1
|
Wang Y, Wang Z, Zhu S, Pan H, Ding C, Xu M. Analysis of Growth Trajectories and Verification of Related SNPs in Populus deltoides. Int J Mol Sci 2023; 24:16192. [PMID: 38003382 PMCID: PMC10670923 DOI: 10.3390/ijms242216192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
As an important timber genus with high economic and ecological values, Populus is a model for dissecting the genetic architecture of growth traits in perennial forest trees. However, the genetic mechanisms of longitudinal growth traits in poplar remain incompletely understood. In this study, we conducted longitudinal genetic analysis of height and diameter at breast height (DBH) in eleven-year poplar clones using ultra-deep sequencing datasets. We compared four S-shaped growth models, including asymptotic, Gompertz, logistic, and Richard, on eleven-year height and DBH records in terms of five metrics. We constructed the best-fitting growth model (Richard) and determined poplar ontogenetic stages by virtue of growth curve fitting and likelihood ratio testing. This study provides some scientific clues for temporal variation of longitudinal growth traits in Populus species.
Collapse
Affiliation(s)
- Yaolin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Zesen Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Sheng Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Huixin Pan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| |
Collapse
|
2
|
Li P, Xiao L, Du Q, Quan M, Song Y, He Y, Huang W, Xie J, Lv C, Wang D, Zhou J, Li L, Liu Q, El‐Kassaby YA, Zhang D. Genomic insights into selection for heterozygous alleles and woody traits in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2002-2018. [PMID: 37392407 PMCID: PMC10502748 DOI: 10.1111/pbi.14108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.
Collapse
Affiliation(s)
- Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuling He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weixiong Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and Food, Black MountainCanberraAustralian Capital TerritoryAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Xia H, Hao Z, Shen Y, Tu Z, Yang L, Zong Y, Li H. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1544-1563. [PMID: 37272730 DOI: 10.1111/tpj.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The genetic factors underlying growth traits differ over time points or stages. However, most current studies of phenotypes at single time points do not capture all loci or explain the genetic differences underlying growth trajectories. Hybrid Liriodendron exhibits obvious heterosis and is widely cultivated, although its complex genetic mechanism underlying growth traits remains unknown. A genome-wide association study (GWAS) is an effective method for elucidating the genetic architecture by identifying genetic loci underlying complex quantitative traits. In the present study, using a GWAS, we identified robust loci associated with growth trajectories in hybrid Liriodendron populations. We selected 233 hybrid progenies derived from 25 crosses for resequencing, and measured their tree height (H) and diameter at breast height (DBH) for 11 consecutive years; 192 972 high-quality single nucleotide polymorphisms (SNPs) were obtained. The dynamics of the multiyear single-trait GWAS showed that year-specific SNPs predominated, and only five robust SNPs for DBH were identified in at least three different years. Multitrait GWAS analysis with model parameters as latent variables also revealed 62 SNPs for H and 52 for DBH associated with the growth trajectory, displaying different biomass accumulation patterns, among which four SNPs exerted pleiotropic effects. All identified SNPs also exhibited temporal variations in effect sizes and inheritance patterns potentially related to different growth and developmental stages. The haplotypes resulting from these significant SNPs might pyramid favorable loci, benefitting the selection of superior genotypes. The present study provides insights into the genetic architecture of dynamic growth traits and lays a basis for future molecular-assisted breeding.
Collapse
Affiliation(s)
- Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
4
|
Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. PLANT PHYSIOLOGY 2023; 193:736-755. [PMID: 37247391 PMCID: PMC10469405 DOI: 10.1093/plphys/kiad315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Drought stress limits woody species productivity and influences tree distribution. However, dissecting the molecular mechanisms that underpin drought responses in forest trees can be challenging due to trait complexity. Here, using a panel of 300 Chinese white poplar (Populus tomentosa) accessions collected from different geographical climatic regions in China, we performed a genome-wide association study (GWAS) on seven drought-related traits and identified PtoWRKY68 as a candidate gene involved in the response to drought stress. A 12-bp insertion and/or deletion and three nonsynonymous variants in the PtoWRKY68 coding sequence categorized natural populations of P. tomentosa into two haplotype groups, PtoWRKY68hap1 and PtoWRKY68hap2. The allelic variation in these two PtoWRKY68 haplotypes conferred differential transcriptional regulatory activities and binding to the promoters of downstream abscisic acid (ABA) efflux and signaling genes. Overexpression of PtoWRKY68hap1 and PtoWRKY68hap2 in Arabidopsis (Arabidopsis thaliana) ameliorated the drought tolerance of two transgenic lines and increased ABA content by 42.7% and 14.3% compared to wild-type plants, respectively. Notably, PtoWRKY68hap1 (associated with drought tolerance) is ubiquitous in accessions in water-deficient environments, whereas the drought-sensitive allele PtoWRKY68hap2 is widely distributed in well-watered regions, consistent with the trends in local precipitation, suggesting that these alleles correspond to geographical adaptation in Populus. Moreover, quantitative trait loci analysis and an electrophoretic mobility shift assay showed that SHORT VEGETATIVE PHASE (PtoSVP.3) positively regulates the expression of PtoWRKY68 under drought stress. We propose a drought tolerance regulatory module in which PtoWRKY68 modulates ABA signaling and accumulation, providing insight into the genetic basis of drought tolerance in trees. Our findings will facilitate molecular breeding to improve the drought tolerance of forest trees.
Collapse
Affiliation(s)
- Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Weina Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Xin Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, People’s Republic of China
| | - Shitong Qin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Qing Liu
- The Institute of Agriculture and Food Research, CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| |
Collapse
|
5
|
Xu W, Wang Y, Xie J, Tan S, Wang H, Zhao Y, Liu Q, El-Kassaby YA, Zhang D. Growth-regulating factor 15-mediated gene regulatory network enhances salt tolerance in poplar. PLANT PHYSIOLOGY 2023; 191:2367-2384. [PMID: 36567515 PMCID: PMC10069893 DOI: 10.1093/plphys/kiac600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
Soil salinity is an important determinant of crop productivity and triggers salt stress response pathways in plants. The salt stress response is controlled by transcriptional regulatory networks that maintain regulatory homeostasis through combinations of transcription factor (TF)-DNA and TF-TF interactions. We investigated the transcriptome of poplar 84 K (Populus alba × Populus glandulosa) under salt stress using samples collected at 4- or 6-h intervals within 2 days of salt stress treatment. We detected 24,973 differentially expressed genes, including 2,231 TFs that might be responsive to salt stress. To explore these interactions and targets of TFs in perennial woody plants, we combined gene regulatory networks, DNA affinity purification sequencing, yeast two-hybrid-sequencing, and multi-gene association approaches. Growth-regulating factor 15 (PagGRF15) and its target, high-affinity K+ transporter 6 (PagHAK6), were identified as an important regulatory module in the salt stress response. Overexpression of PagGRF15 and PagHAK6 in transgenic lines improved salt tolerance by enhancing Na+ transport and modulating H2O2 accumulation in poplar. Yeast two-hybrid assays identified more than 420 PagGRF15-interacting proteins, including ETHYLENE RESPONSE FACTOR TFs and a zinc finger protein (C2H2) that are produced in response to a variety of phytohormones and environmental signals and are likely involved in abiotic stress. Therefore, our findings demonstrate that PagGRF15 is a multifunctional TF involved in growth, development, and salt stress tolerance, highlighting the capability of a multifaceted approach in identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Weijie Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yue Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Shuxian Tan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Haofei Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yiyang Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
6
|
Chen ZQ, Klingberg A, Hallingbäck HR, Wu HX. Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce. BMC Genomics 2023; 24:147. [PMID: 36973641 PMCID: PMC10041705 DOI: 10.1186/s12864-023-09250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Genomic prediction (GP) or genomic selection is a method to predict the accumulative effect of all quantitative trait loci (QTLs) in a population by estimating the realized genomic relationships between the individuals and by capturing the linkage disequilibrium between markers and QTLs. Thus, marker preselection is considered a promising method to capture Mendelian segregation effects. Using QTLs detected in a genome-wide association study (GWAS) may improve GP. Here, we performed GWAS and GP in a population with 904 clones from 32 full-sib families using a newly developed 50 k SNP Norway spruce array. Through GWAS we identified 41 SNPs associated with budburst stage (BB) and the largest effect association explained 5.1% of the phenotypic variation (PVE). For the other five traits such as growth and wood quality traits, only 2 - 13 associations were observed and the PVE of the strongest effects ranged from 1.2% to 2.0%. GP using approximately 100 preselected SNPs, based on the smallest p-values from GWAS showed the greatest predictive ability (PA) for the trait BB. For the other traits, a preselection of 2000-4000 SNPs, was found to offer the best model fit according to the Akaike information criterion being minimized. But PA-magnitudes from GP using such selections were still similar to that of GP using all markers. Analyses on both real-life and simulated data also showed that the inclusion of a large QTL SNP in the model as a fixed effect could improve PA and accuracy of GP provided that the PVE of the QTL was ≥ 2.5%.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| | | | | | - Harry X Wu
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
- Black Mountain Laboratory, CSIRO National Collection Research Australia, Canberra, ACT, 2601, Australia.
| |
Collapse
|
7
|
Zhou J, Song F, He Y, Zhang W, Xiao L, Lu W, Li P, Quan M, Zhang D, Du Q. LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of Populus. FORESTRY RESEARCH 2023; 3:3. [PMID: 39526273 PMCID: PMC11524286 DOI: 10.48130/fr-2023-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 11/16/2024]
Abstract
During the independent process of evolution in plants, photosynthesis appears to have been under convergent evolution to adapt to specific selection pressure in their geographical regions. However, it is unclear how lncRNA regulation and DNA methylation are involved in the phenotypic convergence in distinct lineages. Here, we present a large-scale comparative study of lncRNA transcription profile and whole-genome bisulfite sequencing (WGBS) data in two unrelated Populus species, selected from three relatively overlapping geographical regions. The results indicated that 39.75% lncRNAs of Populus tomentosa were shown to have homologous sequences in the 46.99% lncRNA of Populus simonii. Evolutionary analysis revealed that lncRNAs showed a rapid gain rate in the Populus lineage. Furthermore, co-expression networks in two Populus species identified eight lncRNAs that have the potential to simultaneously cis- or trans-regulate eight photosynthetic-related genes. These photosynthetic lncRNAs and genes were predominantly expressed in accessions from the southern region, indicating a conserved spatial expression in photosynthetic pathways in Populus. We also detected that most lncRNA targeted photosynthetic genes hypomethylated in promoter regions of Southern accessions compared with Northern accessions. Geographical DMRs correlated with genetic SNP variations in photosynthetic genes among Populus from the three geographic regions, indicating that DNA methylation coordinated with lncRNAs in convergent evolution of photosynthesis in Populus. Our results shed light on the evolutionary forces acting on patterns of lncRNA and DNA methylation, and provide a better understanding of the genetic and epigenetic mechanism in photosynthetic convergence evolution.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Fangyuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Wenjie Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
8
|
Zhou J, Xiao L, Huang R, Song F, Li L, Li P, Fang Y, Lu W, Lv C, Quan M, Zhang D, Du Q. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. PLANT, CELL & ENVIRONMENT 2023; 46:479-497. [PMID: 36385613 DOI: 10.1111/pce.14490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Rui Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
9
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
10
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
11
|
Song F, Zhou J, Quan M, Xiao L, Lu W, Qin S, Fang Y, Wang D, Li P, Du Q, El-Kassaby YA, Zhang D. Transcriptome and association mapping revealed functional genes respond to drought stress in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829888. [PMID: 35968119 PMCID: PMC9372527 DOI: 10.3389/fpls.2022.829888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Drought frequency and severity are exacerbated by global climate change, which could compromise forest ecosystems. However, there have been minimal efforts to systematically investigate the genetic basis of the response to drought stress in perennial trees. Here, we implemented a systems genetics approach that combines co-expression analysis, association genetics, and expression quantitative trait nucleotide (eQTN) mapping to construct an allelic genetic regulatory network comprising four key regulators (PtoeIF-2B, PtoABF3, PtoPSB33, and PtoLHCA4) under drought stress conditions. Furthermore, Hap_01PtoeIF-2B, a superior haplotype associated with the net photosynthesis, was revealed through allelic frequency and haplotype analysis. In total, 75 candidate genes related to drought stress were identified through transcriptome analyses of five Populus cultivars (P. tremula × P. alba, P. nigra, P. simonii, P. trichocarpa, and P. tomentosa). Through association mapping, we detected 92 unique SNPs from 38 genes and 104 epistatic gene pairs that were associated with six drought-related traits by association mapping. eQTN mapping unravels drought stress-related gene loci that were significantly associated with the expression levels of candidate genes for drought stress. In summary, we have developed an integrated strategy for dissecting a complex genetic network, which facilitates an integrated population genomics approach that can assess the effects of environmental threats.
Collapse
Affiliation(s)
- Fangyuan Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiaxuan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shitong Qin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Wei S, Yang G, Yang Y, Yin T. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis. TREE PHYSIOLOGY 2022; 42:877-890. [PMID: 34761273 DOI: 10.1093/treephys/tpab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Elucidating the genetic factors underlying long-term biological processes remains challenging since the relevant genes and their effects may vary across different developmental stages. In this study, we carried out a large-scale field trial of the progeny of an F1 full-sib pedigree of Salix suchowensis and measured plant height and ground diameter periodically over a time course of 240 days. With the obtained data, we characterized plant growth rhythms and performed time-sequential analyses of quantitative trait loci underlying the dynamic growth of the plants. The dynamic mapping of quantitative trait loci revealed that stem height and ground diameter were under the control of four quantitative trait loci, and the effects of these quantitative trait loci varied greatly throughout the growth process, in which two quantitative trait loci were found to exert a pleiotropic effect determining the correlation between stem height and ground diameter. The analysis of candidate genes in the target genetic intervals showed that the pleiotropic effect of the two quantitative trait loci arises from the colocalization of genes with independent effects on stem height and ground diameter. Further examination of the expression patterns of the candidate genes indicated that height and circumference growth involve different activities of leaf and cambium tissues. This study provides unprecedented information to help us understand the dynamic growth of plants and presents an applicable strategy for elucidating the genetic mechanism underlying a long-term biological process by using plant growth as an example.
Collapse
Affiliation(s)
- Suyun Wei
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| | - Guo Yang
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
- School of Life Science, Shaoxing University, 508# Huancheng West Road, Shaoxing 312000, Zhejiang, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, 163# Xianlin Road, Nanjing 210093, China
| | - Tongming Yin
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| |
Collapse
|
13
|
Cui Y, Fan B, Xu X, Sheng S, Xu Y, Wang X. A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia. Front Genet 2022; 12:802738. [PMID: 35132310 PMCID: PMC8817757 DOI: 10.3389/fgene.2021.802738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Baolian Fan
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Xu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
14
|
Zhao Y, Li X, Xie J, Xu W, Chen S, Zhang X, Liu S, Wu J, El-Kassaby YA, Zhang D. Transposable Elements: Distribution, Polymorphism, and Climate Adaptation in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:814718. [PMID: 35178060 PMCID: PMC8843856 DOI: 10.3389/fpls.2022.814718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs) are a class of mobile genetic elements that make effects on shaping rapid phenotypic traits of adaptive significance. TE insertions are usually related to transcription changes of nearby genes, and thus may be subjected to purifying selection. Based on the available genome resources of Populus, we found that the composition of Helitron DNA family were highly variable and could directly influence the transcription of nearby gene expression, which are involving in stress-responsive, programmed cell death, and apoptosis pathway. Next, we indicated TEs are highly enriched in Populus trichocarpa compared with three other congeneric poplar species, especially located at untranslated regions (3'UTRs and 5'UTRs) and Helitron transposons, particularly 24-nt siRNA-targeted, are significantly associated with reduced gene expression. Additionally, we scanned a representative resequenced Populus tomentosa population, and identified 9,680 polymorphic TEs loci. More importantly, we identified a Helitron transposon located at the 3'UTR, which could reduce WRKY18 expression level. Our results highlight the importance of TE insertion events, which could regulate gene expression and drive adaptive phenotypic variation in Populus.
Collapse
Affiliation(s)
- Yiyang Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sisi Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sijia Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Forest Sciences Centre, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Xiao L, Man L, Yang L, Zhang J, Liu B, Quan M, Lu W, Fang Y, Wang D, Du Q, Zhang D. Association Study and Mendelian Randomization Analysis Reveal Effects of the Genetic Interaction Between PtoMIR403b and PtoGT31B-1 on Wood Formation in Populus tomentosa. FRONTIERS IN PLANT SCIENCE 2021; 12:704941. [PMID: 34527007 PMCID: PMC8435637 DOI: 10.3389/fpls.2021.704941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), important posttranscriptional regulators of gene expression, play a crucial role in plant growth and development. A single miRNA can regulate numerous target genes, making the determination of its function and interaction with targets challenging. We identified PtomiR403b target to PtoGT31B-1, which encodes a galactosyltransferase responsible for the biosynthesis of cell wall polysaccharides. We performed an association study and epistasis and Mendelian randomization (MR) analyses to explore how the genetic interaction between PtoMIR403b and its target PtoGT31B-1 underlies wood formation. Single nucleotide polymorphism (SNP)-based association studies identified 25 significant associations (P < 0.01, Q < 0.05), and PtoMIR403b and PtoGT31B-1 were associated with five traits, suggesting a role for PtomiR403b and PtoGT31B-1 in wood formation. Epistasis analysis identified 93 significant pairwise epistatic associations with 10 wood formation traits, and 37.89% of the SNP-SNP pairs indicated interactions between PtoMIR403b and PtoGT31B-1. We performed an MR analysis to demonstrate the causality of the relationships between SNPs in PtoMIR403b and wood property traits and that PtoMIR403b modulates wood formation by regulating expression of PtoGT31B-1. Therefore, our findings will facilitate dissection of the functions and interactions with miRNA-targets.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liting Man
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Xining Forestry Science Research Institute, Xining, China
| | - Lina Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinmei Zhang
- Xining Forestry Science Research Institute, Xining, China
| | - Baoyao Liu
- Xining Forestry Science Research Institute, Xining, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Genetic Architecture and Genome-Wide Adaptive Signatures Underlying Stem Lenticel Traits in Populus tomentosa. Int J Mol Sci 2021; 22:ijms22179249. [PMID: 34502156 PMCID: PMC8431110 DOI: 10.3390/ijms22179249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
The stem lenticel is a highly specialized tissue of woody plants that has evolved to balance stem water retention and gas exchange as an adaptation to local environments. In this study, we applied genome-wide association studies and selective sweeping analysis to characterize the genetic architecture and genome-wide adaptive signatures underlying stem lenticel traits among 303 unrelated accessions of P. tomentosa, which has significant phenotypic and genetic variations according to climate region across its natural distribution. In total, we detected 108 significant single-nucleotide polymorphisms, annotated to 88 candidate genes for lenticel, of which 9 causative genes showed significantly different selection signatures among climate regions. Furthermore, PtoNAC083 and PtoMYB46 showed significant association signals and abiotic stress response, so we overexpressed these two genes in Arabidopsis thaliana and found that the number of stem cells in all three overexpression lines was significantly reduced by PtoNAC083 overexpression but slightly increased by PtoMYB46 overexpression, suggesting that both genes are involved in cell division and expansion during lenticel formation. The findings of this study demonstrate the successful application of an integrated strategy for dissecting the genetic basis and landscape genetics of complex adaptive traits, which will facilitate the molecular design of tree ideotypes that may adapt to future climate and environmental changes.
Collapse
|
17
|
Zhao Y, Xie J, Wang S, Xu W, Chen S, Song X, Lu M, El-Kassaby YA, Zhang D. Synonymous mutation in Growth Regulating Factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4502-4519. [PMID: 34865000 DOI: 10.1093/jxb/erab120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Abstract
Heat stress damages plant tissues and induces multiple adaptive responses. Complex and spatiotemporally specific interactions among transcription factors (TFs), microRNAs (miRNAs), and their targets play crucial roles in regulating stress responses. To explore these interactions and to identify regulatory networks in perennial woody plants subjected to heat stress, we integrated time-course RNA-seq, small RNA-seq, degradome sequencing, weighted gene correlation network analysis, and multi-gene association approaches in poplar. Results from Populus trichocarpa enabled us to construct a three-layer, highly interwoven regulatory network involving 15 TFs, 45 miRNAs, and 77 photosynthetic genes. Candidate gene association studies in a population of P. tomentosa identified 114 significant associations and 696 epistatic SNP–SNP pairs that were linked to 29 photosynthetic and growth traits (P<0.0001, q<0.05). We also identified miR396a and its target, Growth-Regulating Factor 15 (GRF15) as an important regulatory module in the heat-stress response. Transgenic plants of hybrid poplar (P. alba × P. glandulosa) overexpressing a GRF15 mRNA lacking the miR396a target sites exhibited enhanced heat tolerance and photosynthetic efficiency compared to wild-type plants. Together, our observations demonstrate that GRF15 plays a crucial role in responding to heat stress, and they highlight the power of this new, multifaceted approach for identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sha Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
A Genetic Linkage Map of BC2 Population Reveals QTL Associated with Plant Architecture Traits in Lagerstroemia. FORESTS 2021. [DOI: 10.3390/f12030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant architecture improvement is of great significance in influencing crop yield, harvesting efficiency and ornamental value, by changing the spatial structure of the canopy. However, the mechanism on plant architecture in woody plants is still unclear. In order to study the genetic control of plant architecture traits and promote marker-assisted selection (MAS), a genetic linkage map was constructed, and QTL mapping was performed. In this study, using 188 BC2 progenies as materials, a genetic map of Lagerstroemia was constructed using amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers, and the QTLs of four key plant architecture traits (plant height, crown width, primary lateral branch height and internode length) were analyzed. The genetic map contains 22 linkage groups, including 198 AFLP markers and 36 SSR markers. The total length of the genome covered by the map is 1272 cM, and the average distance between markers is 6.8 cM. Three QTLs related to plant height were located in LG1, LG4 and LG17 linkage groups, and the phenotypic variation rates were 32.36, 16.18 and 12.73%, respectively. A QTL related to crown width was located in LG1 linkage group, and the phenotypic variation rate was 18.07%. Two QTLs related to primary lateral branch height were located in the LG1 and LG7 linkage groups, and the phenotypic variation rates were 20.59 and 15.34%, respectively. Two QTLs related to internode length were located in the LG1 and LG20 linkage groups, and the phenotypic variation rates were 14.86 and 9.87%. The results provide a scientific basis for finely mapping genes of plant architecture traits and marker-assisted breeding in Lagerstroemia.
Collapse
|
19
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
20
|
Song Y, Xuan A, Bu C, Liu X, Zhang D. Identification of a transcriptional regulatory module that reduces leaf temperature in poplar under heat stress. TREE PHYSIOLOGY 2020; 40:1108-1125. [PMID: 32159812 DOI: 10.1093/treephys/tpaa025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
A stable leaf temperature provides plants with a suitable microenvironment for photosynthesis. With global warming, extreme temperatures have become more frequent and severe; therefore, it is increasingly important to understand the fine regulation of leaf temperature under heat stress. In this study, five poplar species (Populus tomentosa, Populus simonii, Populus euphratica, Populus deltoides and Populus trichocarpa) that live in different native environments were used to analyze leaf temperature regulation. Leaf temperatures were more stable in Populus simonii and Populus euphratica (adapted to water-deficient regions) under elevated ambient temperature. Although transpiration contributes strongly to leaf cooling in poplar, the thicker epidermis and mesophyll and lower absorbance of Populus simonii and Populus euphratica leaves also help reduce leaf temperature, since their leaves absorb less radiation. Co-expression network and association analysis of a natural population of P. simonii indicated that PsiMYB60.2, PsiMYB61.2 and PsiMYB61.1 play dominant roles in coordinating leaf temperature, stomatal conductance and transpiration rate in response to heat stress. Individuals with CT-GT-GT genotypes of these three candidate genes have significantly higher water-use efficiency, and balance leaf temperature cooling with photosynthetic efficiency. Therefore, our findings have clarified the genetic basis of leaf cooling among poplar species and laid the foundation for molecular breeding of thermostable, water-conserving poplar varieties.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Anran Xuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Xiaoge Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| |
Collapse
|
21
|
Xiao L, Liu X, Lu W, Chen P, Quan M, Si J, Du Q, Zhang D. Genetic dissection of the gene coexpression network underlying photosynthesis in Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1015-1026. [PMID: 31584236 PMCID: PMC7061883 DOI: 10.1111/pbi.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 05/06/2023]
Abstract
Photosynthesis is a key reaction that ultimately generates the carbohydrates needed to form woody tissues in trees. However, the genetic regulatory network of protein-encoding genes (PEGs) and regulatory noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), underlying the photosynthetic pathway is unknown. Here, we integrated data from coexpression analysis, association studies (additive, dominance and epistasis), and expression quantitative trait nucleotide (eQTN) mapping to dissect the causal variants and genetic interaction network underlying photosynthesis in Populus. We initially used 30 PEGs, 6 miRNAs and 12 lncRNAs to construct a coexpression network based on the tissue-specific gene expression profiles of 15 Populus samples. Then, we performed association studies using a natural population of 435 unrelated Populus tomentosa individuals, and identified 72 significant associations (P ≤ 0.001, q ≤ 0.05) with diverse additive and dominance patterns underlying photosynthesis-related traits. Analysis of epistasis and eQTNs revealed that the complex genetic interactions in the coexpression network contribute to phenotypes at various levels. Finally, we demonstrated that heterologously expressing the most highly linked gene (PtoPsbX1) in this network significantly improved photosynthesis in Arabidopsis thaliana, pointing to the functional role of PtoPsbX1 in the photosynthetic pathway. This study provides an integrated strategy for dissecting a complex genetic interaction network, which should accelerate marker-assisted breeding efforts to genetically improve woody plants.
Collapse
Affiliation(s)
- Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xin Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jingna Si
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
22
|
Lu W, Xiao L, Quan M, Wang Q, El-Kassaby YA, Du Q, Zhang D. Linkage-linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus. THE NEW PHYTOLOGIST 2020; 225:1218-1233. [PMID: 31560799 DOI: 10.1111/nph.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/17/2019] [Indexed: 05/21/2023]
Abstract
Increasing evidence indicates that DNA methylation is heritable and serves as an essential marker contributing to phenotypic variation. Linkage-linkage disequilibrium mapping was used to decipher the epigenetic architecture underlying nine growth and wood property traits in a linkage population (550 F1 progeny) and a natural population (435 unrelated individuals) of Populus using methylation-sensitive amplification polymorphism (MSAP)-based analysis. The interactions between genetic and epigenetic variants in the causative genes was further unveiled using expression quantitative trait methylation (eQTM) and nucleotide (eQTN) mapping strategies. A total of 163 epigenetic quantitative trait loci (epiQTLs; LOD ≥ 3.0), explaining 1.7-44.5% of phenotypic variations, were mapped to a high-resolution epigenetic map with 19 linkage groups, which was supported by the significant MSAP associations (P < 0.001) in the two populations. There were 23 causal genes involved in growth regulation and wood formation, whose markers were located in epiQTLs and associated with the same traits in both populations. Further eQTN and eQTM mapping showed that causal genetic and epigenetic variants within the 23 candidate genes may interact more in trans in gene expression and phenotype. The present study provides strategies for investigating epigenetic architecture and the interaction between genetic and epigenetic variants modulating complex traits in forest trees.
Collapse
Affiliation(s)
- Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| | - Qingshi Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, China
| |
Collapse
|
23
|
Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, Jones P, Harman-Ware AE, Tschaplinski TJ, Jacobson D, Tuskan GA, DiFazio SP. Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2020; 11:545748. [PMID: 33013968 PMCID: PMC7509168 DOI: 10.3389/fpls.2020.545748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 05/04/2023]
Abstract
To understand the genetic mechanisms underlying wood anatomical and morphological traits in Populus trichocarpa, we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome. Broad-sense trait heritabilities ranged from 0.117 to 0.477. Most traits were significantly correlated with geoclimatic variables suggesting a role of climate and geography in shaping the variation of this species. Fifty-seven SNPs from single trait GWAS and 11 SNPs from multitrait GWAS passed an FDR threshold of 0.05, leading to the identification of eight and seven nearby candidate genes, respectively. The percentage of phenotypic variance explained (PVE) by the significant SNPs for both single and multitrait GWAS ranged from 0.01% to 6.18%. To further evaluate the potential roles of candidate genes, we used a multi-omic network containing five additional data sets, including leaf and wood metabolite GWAS layers and coexpression and comethylation networks. We also performed a functional enrichment analysis on coexpression nearest neighbors for each gene model identified by the wood anatomical and morphological trait GWAS analyses. Genes affecting cell wall composition and transport related genes were enriched in wood anatomy and stomatal density trait networks. Signaling and metabolism related genes were also common in networks for stomatal density. For leaf morphology traits (leaf dry and wet weight) the networks were significantly enriched for GO terms related to photosynthetic processes as well as cellular homeostasis. The identified genes provide further insights into the genetic control of these traits, which are important determinants of the suitability and sustainability of improved genotypes for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Hari B. Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Anna Furches
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - David Kainer
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Anne E. Harman-Ware
- Biosciences Center, and National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Stephen P. DiFazio,
| |
Collapse
|
24
|
Lu N, Zhang M, Xiao Y, Han D, Liu Y, Zhang Y, Yi F, Zhu T, Ma W, Fan E, Qu G, Wang J. Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F 1 population of Catalpa bungei × Catalpa duclouxii Dode. BMC PLANT BIOLOGY 2019; 19:596. [PMID: 31888555 PMCID: PMC6937828 DOI: 10.1186/s12870-019-2207-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Catalpa bungei is an important tree species used for timber in China and widely cultivated for economic and ornamental purposes. A high-density linkage map of C. bungei would be an efficient tool not only for identifying key quantitative trait loci (QTLs) that affect important traits, such as plant growth and leaf traits, but also for other genetic studies. RESULTS Restriction site-associated DNA sequencing (RAD-seq) was used to identify molecular markers and construct a genetic map. Approximately 280.77 Gb of clean data were obtained after sequencing, and in total, 25,614,295 single nucleotide polymorphisms (SNPs) and 2,871,647 insertions-deletions (InDels) were initially identified in the genomes of 200 individuals of a C. bungei (7080) × Catalpa duclouxii (16-PJ-3) F1 population and their parents. Finally, 9072 SNP and 521 InDel markers that satisfied the requirements for constructing a genetic map were obtained. The integrated genetic map contained 9593 pleomorphic markers in 20 linkage groups and spanned 3151.63 cM, with an average distance between adjacent markers of 0.32 cM. Twenty QTLs for seven leaf traits and 13 QTLs for plant height at five successive time points were identified using our genetic map by inclusive composite interval mapping (ICIM). Q16-60 was identified as a QTL for five leaf traits, and three significant QTLs (Q9-1, Q18-66 and Q18-73) associated with plant growth were detected at least twice. Genome annotation suggested that a cyclin gene participates in leaf trait development, while the growth of C. bungei may be influenced by CDC48C and genes associated with phytohormone synthesis. CONCLUSIONS This is the first genetic map constructed in C. bungei and will be a useful tool for further genetic study, molecular marker-assisted breeding and genome assembly.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Donghua Han
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Ying Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, People’s Republic of China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
25
|
Du Q, Lu W, Quan M, Xiao L, Song F, Li P, Zhou D, Xie J, Wang L, Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. FRONTIERS IN PLANT SCIENCE 2018; 9:1912. [PMID: 30622554 PMCID: PMC6309013 DOI: 10.3389/fpls.2018.01912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Wood formation is an excellent model system for quantitative trait analysis due to the strong associations between the transcriptional and metabolic traits that contribute to this complex process. Investigating the genetic architecture and regulatory mechanisms underlying wood formation will enhance our understanding of the quantitative genetics and genomics of complex phenotypic variation. Genome-wide association studies (GWASs) represent an ideal statistical strategy for dissecting the genetic basis of complex quantitative traits. However, elucidating the molecular mechanisms underlying many favorable loci that contribute to wood formation and optimizing GWAS design remain challenging in this omics era. In this review, we summarize the recent progress in GWAS-based functional genomics of wood property traits in major timber species such as Eucalyptus, Populus, and various coniferous species. We discuss several appropriate experimental designs for extensive GWAS in a given undomesticated tree population, such as omics-wide association studies and high-throughput phenotyping technologies. We also explain why more attention should be paid to rare allelic and major structural variation. Finally, we explore the potential use of GWAS for the molecular breeding of trees. Such studies will help provide an integrated understanding of complex quantitative traits and should enable the molecular design of new cultivars.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|