1
|
Chen B, Chai C, Duan M, Yang X, Cai Z, Jia J, Xia Q, Luo S, Yin L, Li Y, Huang N, Ma Q, Nian H, Cheng Y. Identification of quantitative trait loci for lodging and related agronomic traits in soybean (Glycine max [L.] Merr.). BMC Genomics 2024; 25:900. [PMID: 39350068 PMCID: PMC11440893 DOI: 10.1186/s12864-024-10794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Lodging, a crucial agronomic trait linked to soybean yield, poses a significant challenge in soybean production. Nevertheless, there has been less research on soybean lodging compared to other important agronomic traits, hindering progress in breeding high-yield soybeans. Our goals were to investigate lodging, pinpoint quantitative trait loci (QTL) linked to lodging, and forecast potential candidate genes linked to this trait. To achieve this, we employed a recombinant inbred line (RIL) population derived from a cross between Guizao 1 and B13 (GB) across various environments. RESULTS The lodging score of the RIL population was found to be significantly positively correlated with flowering time, maturity time, plant height, number of main stem nodes, stem diameter, and internode length, with correlation coefficients ranging from 0.457 to 0.783. A total of 84 QTLs associated with soybean lodging and related traits were identified using the GB population. The contribution of phenotypic variance ranged from 1.26 to 66.87%, with LOD scores ranging from 2.52 to 69.22. Additionally, within these QTLs, a stable major QTL associated with lodging was newly discovered in the GB population. Out of the ten major QTLs associated with other related traits, nine of them were situated within the qLD-4-1 interval of the major lodging score locus, displaying phenotypic variations ranging from 12.10 to 66.87%. Specific alterations in gene expression were revealed through the analysis of resequencing data from the two parental lines, potentially indicating their significant roles in lodging. Subsequently, it was determined through qRT-PCR that four genes are likely to be the major genes controlling soybean lodging. CONCLUSIONS This study's findings offer valuable insights into the genetic underpinnings of soybean lodging resistance traits. By comprehending the potential genetic factors associated with lodging, this research lays the groundwork for breeding high-yield soybeans with improved lodging resistance.
Collapse
Affiliation(s)
- Bo Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Cheng Chai
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Mingming Duan
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ximeng Yang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhandong Cai
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jia Jia
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qiuju Xia
- Rice Molecular Breeding Institute, Granlux Associated Grains, Shenzhen, Guangdong, 518023, People's Republic of China
| | - Shilin Luo
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Lu Yin
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yunxia Li
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Nianen Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qibin Ma
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Hai Nian
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yanbo Cheng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
2
|
Töpfer V, Melzer M, Snowdon RJ, Stahl A, Matros A, Wehner G. PEG treatment is unsuitable to study root related traits as it alters root anatomy in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:856. [PMID: 39266950 PMCID: PMC11396634 DOI: 10.1186/s12870-024-05529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The frequency and severity of abiotic stress events, especially drought, are increasing due to climate change. The plant root is the most important organ for water uptake and the first to be affected by water limitation. It is therefore becoming increasingly important to include root traits in studies on drought stress tolerance. However, phenotyping under field conditions remains a challenging task. In this study, plants were grown in a hydroponic system with polyethylene glycol as an osmotic stressor and in sand pots to examine the root system of eleven spring barley genotypes. The root anatomy of two genotypes with different response to drought was investigated microscopically. RESULTS Root diameter increased significantly (p < 0.05) under polyethylene glycol treatment by 54% but decreased significantly (p < 0.05) by 12% under drought stress in sand pots. Polyethylene glycol treatment increased root tip diameter (51%) and reduced diameter of the elongation zone (14%) compared to the control. Under drought stress, shoot mass of plants grown in sand pots showed a higher correlation (r = 0.30) with the shoot mass under field condition than polyethylene glycol treated plants (r = -0.22). CONCLUSION These results indicate that barley roots take up polyethylene glycol by the root tip and polyethylene glycol prevents further water uptake. Polyethylene glycol-triggered osmotic stress is therefore unsuitable for investigating root morphology traits in barley. Root architecture of roots grown in sand pots is more comparable to roots grown under field conditions.
Collapse
Affiliation(s)
- Veronic Töpfer
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Michael Melzer
- Department of Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
3
|
Wamhoff D, Gündel A, Wagner S, Ortleb S, Borisjuk L, Winkelmann T. Anatomical limitations in adventitious root formation revealed by magnetic resonance imaging, infrared spectroscopy, and histology of rose genotypes with contrasting rooting phenotypes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4784-4801. [PMID: 38606898 PMCID: PMC11350080 DOI: 10.1093/jxb/erae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Adventitious root (AR) formation is one of the most important developmental processes in vegetative propagation. Although genotypic differences in rose rooting ability are well known, the causal factors are not well understood. The rooting of two contrasting genotypes, 'Herzogin Friederike' and 'Mariatheresia', was compared following a multiscale approach. Using magnetic resonance imaging, we non-invasively monitored the inner structure of stem cuttings during initiation and progression of AR formation for the first time. Spatially resolved Fourier-transform infrared spectroscopy characterized the chemical composition of the tissues involved in AR formation. The results were validated through light microscopy and complemented by immunolabelling. The outcome demonstrated similarity of both genotypes in root primordia formation, which did not result in root protrusion through the shoot cortex in the difficult-to-root genotype 'Mariatheresia'. The biochemical composition of the contrasting genotypes highlighted main differences in cell wall-associated components. Further spectroscopic analysis of 15 contrasting rose genotypes confirmed the biochemical differences between easy- and difficult-to-root groups. Collectively, our data indicate that it is not the lack of root primordia limiting AR formation in these rose genotypes, but the firmness of the outer stem tissue and/or cell wall modifications that pose a mechanical barrier and prevent root extension and protrusion.
Collapse
Affiliation(s)
- David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius Väg 21 A Frescati Backe Stockholm SE-106 91, Sweden
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
4
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Darwish E, Ghosh R, Bentzer J, Tsardakas Renhuldt N, Proux-Wera E, Kamal N, Spannagl M, Hause B, Sirijovski N, Van Aken O. The dynamics of touch-responsive gene expression in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:282-302. [PMID: 37159480 DOI: 10.1111/tpj.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steer plant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of significant research interest, yet a molecular understanding of transcriptional responses to touch is largely absent in cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation of wheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred ±25 min after touching, with most of the genes being upregulated. While most genes returned to basal expression level by 1-2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat. Functional categories such as transcription factors, kinases, phytohormones, and Ca2+ regulation were affected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosynthesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wall composition. Furthermore, several cereal-specific transcriptomic footprints were identified that were not observed in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced signalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and marker genes for further study of (a)biotic stress responses in cereals.
Collapse
Affiliation(s)
- Essam Darwish
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ritesh Ghosh
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Johan Bentzer
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Nikos Tsardakas Renhuldt
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Nadia Kamal
- PGSB - Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Spannagl
- PGSB - Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany
| | - Nick Sirijovski
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| |
Collapse
|
6
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
7
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 DOI: 10.1101/2022.05.04.490011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 PMCID: PMC9940878 DOI: 10.1093/plcell/koac344] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 05/12/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Nabatova NA, Parfenova ES, Utkina EI, Shamova MG, Psareva EA, Zhukova MN. Morphological and agronomic characteristics of winter rye cultivars in connection with their resistance to lodging. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2022. [DOI: 10.30901/2227-8834-2022-4-73-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. Lodging resistance of winter rye is associated with morphological features of the stem. Searching for source material to breed non-lodging high-yielding cultivars requires studying the varietal phenotypic diversity according to morphological characters of the stem that affect the resistance to lodging and the productivity of the ear.Materials and methods. Experiments were carried out in 2017–2020 at the Federal Agricultural Research Center of the North-East (FARC North-East), Kirov. Field resistance to lodging, morphological characteristics of the stem, yield, and ear productivity were evaluated in 16 winter rye cultivars. The study was based on the International COMECON List of Descriptors for the Genus Secale L., and Methodology for the State Variety Trials of Agricultural Crops. The weight of segments of the second lower internodes was measured in 10 plants of each cultivar under laboratory conditions.Results and conclusions. Negative correlations of lodging resistance with stem length (r=–0.55) and the weight of the second lower internode (r = –0.65) were revealed. Ear productivity of rye cultivars was significantly associated with the wall thickness (r = 0.52) and the length of the second lower internode (r = –0.52). According to the results of the path analysis, the main causes of a decrease in lodging resistance were the weight of the segment (P = –0.467) and the length of the second lower internode (P = –0.408), while an increase was connected with the wall thickness of the second lower internode (P = 0.424). The cultivars differed significantly in their resistance to lodging (LSD05 = 0.8). Cvs. ‘Moskovskaya 12’, ‘Tatyana’, ‘Bylina’ and ‘Yantarnaya’ were identified; they are recommended as source material for breeding for lodging resistance.
Collapse
Affiliation(s)
- N. A. Nabatova
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| | - E. S. Parfenova
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| | - E. I. Utkina
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| | - M. G. Shamova
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| | - E. A. Psareva
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| | - M. N. Zhukova
- Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
| |
Collapse
|
10
|
Biomolecular Strategies for Vascular Bundle Development to Improve Crop Yield. Biomolecules 2022; 12:biom12121772. [PMID: 36551200 PMCID: PMC9775962 DOI: 10.3390/biom12121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The need to produce crops with higher yields is critical due to a growing global population, depletion of agricultural land, and severe climate change. Compared with the "source" and "sink" transport systems that have been studied a lot, the development and utilization of vascular bundles (conducting vessels in plants) are increasingly important. Due to the complexity of the vascular system, its structure, and its delicate and deep position in the plant body, the current research on model plants remains basic knowledge and has not been repeated for crops and applied to field production. In this review, we aim to summarize the current knowledge regarding biomolecular strategies of vascular bundles in transport systems (source-flow-sink), allocation, helping crop architecture establishment, and influence of the external environment. It is expected to help understand how to use sophisticated and advancing genetic engineering technology to improve the vascular system of crops to increase yield.
Collapse
|