1
|
Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, Arkhipenko MV, Nikitin NA, Karpova OV. Prokaryote- and Eukaryote-Based Expression Systems: Advances in Post-Pandemic Viral Antigen Production for Vaccines. Int J Mol Sci 2024; 25:11979. [PMID: 39596049 PMCID: PMC11594041 DOI: 10.3390/ijms252211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This review addresses the ongoing global challenge posed by emerging and evolving viral diseases, underscoring the need for innovative vaccine development strategies. It focuses on the modern approaches to creating vaccines based on recombinant proteins produced in different expression systems, including bacteria, yeast, plants, insects, and mammals. This review analyses the advantages, limitations, and applications of these expression systems for producing vaccine antigens, as well as strategies for designing safer, more effective, and potentially 'universal' antigens. The review discusses the development of vaccines for a range of viral diseases, excluding SARS-CoV-2, which has already been extensively studied. The authors present these findings with the aim of contributing to ongoing research and advancing the development of antiviral vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (D.L.G.); (O.A.K.); (E.M.R.); (A.O.K.); (E.A.E.); (M.V.A.); (O.V.K.)
| | | |
Collapse
|
2
|
Hammel A, Cucos LM, Caras I, Ionescu I, Tucureanu C, Tofan V, Costache A, Onu A, Hoepfner L, Hippler M, Neupert J, Popescu CI, Stavaru C, Branza-Nichita N, Bock R. The red alga Porphyridium as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Proc Natl Acad Sci U S A 2024; 121:e2400145121. [PMID: 38833465 PMCID: PMC11181018 DOI: 10.1073/pnas.2400145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.
Collapse
Affiliation(s)
- Alexander Hammel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Lia-Maria Cucos
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Iuliana Caras
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Irina Ionescu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Catalin Tucureanu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Vlad Tofan
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adriana Costache
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adrian Onu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Lara Hoepfner
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Crina Stavaru
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Norica Branza-Nichita
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
- NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| |
Collapse
|
3
|
Poddar S, Roy R, Kar P. The conformational dynamics of Hepatitis C Virus E2 glycoprotein with the increasing number of N-glycosylation unraveled by molecular dynamics simulations. J Biomol Struct Dyn 2024:1-16. [PMID: 38393644 DOI: 10.1080/07391102.2024.2319679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The Hepatitis C Virus (HCV), responsible for causing hepatitis and a significant contributor to liver disorders, presents a challenge for treatment due to its high genetic variability. Despite efforts, there is still no effective medication available for this virus. One of the promising targets for drug development involves targeting glycoprotein E2. However, our understanding of the dynamic behavior of E2 and its associated glycans remains limited. In this study, we investigated the dynamic characteristics of E2 with varying degrees of glycosylation using all-atom molecular dynamics simulations. We also explored glycan's interactions with the protein and among themselves. An overall increase in correlation between the vital protein regions was observed with an increase in glycan number. The protein dynamics is followed by the analysis of glycan dynamics, where the flexibility of the individual glycans was analyzed in their free and bound state, which revealed a decrease in their fluctuation in some cases. Furthermore, we generated the free energy landscape of individual N-glycan linkages in both free and bound states and observed both increases and decreases in flexibility, which can be attributed to the formation and breakage of hydrogen bonds with amino acids. Finally, we found that for a high glycosylation system, glycans interact with glycoprotein and form hydrogen bonds among themselves. Moreover, the hydrogen bond profiles of a given glycan can vary when influenced by other glycans. In summary, our study provides valuable insights into the dynamics of the core region of HCV E2 glycoprotein and its associated glycans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
4
|
Xu Q, Ma F, Yang D, Li Q, Yan L, Ou J, Zhang L, Liu Y, Zhan Q, Li R, Wei Q, Hu H, Wang Y, Li X, Zhang S, Yang J, Chai S, Du Y, Wang L, Zhang E, Zhang G. Rice-produced classical swine fever virus glycoprotein E2 with herringbone-dimer design to enhance immune responses. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2546-2559. [PMID: 37572354 PMCID: PMC10651154 DOI: 10.1111/pbi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Pestiviruses, including classical swine fever virus, remain a concern for global animal health and are responsible for major economic losses of livestock worldwide. Despite high levels of vaccination, currently available commercial vaccines are limited by safety concerns, moderate efficacy, and required high doses. The development of new vaccines is therefore essential. Vaccine efforts should focus on optimizing antigen presentation to enhance immune responses. Here, we describe a simple herringbone-dimer strategy for efficient vaccine design, using the classical swine fever virus E2 expressed in a rice endosperm as an example. The expression of rE2 protein was identified, with the rE2 antigen accumulating to 480 mg/kg. Immunological assays in mice, rabbits, and pigs showed high antigenicity of rE2. Two immunizations with 284 ng of the rE2 vaccine or one shot with 5.12 μg provided effective protection in pigs without interference from pre-existing antibodies. Crystal structure and small-angle X-ray scattering results confirmed the stable herringbone dimeric conformation, which had two fully exposed duplex receptor binding domains. Our results demonstrated that rice endosperm is a promising platform for precise vaccine design, and this strategy can be universally applied to other Flaviviridae virus vaccines.
Collapse
Affiliation(s)
- Qianru Xu
- School of Basic Medical SciencesHenan UniversityKaifengChina
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- CAS Key Laboratory of Nano‐Bio Interface, Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhouChina
| | - Daichang Yang
- College of Life ScienceWuhan UniversityWuhanChina
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Qingmei Li
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Liming Yan
- Laboratory of Structural Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Longhu LaboratoryZhengzhouChina
| | - Yunchao Liu
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Quan Zhan
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Rui Li
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Qiang Wei
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hui Hu
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Yanan Wang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Jifei Yang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Shujun Chai
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Li Wang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Longhu LaboratoryZhengzhouChina
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
- Longhu LaboratoryZhengzhouChina
- School of Advanced Agricultural SciencesPeking UniversityBeijingChina
| |
Collapse
|
5
|
Pantazica AM, van Eerde A, Dobrica MO, Caras I, Ionescu I, Costache A, Tucureanu C, Steen H, Lazar C, Heldal I, Haugslien S, Onu A, Stavaru C, Branza-Nichita N, Liu Clarke J. The "humanized" N-glycosylation pathway in CRISPR/Cas9-edited Nicotiana benthamiana significantly enhances the immunogenicity of a S/preS1 Hepatitis B Virus antigen and the virus-neutralizing antibody response in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1176-1190. [PMID: 36779605 DOI: 10.1111/pbi.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.
Collapse
Affiliation(s)
| | - André van Eerde
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Iuliana Caras
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Irina Ionescu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Adriana Costache
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Catalin Tucureanu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Hege Steen
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Catalin Lazar
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Inger Heldal
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Adrian Onu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Crina Stavaru
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | | | | |
Collapse
|
6
|
Su H, van Eerde A, Rimstad E, Bock R, Branza-Nichita N, Yakovlev IA, Clarke JL. Plant-made vaccines against viral diseases in humans and farm animals. FRONTIERS IN PLANT SCIENCE 2023; 14:1170815. [PMID: 37056490 PMCID: PMC10086147 DOI: 10.3389/fpls.2023.1170815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
7
|
Margolin E, Schäfer G, Allen JD, Gers S, Woodward J, Sutherland AD, Blumenthal M, Meyers A, Shaw ML, Preiser W, Strasser R, Crispin M, Williamson AL, Rybicki EP, Chapman R. A plant-produced SARS-CoV-2 spike protein elicits heterologous immunity in hamsters. FRONTIERS IN PLANT SCIENCE 2023; 14:1146234. [PMID: 36959936 PMCID: PMC10028082 DOI: 10.3389/fpls.2023.1146234] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen. The plant-produced protein was decorated with under-processed oligomannose N-glycans and exhibited a site occupancy that was comparable to the equivalent protein produced in mammalian cell culture. Complex-type glycans were almost entirely absent from the plant-derived material, which contrasted against the predominantly mature, complex glycans that were observed on the mammalian cell culture-derived protein. The plant-derived antigen elicited neutralizing antibodies against both the matched Wuhan and heterologous Delta SARS-CoV-2 variants in immunized hamsters, although titres were lower than those induced by the comparator mammalian antigen. Animals vaccinated with the plant-derived antigen exhibited reduced viral loads following challenge, as well as significant protection from SARS-CoV-2 disease as evidenced by reduced lung pathology, lower viral loads and protection from weight loss. Nonetheless, animals immunized with the mammalian cell-culture-derived protein were better protected in this challenge model suggesting that more faithfully reproducing the native glycoprotein structure and associated glycosylation of the antigen may be desirable.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Georgia Schäfer
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, Cape Town, South Africa
| | - Joel D Allen
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Jeremy Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Andrew D Sutherland
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Melissa Blumenthal
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Megan L Shaw
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
9
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|