, Wang J, Lin F, Gong D, Liu F, Wang Y, Peng L, Li J. A Novel Banana Mutant " RF 1" ( Musa spp. ABB, Pisang Awak Subgroup) for Improved Agronomic Traits and Enhanced Cold Tolerance and Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:730718. [PMID: 34630479 PMCID: PMC8496975 DOI: 10.3389/fpls.2021.730718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Banana is a major fruit crop grown in tropical and subtropical regions worldwide. Among cultivars, "FenJiao, FJ" (Musa spp. ABB, Pisang Awak subgroup) is a popular variety of bananas, due to its better sugar-acid blend and relatively small fruit shape. However, because the traditional FJ variety grows relatively high in height, it is vulnerable to lodging and unsuitable for harvesting. In this study, we sought desirable banana mutants by carrying out ethyl methanesulfonate (EMS) mutagenesis with the FJ cultivar. After the FJ shoot tips had been treated with 0.8% (v/v) EMS for 4 h, we obtained a stably inherited mutant, here called "ReFen 1" (RF1), and also observed a semi-dwarfing phenotype. Compared with the wild type (FJ), this RF1 mutant featured consistently improved agronomic traits during 5-year field experiments conducted in three distinct locations in China. Notably, the RF1 plants showed significantly enhanced cold tolerance and Sigatoka disease resistance, mainly due to a substantially increased soluble content of sugar and greater starch accumulation along with reduced cellulose deposition. Therefore, this study not only demonstrated how a powerful genetic strategy can be used in fruit crop breeding but also provided insight into the identification of novel genes for agronomic trait improvement in bananas and beyond.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashui Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fei Lin
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Deyong Gong
- The Fruit Tree Research Center, Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xinyi, China
| | - Fei Liu
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Kashtwari M, Mansoor S, Wani AA, Najar MA, Deshmukh RK, Baloch FS, Abidi I, Zargar SM. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Mol Biol Rep 2021; 49:5729-5749. [PMID: 34427889 DOI: 10.1007/s11033-021-06650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022]
Abstract
In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.
Collapse
Affiliation(s)
- Mahpara Kashtwari
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, FBSc, Jammu, Jammu and Kashmir, 180009, India
| | - Aijaz A Wani
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mushtaq Ahmad Najar
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rupesh K Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140308, India
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ishfaq Abidi
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
12
|
Mora-González AF, Naranjo-Morán JA, Albiño-Quitiaquez A, Flores-Cedeño JA, Oviedo-Anchundia R, Galarza-Romero L, Vera-Oyague M, Barcos-Arias MS. Optimización en la aclimatación de plántulas micropropagadas de banano (Musa sp.) utilizando tres insumos orgánicos. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El éxito de la micropropagación de plantas in vitro depende en parte de la fase de aclimatación, esta etapa presenta problemas de supervivencia y conlleva extensas semanas de adaptación. En este sentido, la utilización de microorganismos eficientes nativos son una alternativa biotecnológica para adaptar plantas in vitro. El presente trabajo tiene como objetivo evaluar el efecto de la aplicación de Trichoderma ghanense, micorrizas arbusculares y un biofertilizante líquido en plantas meristemáticas de banano variedad William en las fases de aclimatación y vivero. Para los ensayos en las fases de aclimatación y vivero se realizaron 20 tratamientos y se utilizó un diseño factorial 2(k) con una duración de seis semanas en ambas fases. Los resultados demuestran que en la fase de aclimatación el mejor tratamiento fue el B10 con incrementos del 29,6 % de altura y 19,9 % de diámetro respecto al control; mientras que, para el área foliar fue el B19 con 84,7 % de incremento en comparación al control. En fase de vivero el mejor tratamiento fue el B19 presentando incrementos del 14,5 % altura, 19,3 % diámetro del pseudotallo, 13,4 % área foliar, 91,8 % longitud radicular, 39,98 % peso húmedo y 90,5 % peso seco en comparación al control. Ambas fases alcanzaron porcentaje de micorrización mayores al 45 %. Los porcentajes de supervivencia fueron del 100 % en fase de aclimatación. Por lo expuesto, se concluye que los insumos orgánicos constituyen una alternativa para el manejo y adaptación de plantas producidas in vitro.
Collapse
Affiliation(s)
- Andy Fabricio Mora-González
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jaime Alberto Naranjo-Morán
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexander Albiño-Quitiaquez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - José Alcides Flores-Cedeño
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rodrigo Oviedo-Anchundia
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza-Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Marisol Vera-Oyague
- Universidad de Guayaquil, Cdla. Universitaria Salvador Allende. Malecón del Salado entre Av. Delta y Av. Kennedy, 090514, Guayaquil, Guayas, Ecuador
| | - Milton Senen Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo. Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
13
|
Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-Ion Irradiation in Rice ( Oryza sativa L.) Using Whole-Genome Resequencing. G3-GENES GENOMES GENETICS 2019; 9:3743-3751. [PMID: 31519747 PMCID: PMC6829151 DOI: 10.1534/g3.119.400555] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gamma-rays are the most widely used mutagenic radiation in plant mutation breeding, but detailed characteristics of mutated DNA sequences have not been clarified sufficiently. In contrast, newly introduced physical mutagens, e.g., heavy-ion beams, have attracted geneticists’ and breeders’ interest and many studies on their mutation efficiency and mutated DNA characteristics have been conducted. In this study, we characterized mutations induced by gamma rays and carbon(C)-ion beams in rice (Oryza sativa L.) mutant lines at M5 generation using whole-genome resequencing. On average, 57.0 single base substitutions (SBS), 17.7 deletions, and 5.9 insertions were detected in each gamma-ray-irradiated mutant, whereas 43.7 single SBS, 13.6 deletions, and 5.3 insertions were detected in each C-ion-irradiated mutant. The structural variation (SV) analysis detected 2.0 SVs (including large deletions or insertions, inversions, duplications, and reciprocal translocations) on average in each C-ion-irradiated mutant, while 0.6 SVs were detected on average in each gamma-ray-irradiated mutant. Furthermore, complex SVs presumably having at least two double-strand breaks (DSBs) were detected only in C-ion-irradiated mutants. In summary, gamma-ray irradiation tended to induce larger numbers of small mutations than C-ion irradiation, whereas complex SVs were considered to be the specific characteristics of the mutations induced by C-ion irradiation, which may be due to their different radiation properties. These results could contribute to the application of radiation mutagenesis to plant mutation breeding.
Collapse
|
14
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int J Mol Sci 2019; 20:ijms20194723. [PMID: 31554154 PMCID: PMC6801639 DOI: 10.3390/ijms20194723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
15
|
Tramontano A, Jarc L, Jankowicz-Cieslak J, Hofinger BJ, Gajek K, Szurman-Zubrzycka M, Szarejko I, Ingelbrecht I, Till BJ. Fragmentation of Pooled PCR Products for Highly Multiplexed TILLING. G3 (BETHESDA, MD.) 2019; 9:2657-2666. [PMID: 31213514 PMCID: PMC6686939 DOI: 10.1534/g3.119.400301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023]
Abstract
Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multi-dimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Sequencing performance was evaluated in a total of 32 pooled PCR products produced from 4096 chemically mutagenized Hordeum vulgare DNAs pooled in three dimensions. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.
Collapse
Affiliation(s)
- Andrea Tramontano
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Luka Jarc
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Bernhard J Hofinger
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Katarzyna Gajek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Miriam Szurman-Zubrzycka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ivan Ingelbrecht
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Bradley J Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| |
Collapse
|
16
|
Lemay MA, Torkamaneh D, Rigaill G, Boyle B, Stec AO, Stupar RM, Belzile F. Screening populations for copy number variation using genotyping-by-sequencing: a proof of concept using soybean fast neutron mutants. BMC Genomics 2019; 20:634. [PMID: 31387530 PMCID: PMC6683502 DOI: 10.1186/s12864-019-5998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/26/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The effective use of mutant populations for reverse genetic screens relies on the population-wide characterization of the induced mutations. Genome- and population-wide characterization of the mutations found in fast neutron populations has been hindered, however, by the wide range of mutations generated and the lack of affordable technologies to detect DNA sequence changes. In this study, we therefore aimed to test whether genotyping-by-sequencing (GBS) technology could be used to characterize copy number variation (CNV) induced by fast neutrons in a soybean mutant population. RESULTS We called CNVs from GBS data in 79 soybean mutants and assessed the sensitivity and precision of this approach by validating our results against array comparative genomic hybridization (aCGH) data for 19 of these mutants as well as targeted PCR and ddPCR assays for a representative subset of the smallest events detected by GBS. Our GBS pipeline detected 55 of the 96 events found by aCGH, with approximate detection thresholds of 60 kb, 500 kb and 1 Mb for homozygous deletions, hemizygous deletions and duplications, respectively. Among the whole set of 79 mutants, the GBS data revealed 105 homozygous deletions, 32 hemizygous deletions and 19 duplications. This included several extremely large events, exhibiting maximum sizes of ~ 11.2 Mb for a homozygous deletion, ~ 11.6 Mb for a hemizygous deletion, and ~ 50 Mb for a duplication. CONCLUSIONS This study provides a proof of concept that GBS can be used as an affordable high-throughput method for assessing CNVs in fast neutron mutants. The modularity of this GBS approach allows combining as many different libraries or sequencing runs as is necessary for reaching the goals of a particular study. This method should enable the low-cost genome-wide characterization of hundreds to thousands of individuals in fast neutron mutant populations or any population with large genomic deletions and duplications.
Collapse
Affiliation(s)
- Marc-André Lemay
- Département de phytologie, Université Laval, Québec, QC Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC Canada
| | - Davoud Torkamaneh
- Département de phytologie, Université Laval, Québec, QC Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| | - Guillem Rigaill
- Institute of Plant Sciences Paris, Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris-Cité, Paris, France
- LaMME, Université d’Evry Val d’Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Paris, France
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC Canada
| | - Adrian O. Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN USA
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN USA
| | - François Belzile
- Département de phytologie, Université Laval, Québec, QC Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC Canada
| |
Collapse
|
17
|
Amri-Tiliouine W, Laouar M, Abdelguerfi A, Jankowicz-Cieslak J, Jankuloski L, Till BJ. Genetic Variability Induced by Gamma Rays and Preliminary Results of Low-Cost TILLING on M 2 Generation of Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1568. [PMID: 30429862 PMCID: PMC6220596 DOI: 10.3389/fpls.2018.01568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
In order to increase genetic variability for chickpea improvement, the Kabuli genotype, variety Ghab4, was treated with 280 Grays of gamma rays (Cobalt 60). Field characterization began with the M2 generation. A total of 135 M2 families were sown in the field resulting in approximately 4,000 plants. Traits related to phenology (days to flowering, days to maturity), plant morphology of vegetative parts (plant height, height of first pod, number of primary branches per plant) and yield (number of seeds per pod, total number of pods per plant, total number of seeds per plant, seed yield and hundred seed weight) were recorded and analyzed to evaluate genetic variability. An evaluation of the efficacy of low-cost TILLING (Targeting Induced Local Lesions IN Genomes) to discover mutations in the M2 generation was undertaken. Mutation screening focused on genes involved in resistance to two important diseases of chickpea; Ascochyta blight (AB) and Fusarium wilt (FW), as well as genes responsible for early flowering. Analysis of variance showed a highly significant difference among mutant families for all studied traits. The higher estimates of genetic parameters (genotypic and phenotypic coefficient of variation, broad sense heritability and genetic advance) were recorded for number of seeds per plant and yield. Total yield was highly significant and positively correlated with number of pods and seeds per plant. Path analysis revealed that the total number of seeds per plant had the highest positive direct effect followed by hundred seed weight parameter. One cluster from nine exhibited the highest mean values for total number of pods and seeds per plant as well as yield per plant. According to Dunnett's test, 37 M2 families superior to the control were determined for five agronomical traits. Pilot experiments with low-cost TILLING show that the seed stock used for mutagenesis is homogeneous and that small mutations do not predominate at the dosage used.
Collapse
Affiliation(s)
- Wahiba Amri-Tiliouine
- Division of Biotechnology and Plant Breeding, National Institute of Agricultural Research of Algeria, Algiers, Algeria
- Laboratory of Integrative Improvement of Vegetal Productions, Higher National Agronomic School, Algiers, Algeria
| | - Meriem Laouar
- Laboratory of Integrative Improvement of Vegetal Productions, Higher National Agronomic School, Algiers, Algeria
| | - Aissa Abdelguerfi
- Department of Plant Productions, Higher National Agronomic School, Algiers, Algeria
| | - Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna, Austria
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Bradley J. Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna, Austria
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|