1
|
Davosir D, Šola I, Ludwig-Müller J, Šeruga Musić M. Flavescence Dorée Strain-Specific Impact on Phenolic Metabolism Dynamics in Grapevine ( Vitis vinifera) throughout the Development of Phytoplasma Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:189-199. [PMID: 38113060 PMCID: PMC10786034 DOI: 10.1021/acs.jafc.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Flavescence dorée phytoplasma (FDp) is a phytopathogenic bacterium associated with Grapevine yellowS disease, which causes heavy damage to viticultural production. Epidemiological data revealed that some FDp strains appear to be more widespread and aggressive. However, there is no data on mechanisms underlying the variable pathogenicity among strains. In this research, we employed chromatographic and spectrophotometric techniques to assess how two strains of FDp influence the levels of grapevine phenolic compounds, which are frequently utilized as indicative markers of stress conditions. The results pointed to the upregulation of all branches of phenolic metabolism through the development of infection, correlating with the increase in antioxidative capacity. The more aggressive strain M54 induced stronger downregulation of phenolics' accumulation at the beginning and higher upregulation by the end of the season than the less aggressive M38 strain. These findings reveal potential targets of FDp effectors and provide the first functional demonstration of variable pathogenicity between FDp strains, suggesting the need for future comparative genomic analyses of FDp strains as an important factor in exploring the management possibilities of FDp.
Collapse
Affiliation(s)
- Dino Davosir
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- Faculty
of Biology, Technische Universität
Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Ivana Šola
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty
of Biology, Technische Universität
Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Martina Šeruga Musić
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Nutricati E, De Pascali M, Negro C, Bianco PA, Quaglino F, Passera A, Pierro R, Marcone C, Panattoni A, Sabella E, De Bellis L, Luvisi A. Signaling Cross-Talk between Salicylic and Gentisic Acid in the ' Candidatus Phytoplasma Solani' Interaction with Sangiovese Vines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2695. [PMID: 37514309 PMCID: PMC10383235 DOI: 10.3390/plants12142695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.
Collapse
Affiliation(s)
- Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Roberto Pierro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
3
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
4
|
Casarin S, Vincenzi S, Esposito A, Filippin L, Forte V, Angelini E, Bertazzon N. A successful defence strategy in grapevine cultivar 'Tocai friulano' provides compartmentation of grapevine Flavescence dorée phytoplasma. BMC PLANT BIOLOGY 2023; 23:161. [PMID: 36964496 PMCID: PMC10039607 DOI: 10.1186/s12870-023-04122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Flavescence dorée (FD) is a grapevine disease caused by phytoplasma and it is one of the most destructive pathologies in Europe. Nowadays, the only strategies used to control the epidemics are insecticides against vector, but more sustainable techniques are required. Completely resistant Vitis vinifera varieties have not been uncovered yet, but differences in susceptibility among cultivars and spontaneous recovery from FD symptoms have been observed. The grapevine cultivar 'Tocai friulano' shows very low susceptibility to FD but its defence strategy to counteract the phytoplasma spread has not been deciphered yet. In this work, the mechanisms occurring within 'Tocai friulano' FD-infected plants were examined in depth to identify the phytoplasma distribution and the defence pathways involved. RESULTS In 'Tocai friulano' symptoms of FD-infection remained confined near the area where they appeared during all the vegetative season. Analyses of secondary phloem showed a total absence of FD phytoplasma (FDp) in the trunk and its disappearance in 2-year-old arms from July to November, which was different from 'Pinot gris', a highly susceptible variety. Diverse modulations of defence genes and accumulation of metabolites were revealed in 1-year-old canes of 'Tocai friulano' FD-infected plants, depending on the sanitary status. Symptomatic portions showed high activation of both jasmonate- and salicylate-mediated responses, together with a great accumulation of resveratrol. Whereas activation of jasmonate-mediated response and high content of ε-viniferin were identified in asymptomatic 1-year-old cane portions close to the symptomatic ones. CONCLUSION Successful defence mechanisms activated near the symptomatic areas allowed the compartmentation of FD symptoms and phytoplasmas within the infected 'Tocai friulano' plants. These results could suggest specific agronomical practices to be adopted during FD management of this variety, and drive research of resistance genes against FD.
Collapse
Affiliation(s)
- Sofia Casarin
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze, 206, 33100, Udine, UD, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural resources, Animal and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Antonella Esposito
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Luisa Filippin
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Vally Forte
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Elisa Angelini
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Nadia Bertazzon
- Research Centre for Viticulture and Enology (CREA), Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
| |
Collapse
|
5
|
Zhang B, Zhang M, Jia X, Hu G, Ren F, Fan X, Dong Y. Integrated Transcriptome and Metabolome Dissecting Interaction between Vitis vinifera L. and Grapevine Fabavirus. Int J Mol Sci 2023; 24:3247. [PMID: 36834661 PMCID: PMC9961852 DOI: 10.3390/ijms24043247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Grapevine fabavirus (GFabV) is a novel member of the Fabavirus genus associated with chlorotic mottling and deformation symptoms in grapevines. To gain insights into the interaction between GFabV and grapevines, V. vinifera cv. 'Summer Black' infected with GFabV was investigated under field conditions through physiological, agronomic, and multi-omics approaches. GFabV induced significant symptoms on 'Summer Black', and caused a moderate decrease in physiological efficiency. In GFabV-infected plants, alterations in carbohydrate- and photosynthesis-related genes might trigger some defense responses. In addition, secondary metabolism involved in plant defense was progressively induced by GFabV. Jasmonic acid and ethylene signaling were down-regulated in GFabV-infected leaves and berries along with the expression of proteins related to LRR and protein kinases, suggesting that GFabV can block the defense in healthy leaves and berries. Furthermore, this study provided biomarkers for early monitoring of GFabV infection in grapevines, and contributed to a better understanding of the complex grapevine-virus interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Fan
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agriculture Sciences, Xingcheng 125100, China
| | - Yafeng Dong
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agriculture Sciences, Xingcheng 125100, China
| |
Collapse
|
6
|
Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238371. [PMID: 36500459 PMCID: PMC9735708 DOI: 10.3390/molecules27238371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Phenylpropanoids and flavonoids are specialized metabolites frequently reported as involved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitutive and/or induced in response to external stimuli. They may participate in plant signaling driving plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic weapon against microbial or insect targets. Their protective action is described as the combinatory effect of their localization during the host's interaction with aggressors, their sustained availability, and the predominance of specific compounds or synergy with others. Their biosynthesis and regulation are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of action on microorganisms and insects probably arises from an interference with important cellular machineries and structures, yet this is not fully understood for all type of pests and pathogens. We present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids with the objective of paving the way for plant breeders looking for natural sources of resistance to improve plant varieties. Examples are provided for all types of microorganisms and insects that are targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human health were explored.
Collapse
|
7
|
Wang Y, Ouyang JX, Fan DM, Wang SM, Xuan YM, Wang XC, Zheng XQ. Transcriptome analysis of tea ( Camellia sinensis) leaves in response to ammonium starvation and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:963269. [PMID: 36119592 PMCID: PMC9472221 DOI: 10.3389/fpls.2022.963269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The tea plant is a kind of ammonium-preferring crop, but the mechanism whereby ammonium (NH4 +) regulate its growth is not well understood. The current study focused on the effects of NH4 + on tea plants. Transcriptomic analysis was performed to investigate the early- and late-stage NH4 + deprivation and resupply in tea plants shoots. Through short- and long-term NH4 + deficiency, the dynamic response to NH4 + stress was investigated. The most significant effects of NH4 + deficiency were found to be on photosynthesis and gene ontology (GO) enrichment varied with the length of NH4 + deprivation. Enriched KEGG pathways were also different when NH4 + was resupplied at different concentrations which may indicate reasons for tolerance of high NH4 + concentration. Using weighted gene co-expression network analysis (WGCNA), modules related to significant tea components, tea polyphenols and free amino acids, were identified. Hence, NH4 + could be regarded as a signaling molecule with the response of catechins shown to be higher than that of amino acids. The current work represents a comprehensive transcriptomic analysis of plant responses to NH4 + and reveals many potential genes regulated by NH4 + in tea plants. Such findings may lead to improvements in nitrogen efficiency of tea plants.
Collapse
Affiliation(s)
- Yu Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jia-Xue Ouyang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Dong-Mei Fan
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shu-Mao Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yi-Min Xuan
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
- Institute of Dafo Longjing, Xinchang, China
| | - Xin-Qiang Zheng
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Impact of the “Flavescence Dorée” Phytoplasma on Xylem Growth and Anatomical Characteristics in Trunks of ‘Chardonnay’ Grapevines (Vitis vinifera). BIOLOGY 2022; 11:biology11070978. [PMID: 36101359 PMCID: PMC9311768 DOI: 10.3390/biology11070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Annual rings of the susceptible grapevine cultivar ‘Chardonnay’ were measured and used in order to analyse the impact of the Flavescence dorée (FD) infection on the growth in diameter and the anatomical structure of grapevine trunks. Grapevines are susceptible to water shortage and reduce their growth in diameter in the case of summer drought. However, in the case of the expression of FD symptoms, the ring width reductions are extreme and supersede the drought-induced effects. In addition, in coincidence of the FD symptomatic expression, the anatomy of the phloem tissue of infected grapevines appears heavily disarranged. Moreover, sometimes also the formation of the woody ring is incomplete (early wood only). In conclusion, even though the FD phytoplasma does not inhabit and replicate inside the xylem tissue, our results confirm existing indirect inhibiting effects on the ring growth and the xylem tissue formation in FDp-infected grapevines. Abstract Flavescence dorée (FD) is a grapevine disease caused by ‘Candidatus Phytoplasma vitis’ (FDp), which is epidemically transmitted by the Nearctic leafhopper Scaphoideus titanus. In this study, we applied dendrochronological techniques to analyse the response to FDp infections in terms of wood ring widths and anatomical structures of the xylem and phloem tissues of the trunk of the susceptible grapevine cultivar ‘Chardonnay.’ As a rule, grapevines are susceptible to water shortage and reduce their growth in diameter in case of summer drought. In the season of the external expression of FD symptoms, however, the ring width reductions are extreme and supersede any drought-induced effects. In addition, the anatomy of the phloem tissue in the year of the FD symptom expression appears heavily disarranged. Moreover, in the most suffering individuals, the xylem formation remains incomplete and mostly limited to the early wood tissue. In conclusion, even though the FD phytoplasma does not inhabit and replicate inside the xylem tissue, our results confirm existing indirect inhibiting effects on the ring growth and the xylem tissue formation in FDp-infected grapevines.
Collapse
|
9
|
Yang C, Wu P, Yao X, Sheng Y, Zhang C, Lin P, Wang K. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Int J Mol Sci 2022; 23:536. [PMID: 35008957 PMCID: PMC8745097 DOI: 10.3390/ijms23010536] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Camellia oleifera (Ca. oleifera) is a woody tree species cultivated for the production of edible oil from its seed. The growth and yield of tea-oil trees are severely affected by anthracnose (caused by Colletotrichum gloeosporioides). In this study, the transcriptomic and metabolomic analyses were performed to detect the key transcripts and metabolites associated with differences in the susceptibility between anthracnose-resistant (ChangLin150) and susceptible (ChangLin102) varieties of Ca. oleifera. In total, 5001 differentially expressed genes (DEGs) were obtained, of which 479 DEGs were common between the susceptible and resistant varieties and further analyzed. KEGG enrichment analysis showed that these DEGs were significantly enriched in tyrosine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and isoquinoline alkaloid biosynthesis pathways. Furthermore, 68 differentially accumulated metabolites (DAMs) were detected, including flavonoids, such as epicatechin, phenethyl caffeate and procyanidin B2. Comparison of the DEGs and DAMs revealed that epicatechin, procyanidin B2 and arachidonic acid (peroxide free) are potentially important. The expression patterns of genes involved in flavonoid biosynthesis were confirmed by qRT-PCR. These results suggested that flavonoid biosynthesis might play an important role in the fight against anthracnose. This study provides valuable molecular information about the response of Ca. oleifera to Co. gloeosporioides infection and will aid the selection of resistant varieties using marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Y.); (P.W.); (Y.S.); (C.Z.); (P.L.); (K.W.)
| | | | | | | | | |
Collapse
|
10
|
Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. Int J Mol Sci 2021; 22:ijms22063045. [PMID: 33802641 PMCID: PMC8002507 DOI: 10.3390/ijms22063045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/31/2022] Open
Abstract
Vitis vinifera ‘Nebbiolo’ is one of the most important wine grape cultivars used to produce prestigious high-quality wines known throughout the world, such as Barolo and Barbaresco. ‘Nebbiolo’ is a distinctive genotype characterized by medium/high vigor, long vegetative and ripening cycles, and limited berry skin color rich in 3′-hydroxylated anthocyanins. To investigate the molecular basis of these characteristics, ‘Nebbiolo’ berries collected at three different stages of ripening (berry pea size, véraison, and harvest) were compared with V. vinifera ‘Barbera’ berries, which are rich in 3′,5′-hydroxylated anthocyanins, using transcriptomic and analytical approaches. In two consecutive seasons, the two genotypes confirmed their characteristic anthocyanin profiles associated with a different modulation of their transcriptomes during ripening. Secondary metabolism and response to stress were the functional categories that most differentially changed between ‘Nebbiolo’ and ‘Barbera’. The profile rich in 3′-hydroxylated anthocyanins of ‘Nebbiolo’ was likely linked to a transcriptional downregulation of key genes of anthocyanin biosynthesis. In addition, at berry pea size, the defense metabolism was more active in ‘Nebbiolo’ than ‘Barbera’ in absence of biotic attacks. Accordingly, several pathogenesis-related proteins, WRKY transcription factors, and stilbene synthase genes were overexpressed in ‘Nebbiolo’, suggesting an interesting specific regulation of defense pathways in this genotype that deserves to be further explored.
Collapse
|
11
|
Tan Y, Li Q, Zhao Y, Wei H, Wang J, Baker CJ, Liu Q, Wei W. Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS One 2021; 16:e0246203. [PMID: 33539421 PMCID: PMC7861385 DOI: 10.1371/journal.pone.0246203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that induce abnormal plant growth and various diseases, causing severe economic loss. Phytoplasmas are highly dependent on nutrients imported from host cells because they have lost many genes involved in essential metabolic pathways during reductive evolution. However, metabolic crosstalk between phytoplasmas and host plants and the mechanisms of phytoplasma nutrient acquisition remain poorly understood. In this study, using metabolomics approach, sweet cherry virescence (SCV) phytoplasma-induced metabolite alterations in sweet cherry trees were investigated. A total of 676 metabolites were identified in SCV phytoplasma-infected and mock inoculated leaves, of which 187 metabolites were differentially expressed, with an overwhelming majority belonging to carbohydrates, fatty acids/lipids, amino acids, and flavonoids. Available omics data of interactions between plant and phytoplasma were also deciphered and integrated into the present study. The results demonstrated that phytoplasma infection promoted glycolysis and pentose phosphate pathway activities, which provide energy and nutrients, and facilitate biosynthesis of necessary low-molecular metabolites. Our findings indicated that phytoplasma can induce reprograming of plant metabolism to obtain nutrients for its own replication and infection. The findings from this study provide new insight into interactions of host plants and phytoplasmas from a nutrient acquisition perspective.
Collapse
Affiliation(s)
- Yue Tan
- Shandong Institute of Pomology, Taian, China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yan Zhao
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | - Hairong Wei
- Shandong Institute of Pomology, Taian, China
| | - Jiawei Wang
- Shandong Institute of Pomology, Taian, China
| | - Con Jacyn Baker
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | | | - Wei Wei
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| |
Collapse
|
12
|
Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging. REMOTE SENSING 2020. [DOI: 10.3390/rs12244151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grapevine yellows (GY) are serious phytoplasma-caused diseases affecting viticultural areas worldwide. At present, two principal agents of GY are known to infest grapevines in Germany: Bois noir (BN) and Palatinate grapevine yellows (PGY). Disease management is mostly based on prophylactic measures as there are no curative in-field treatments available. In this context, sensor-based disease detection could be a useful tool for winegrowers. Therefore, hyperspectral imaging (400–2500 nm) was applied to identify phytoplasma-infected greenhouse plants and shoots collected in the field. Disease detection models (Radial-Basis Function Network) have successfully been developed for greenhouse plants of two white grapevine varieties infected with BN and PGY. Differentiation of symptomatic and healthy plants was possible reaching satisfying classification accuracies of up to 96%. However, identification of BN-infected but symptomless vines was difficult and needs further investigation. Regarding shoots collected in the field from different red and white varieties, correct classifications of up to 100% could be reached using a Multi-Layer Perceptron Network for analysis. Thus, hyperspectral imaging seems to be a promising approach for the detection of different GY. Moreover, the 10 most important wavelengths were identified for each disease detection approach, many of which could be found between 400 and 700 nm and in the short-wave infrared region (1585, 2135, and 2300 nm). These wavelengths could be used further to develop multispectral systems.
Collapse
|
13
|
Pagliarani C, Gambino G, Ferrandino A, Chitarra W, Vrhovsek U, Cantu D, Palmano S, Marzachì C, Schubert A. Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. HORTICULTURE RESEARCH 2020; 7:126. [PMID: 32821409 PMCID: PMC7395728 DOI: 10.1038/s41438-020-00348-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 05/04/2023]
Abstract
Flavescence dorée (FD) is a destructive phytoplasma disease of European grapevines. Spontaneous and cultivar-dependent recovery (REC) may occur in the field in FD-infected vines starting the year following the first symptoms. However, the biological underpinnings of this process are still largely unexplored. In this study, transcriptome sequencing (RNAseq), whole-genome bisulphite sequencing (WGBS) and metabolite analysis were combined to dissect molecular and metabolic changes associated to FD and REC in leaf veins collected in the field from healthy (H), FD and REC plants of the highly susceptible Vitis vinifera 'Barbera'. Genes involved in flavonoid biosynthesis, carbohydrate metabolism and stress responses were overexpressed in FD conditions, whereas transcripts linked to hormone and stilbene metabolisms were upregulated in REC vines. Accumulation patterns of abscisic acid and stilbenoid compounds analysed in the same samples confirmed the RNAseq data. In recovery conditions, we also observed the persistence of some FD-induced expression changes concerning inhibition of photosynthetic processes and stress responses. Several differentially expressed genes tied to those pathways also underwent post-transcriptional regulation by microRNAs, as outlined by merging our transcriptomic data set with a previously conducted smallRNAseq analysis. Investigations by WGBS analysis also revealed different DNA methylation marks between REC and H leaves, occurring within the promoters of genes tied to photosynthesis and secondary metabolism. The results allowed us to advance the existence of a "molecular memory" of FDp infection, involving alterations in the DNA methylation status of REC plants potentially related to transcriptional reprogramming events, in turn triggering changes in hormonal and secondary metabolite profiles.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Alessandra Ferrandino
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, TV Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Andrea Schubert
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| |
Collapse
|
14
|
Negro C, Sabella E, Nicolì F, Pierro R, Materazzi A, Panattoni A, Aprile A, Nutricati E, Vergine M, Miceli A, De Bellis L, Luvisi A. Biochemical Changes in Leaves of Vitis vinifera cv. Sangiovese Infected by Bois Noir Phytoplasma. Pathogens 2020; 9:E269. [PMID: 32272699 PMCID: PMC7238227 DOI: 10.3390/pathogens9040269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Bois noir is a disease associated with the presence of phytoplasma 'Candidatus Phytoplasma solani' belonging to the Stolbur group (subgroup 16SrXII-A), which has a heavy economic impact on grapevines. This study focused on the changes induced by phytoplasma in terms of the profile and amount of secondary metabolites synthesized in the phenylpropanoid pathway in leaves of Vitis vinifera L. red-berried cultivar Sangiovese. Metabolic alterations were assessed according to the disease progression through measurements of soluble sugars, chlorophyll, and phenolic compounds produced by plant hosts, in response to disease on symptomatic and asymptomatic Bois noir-positive plants. Significant differences were revealed in the amount of soluble sugars, chlorophyll, and accumulation/reduction of some compounds synthesized in the phenylpropanoid pathway of Bois noir-positive and negative grapevine leaves. Our results showed a marked increase in phenolic and flavonoid production and a parallel decrease in lignin content in Bois noir-positive compared to negative leaves. Interestingly, some parameters (chlorophyll a, soluble sugars, total phenolic or flavonoids content, proanthocyanidins, quercetin) differed between Bois noir-positive and negative leaves regardless of symptoms, indicating measurable biochemical changes in asymptomatic leaves. Our grapevine cultivar Sangiovese results highlighted an extensive modulation of the phenylpropanoid biosynthetic pathway as a defense mechanism activated by the host plant in response to Bois noir disease.
Collapse
Affiliation(s)
- Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Francesca Nicolì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Roberto Pierro
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56100 Pisa, Italy; (R.P.); (A.M.); (A.P.)
| | - Alberto Materazzi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56100 Pisa, Italy; (R.P.); (A.M.); (A.P.)
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56100 Pisa, Italy; (R.P.); (A.M.); (A.P.)
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Antonio Miceli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (C.N.); (E.S.); (A.A.); (E.N.); (M.V.); (A.M.); (L.D.B.); (A.L.)
| |
Collapse
|
15
|
Teixeira A, Martins V, Frusciante S, Cruz T, Noronha H, Diretto G, Gerós H. Flavescence Dorée-Derived Leaf Yellowing in Grapevine ( Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:896. [PMID: 32625230 PMCID: PMC7311760 DOI: 10.3389/fpls.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Flavescence dorée (FD), caused by the phytoplasma Candidatus Phytoplasma vitis, is a major threat to vineyard survival in different European grape-growing areas. It has been recorded in French vineyards since the mid-1950s, and rapidly spread to other countries. In Portugal, the phytoplasma was first detected in the DOC region of 'Vinhos Verdes' in 2006, and reached the central region of the country in 2009. The infection causes strong accumulation of carbohydrates and phenolics in the mesophyll cells and a simultaneous decrease of chlorophylls, events accompanied by a down regulation of genes and proteins involved in the dark and light-dependent reactions and stabilization of the photosystem II (PSII). In the present study, to better elucidate the basis of the leaf chlorosis in infected grapevine cv. Loureiro, we studied the isoprenoid transcript-metabolite correlation in leaves from healthy and FD-infected vines. Specifically, targeted metabolome revealed that twenty-one compounds (out of thirty-two), including chlorophylls, carotenoids, quinones and tocopherols, were reduced in response to FD-infection. Thereafter, and consistently with the biochemical data, qPCR analysis highlighted a severe FD-mediated repression in key genes involved in isoprenoid biosynthetic pathways. A more diverse set of changes, on the contrary, was observed in the case of ABA metabolism. Principal component analysis (PCA) of all identified metabolites clearly separated healthy from FD-infected vines, therefore confirming that the infection strongly alters the biosynthesis of grapevine isoprenoids; additionally, forty-four genes and metabolites were identified as the components mostly explaining the variance between healthy and infected samples. Finally, transcript-metabolite network correlation analyses were exploited to display the main hubs of the infection process, which highlighted a strong role of VvCHLG, VvVTE and VvZEP genes and the chlorophylls intermediates aminolevulunic acid and porphobilinogen in response to FD infection. Overall, results indicated that the FD infection impairs the synthesis of isoprenoids, through the repression of key genes involved in the biosynthesis of chlorophylls, carotenoids, quinones and tocopherols.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira,
| | - Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sarah Frusciante
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Telmo Cruz
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gianfranco Diretto
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Bertazzon N, Bagnaresi P, Forte V, Mazzucotelli E, Filippin L, Guerra D, Zechini A, Cattivelli L, Angelini E. Grapevine comparative early transcriptomic profiling suggests that Flavescence dorée phytoplasma represses plant responses induced by vector feeding in susceptible varieties. BMC Genomics 2019; 20:526. [PMID: 31242866 PMCID: PMC6595628 DOI: 10.1186/s12864-019-5908-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background Flavescence dorée is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus. Differences in susceptibility among grapevine varieties suggest the existence of specific genetic features associated with resistance to the phytoplasma and/or possibly with its vector. In this work, RNA-Seq was used to compare early transcriptional changes occurring during the three-trophic interaction between the phytoplasma, its vector and the grapevine, represented by two different cultivars, one very susceptible to the disease and the other scarcely susceptible. Results The comparative analysis of the constitutive transcriptomic profiles suggests the existence of passive defense strategies against the insect and/or the phytoplasma in the scarcely-susceptible cultivar. Moreover, the attack by the infective vector on the scarcely-susceptible variety prompted immediate and substantial transcriptomic changes that led to the rapid erection of further active defenses. On the other hand, in the most susceptible variety the response was delayed and mainly consisted of the induction of phytoalexin synthesis. Surprisingly, the jasmonic acid- and ethylene-mediated defense reactions, activated by the susceptible cultivar following FD-free insect feeding, were not detected in the presence of the phytoplasma-infected vector. Conclusions The comparison of the transcriptomic response in two grapevine varieties with different levels of susceptibility to Flavescence dorèe highlighted both passive and active defense mechanisms against the vector and/or the pathogen in the scarcely-susceptible variety, as well as the capacity of the phytoplasmas to repress the defense reaction against the insect in the susceptible variety. Electronic supplementary material The online version of this article (10.1186/s12864-019-5908-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Bertazzon
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy.
| | - Paolo Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Vally Forte
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| | | | - Luisa Filippin
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| | - Davide Guerra
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Antonella Zechini
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Elisa Angelini
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| |
Collapse
|
17
|
Ferrandino A, Pagliarani C, Kedrina-Okutan O, Icardi S, Bove M, Lovisolo C, Novello V, Schubert A. Non-anthocyanin polyphenols in healthy and Flavescence dorée infected Barbera and Nebbiolo leaves. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191303003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The first serious outbreak of Flavescence dorée (FD) in Piedmont (North-West Italy) dates back to 1998 in the Tortona area (Alessandria province). FD is a serious quarantine-worthy disease transmitted by the leafhopper Scaphoideus titanus Ball. Different Vitis vinifera L. biotypes react differently to the phytoplasma, in particular as to the accumulation of polyphenols in leaves. In this experimentation, we observed and described concentration and accumulation of the main classes of polyphenols in entire leaves and in leaf blades and veins of two varieties, Nebbiolo and Barbera, displaying different levels of susceptibility to FD. Their well-known different reactions could be related, at least partially, to leaf polyphenols, both as to concentrations and profiles. Nebbiolo displayed some specific traits: i) the higher percentage of incidence over totals of individual molecules known to be powerful antioxidants (caftaric acid over coutaric acid; quercetin glycosides over other flavonols); ii) the higher concentration of flavanols in veins with respect to Barbera and their wider profile (astilbin and a taxifolin-glycoside, this last accumulating exclusively in Nebbiolo).
Collapse
|
18
|
Differential gene expression in two grapevine cultivars recovered from "flavescence dorée". Microbiol Res 2018; 220:72-82. [PMID: 30744821 DOI: 10.1016/j.micres.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 01/08/2023]
Abstract
The biological bases of recovery of two grapevine cultivars, Nebbiolo and Barbera, showing different susceptibility and recovery ability to "flavescence dorée" (FD) phytoplasma infection were investigated. The expression over one vegetative season, in FD-recovered and healthy grapevines, of 18 genes involved in defence, hydrogen peroxide and hormone production was verified at two time points. Difference (Δ) between the relative expressions of August and July were calculated for each target gene of both cultivars. The significance of differences among groups assessed by univariate and multivariate statistical methods, and sPLS-DA analyses of the Δ gene expression values, showed that control and recovered grapevines of both cultivars were clearly separated. The Barbera-specific deregulation of defence genes supports a stronger response of this variety, within a general frame of interactions among H2O2, jasmonate and ethylene metabolisms, common to both varieties. This may strengthen the hypothesis that FD-recovered Barbera grapevines modulate transcription of their genes to cope with potential damages associated to the alteration of their oxidative status. Nebbiolo variety would fit into this picture, although with a less intense response, in line with its lower degree of susceptibility and recovery incidence to FD, compared to Barbera. The results evidenced a scenario where plant response to phytoplasma infection is highly affected by climatic and edaphic conditions. Nevertheless, even after several years from the original FD infection, it was still possible to distinguish, at molecular level, control and recovered grapevines of both cultivars by analyzing their overall-season response, rather than that of a single time point.
Collapse
|
19
|
On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases. REMOTE SENSING 2018. [DOI: 10.3390/rs11010023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among grapevine diseases affecting European vineyards, Flavescence dorée (FD) and Grapevine Trunk Diseases (GTD) are considered the most relevant challenges for viticulture because of the damage they cause to vineyards. Unmanned Aerial Vehicle (UAV) multispectral imagery could be a powerful tool for the automatic detection of symptomatic vines. However, one major difficulty is to discriminate different kinds of diseases leading to similar leaves discoloration as it is the case with FD and GTD for red vine cultivars. The objective of this paper is to evaluate the potentiality of UAV multispectral imagery to separate: symptomatic vines including FD and GTD (Esca and black dead arm) from asymptomatic vines (Case 1) and FD vines from GTD ones (Case 2). The study sites are localized in the Gaillac and Minervois wine production regions (south of France). A set of seven vineyards covering five different red cultivars was studied. Field work was carried out between August and September 2016. In total, 218 asymptomatic vines, 502 FD vines and 199 GTD vines were located with a centimetric precision GPS. UAV multispectral images were acquired with a MicaSense RedEdge® sensor and were processed to ultimately obtain surface reflectance mosaics at 0.10 m ground spatial resolution. In this study, the potentiality of 24 variables (5 spectral bands, 15 vegetation indices and 4 biophysical parameters) are tested. The vegetation indices are selected for their potentiality to detect abnormal vegetation behavior in relation to stress or diseases. Among the biophysical parameters selected, three are directly linked to the leaf pigments content (chlorophyll, carotenoid and anthocyanin). The first step consisted in evaluating the performance of the 24 variables to separate symptomatic vine vegetation (FD or/and GTD) from asymptomatic vine vegetation using the performance indicators from the Receiver Operator Characteristic (ROC) Curve method (i.e., Area Under Curve or AUC, sensibility and specificity). The second step consisted in mapping the symptomatic vines (FD and/or GTD) at the scale of the field using the optimal threshold resulting from the ROC curve. Ultimately, the error between the level of infection predicted by the selected variables (proportion of symptomatic pixels by vine) and observed in the field (proportion of symptomatic leaves by vine) is calculated. The same methodology is applied to the three levels of analysis: by vineyard, by cultivar (Gamay, Fer Servadou) and by berry color (all red cultivars). At the vineyard and cultivar levels, the best variables selected varies. The AUC of the best vegetation indices and biophysical parameters varies from 0.84 to 0.95 for Case 1 and 0.74 to 0.90 for Case 2. At the berry color level, no variable is efficient in discriminating FD vines from GTD ones (Case 2). For Case 1, the best vegetation indices and biophysical parameter are Red Green Index (RGI)/ Green-Red Vegetation Index (GRVI) (based on the green and red spectral bands) and Car (linked to carotenoid content). These variables are more effective in mapping vines with a level of infection greater than 50%. However, at the scale of the field, we observe misclassified pixels linked to the presence of mixed pixels (shade, bare soil, inter-row vegetation and vine vegetation) and other factors of abnormal coloration (e.g., apoplectic vines).
Collapse
|
20
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
21
|
Halldorson MM, Keller M. Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. PLANTA 2018; 248:1201-1211. [PMID: 30094489 DOI: 10.1007/s00425-018-2967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/26/2018] [Indexed: 05/26/2023]
Abstract
Foliar sugar accumulation in grapevines with leafroll disease was correlated with lower photosynthesis, likely due to feedback inhibition. However, cold acclimation of dormant tissues remained unaffected by the virus status. Grapevine leafroll-associated viruses (GLRaV) contribute to losses in fruit yield and quality worldwide. Visually, leafroll disease symptoms appear similar to those associated with an imbalance in source/sink relations and a concomitant feedback inhibition of photosynthesis, which is often caused by an impasse in sugar translocation. In order to test this potential relationship and related physiological responses, leaf water status, gas exchange, non-structural carbohydrates, and dormant tissue cold hardiness were examined over 2 years in healthy and GLRaV-3-infected, field-grown Merlot grapevines. Diurnal and seasonal changes in leaf water status and gas exchange were dominated by variations in water availability, temperature, and leaf age, while GLRaV-3 infection contributed less to the overall variation. By contrast, foliar carbohydrates increased markedly in infected plants, with starch accumulating early in the growing season, followed by soluble sugar accumulation, leaf reddening, and declining gas exchange. Photosynthesis correlated negatively with leaf sugar content. However, dormant-season cold hardiness of buds and cane vascular tissues was similar in healthy and infected vines. These findings support the idea that visible symptoms of grapevine leafroll disease are a consequence of carbohydrate accumulation which, in turn, may lead to feedback inhibition of photosynthesis. In addition, this study provided evidence that GLRaV-3 infection is unlikely to alter the susceptibility to moderate water deficit and winter damage in mature Merlot grapevines.
Collapse
Affiliation(s)
- Matthew M Halldorson
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA
- Ste. Michelle Wine Estates, Prosser, WA, 99350, USA
| | - Markus Keller
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA.
| |
Collapse
|
22
|
Transcriptomic Analyses of Phytoplasmas. Methods Mol Biol 2018. [PMID: 30362008 DOI: 10.1007/978-1-4939-8837-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transcriptomic analyses addressed to study phytoplasma gene expression may present few difficulties due to the uncultivable nature of these intracellular, obligate pathogens. While RNA extraction from insect vectors does not imply any particular adaptation of the protocols used in most commercial kits, RNA isolation from phytoplasma-infected plants can be a challenging task, given the high levels of polyphenol contents and accumulation of sucrose and starch in the different plant tissues. Here, we describe two different transcriptomic approaches, one focused on RNA phytoplasma sequencing and the other on phytoplasma quantitative gene expression in relation to pathogen load.
Collapse
|
23
|
Kedrina-Okutan O, Novello V, Hoffmann T, Hadersdorfer J, Occhipinti A, Schwab W, Ferrandino A. Constitutive Polyphenols in Blades and Veins of Grapevine ( Vitis vinifera L.) Healthy Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10977-10990. [PMID: 30175914 DOI: 10.1021/acs.jafc.8b03418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the economic importance and the diffusion of grapevine cultivation worldwide, little is known about leaf chemical composition. We characterized the phenolic composition of Nebbiolo, Barbera, Pinot noir, Cabernet Sauvignon, Grenache, and Shiraz ( Vitis vinifera L.) healthy leaves (separating blades and veins) during the season. Quantitative and qualitative differences were found between leaf sectors and among genotypes. In healthy grapevine leaves, anthocyanins, dihydromyricetin-rhamnoside, hexosides of dihydroquercetin, and dihydrokaempferol exclusively accumulated in veins. Astilbin was the only flavanonol detected in blades and the prevalent flavanonol in veins. Barbera distinguished for the lowest proanthocyanidin and the highest hydroxycinnamate content, and Pinot noir for the absence of acylated-anthocyanins. Nebbiolo, and Cabernet Sauvignon displayed a high concentration of epigallocatechin gallate in veins. Nebbiolo leaves showed the highest concentrations of flavanonols and the widest profile differentiation. Knowledge derived from the present work is a contribution to find out leaf polyphenol potential as a part of grapevine defense mechanisms and to dissect genotype-related susceptibility to pathogens; moreover, it represents a starting point for future deepening about grapevine and vineyard byproducts as a source of bioactive phenolic compounds.
Collapse
Affiliation(s)
- Olga Kedrina-Okutan
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| | - Thomas Hoffmann
- Biotechnology of Natural Products , Technical University Munich , Liesel-Beckmann-Strasse 1 , Freising 85354 , Germany
| | | | - Andrea Occhipinti
- Department of Life Sciences and Systems Biology , University of Turin, Innovation Centre , Via Quarello 15/A , Turin 10135 , Italy
| | - Wilfried Schwab
- Biotechnology of Natural Products , Technical University Munich , Liesel-Beckmann-Strasse 1 , Freising 85354 , Germany
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| |
Collapse
|
24
|
Gai YP, Yuan SS, Liu ZY, Zhao HN, Liu Q, Qin RL, Fang LJ, Ji XL. Integrated Phloem Sap mRNA and Protein Expression Analysis Reveals Phytoplasma-infection Responses in Mulberry. Mol Cell Proteomics 2018; 17:1702-1719. [PMID: 29848783 PMCID: PMC6126391 DOI: 10.1074/mcp.ra118.000670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the response of mulberry to phytoplasma-infection, the expression profiles of mRNAs and proteins in mulberry phloem sap were examined. A total of 955 unigenes and 136 proteins were found to be differentially expressed between the healthy and infected phloem sap. These differentially expressed mRNAs and proteins are involved in signaling, hormone metabolism, stress responses, etc. Interestingly, we found that both the mRNA and protein levels of the major latex protein-like 329 (MuMLPL329) gene were increased in the infected phloem saps. Expression of the MuMLPL329 gene was induced by pathogen inoculation and was responsive to jasmonic acid. Ectopic expression of MuMLPL329 in Arabidopsis enhances transgenic plant resistance to Botrytis cinerea, Pseudomonas syringae pv tomato DC3000 (Pst. DC3000) and phytoplasma. Further analysis revealed that MuMLPL329 can enhance the expression of some defense genes and might be involved in altering flavonoid content resulting in increased resistance of plants to pathogen infection. Finally, the roles of the differentially expressed mRNAs and proteins and the potential molecular mechanisms of their changes were discussed. It was likely that the phytoplasma-responsive mRNAs and proteins in the phloem saps were involved in multiple pathways of mulberry responses to phytoplasma-infection, and their changes may be partially responsible for some symptoms in the phytoplasma infected plants.
Collapse
Affiliation(s)
- Ying-Ping Gai
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shuo-Shuo Yuan
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhao-Yang Liu
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Huai-Ning Zhao
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Qi Liu
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Rong-Li Qin
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Li-Jing Fang
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xian-Ling Ji
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
25
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
26
|
Regulation of Long Noncoding RNAs Responsive to Phytoplasma Infection in Paulownia tomentosa. Int J Genomics 2018; 2018:3174352. [PMID: 29675420 PMCID: PMC5841072 DOI: 10.1155/2018/3174352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Paulownia witches' broom caused by phytoplasma infection affects the production of Paulownia trees worldwide. Emerging evidence showed that long noncoding RNAs (lncRNA) play a protagonist role in regulating the expression of genes in plants. So far, the identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to Paulownia tomentosa that free of phytoplasma infection are yet to be characterized. Here, whole-genome identification of lncRNAs, based on strand-specific RNA sequencing, from four Paulownia tomentosa samples, was performed and identified 3689 lncRNAs. These lncRNAs showed low conservation among plant species and some of them were miRNA precursors. Further analysis revealed that the 112 identified lncRNAs were related to phytoplasma infection. We predicted the target genes of these phytoplasma-responsive lncRNAs, and our analysis showed that 51 of the predicted target genes were alternatively spliced. Moreover, we found the expression of the lncRNAs plays vital roles in regulating the genes involved in the reactive oxygen species induced hypersensitive response and effector-triggered immunity in phytoplasma-infected Paulownia. This study indicated that diverse sets of lncRNAs were responsive to Paulownia witches' broom, and the results will provide a starting point to understand the functions and regulatory mechanisms of Paulownia lncRNAs in the future.
Collapse
|
27
|
Galetto L, Miliordos DE, Pegoraro M, Sacco D, Veratti F, Marzachì C, Bosco D. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties. Int J Mol Sci 2016; 17:E1563. [PMID: 27649162 PMCID: PMC5037832 DOI: 10.3390/ijms17091563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023] Open
Abstract
Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.
Collapse
Affiliation(s)
- Luciana Galetto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135 Turin, Italy.
| | - Dimitrios E Miliordos
- Dipartimento di Scienze Agrarie, Forestali e Agroalimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Mattia Pegoraro
- Dipartimento di Scienze Agrarie, Forestali e Agroalimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Dario Sacco
- Dipartimento di Scienze Agrarie, Forestali e Agroalimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Flavio Veratti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135 Turin, Italy.
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135 Turin, Italy.
| | - Domenico Bosco
- Dipartimento di Scienze Agrarie, Forestali e Agroalimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
28
|
Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. "Modra frankinja" with Flavescence Dorée Phytoplasma. FRONTIERS IN PLANT SCIENCE 2016; 7:711. [PMID: 27242887 PMCID: PMC4876132 DOI: 10.3389/fpls.2016.00711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/09/2016] [Indexed: 05/18/2023]
Abstract
Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp-grapevine interaction in infected grapevines of cv. "Modra frankinja" under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status.
Collapse
Affiliation(s)
- Nina Prezelj
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Elizabeth Covington
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenTaastrup, Denmark
- Global Change Research Centre, Czech Globe AS CR, v.v.i.Drásov, Czech Republic
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of ViennaVienna, Austria
- Vienna Metabolomics Center (VIME), University of ViennaVienna, Austria
| | - Marko Chersicola
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
- Jožef Stefan International Postgraduate SchoolLjubljana, Slovenia
| | - Maja Vodopivec
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| |
Collapse
|
29
|
Quaglino F, Maghradze D, Casati P, Chkhaidze N, Lobjanidze M, Ravasio A, Passera A, Venturini G, Failla O, Bianco PA. Identification and Characterization of New 'Candidatus Phytoplasma solani' Strains Associated with Bois Noir Disease in Vitis vinifera L. Cultivars Showing a Range of Symptom Severity in Georgia, the Caucasus Region. PLANT DISEASE 2016; 100:904-915. [PMID: 30686148 DOI: 10.1094/pdis-09-15-0978-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evidence from a preliminary survey highlighted that 'Candidatus Phytoplasma solani', the etiological agent of bois noir (BN) disease of grapevine, infects grapevine varieties in Georgia, a country of the South Caucasus. In this study, field surveys were carried out to investigate the BN symptom severity in international and Georgian native varieties. 'Ca. P. solani' was detected and identified by polymerase chain reaction-based amplification and restriction fragment length polymorphism analysis of 16S ribosomal DNA, and further characterized by multiple gene typing analysis (vmp1 and stamp genes). Obtained data highlighted that the majority of Georgian grapevine varieties showed moderate and mild symptoms, whereas international cultivars exhibited severe symptoms. Molecular characterization of 'Ca. P. solani' from grapevine revealed the presence of 11 distinct phytoplasma types. Only one type (VmGe12/StGe7) was identical to a strain previously reported in periwinkle from Lebanon; the other 'Ca. P. solani' types are described here for the first time. Phylogenetic analyses of vmp1 and stamp gene concatenated nucleotide sequences showed that 'Ca. P. solani' strains in Georgia are associated mainly with the bindweed-related BN host system. Moreover, the fact that 'Ca. P. solani' strains are distributed in grapevine cultivars showing a range of symptom intensity suggests a different susceptibility of such local cultivars to BN.
Collapse
Affiliation(s)
- Fabio Quaglino
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - David Maghradze
- Institute of Horticulture, Viticulture and Oenology, Agricultural University of Georgia, Tbilisi, Georgia
| | | | - Nona Chkhaidze
- Laboratory of Plant Anatomy and Physiology, Agricultural University of Georgia, Tbilisi
| | - Mzagho Lobjanidze
- Institute of Entomology, Agricultural University of Georgia, Tbilisi
| | | | | | | | | | | |
Collapse
|
30
|
Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:23-32. [PMID: 26851572 DOI: 10.1016/j.plaphy.2016.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Drought stress affects anthocyanin accumulation and modification in vegetative and reproductive plant tissues. Anthocyanins are the most abundant flavonoids in grape (Vitis vinifera L.) coloured berry genotypes and are essential markers of grape winemaking quality. They are mostly mono- and di-methylated, such modifications increase their stability and improve berry quality for winemaking. Anthocyanin methylation in grape berries is induced by drought stress. A few caffeoyl-CoA O-methyltransferases (CCoAOMTs) active on anthocyanins have been described in grape. However, no drought-activated O-methyltransferases have been described in grape berries yet. In this study, we characterized VvCCoAOMT, a grapevine gene known to induce methylation of CoA esters in cultured grape cells. Transcript accumulation of VvCCoAOMT was detected in berry skins, and increased during berry ripening on the plant, and in cultured berries treated with ABA, concomitantly with accumulation of methylated anthocyanins, suggesting that anthocyanins may be substrates of this enzyme. Contrary as previously observed in cell cultures, biotic stress (Botrytis cinerea inoculation) did not affect VvCCoAOMT gene expression in leaves or berries, while drought stress increased VvCCoAOMT transcript in berries. The recombinant VvCCoAOMT protein showed in vitro methylating activity on cyanidin 3-O-glucoside. We conclude that VvCCoAOMT is a multifunctional O-methyltransferase that may contribute to anthocyanin methylation activity in grape berries, in particular under drought stress conditions.
Collapse
Affiliation(s)
- Debora Giordano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Sofia Provenzano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Alessandra Ferrandino
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Marco Vitali
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Chiara Pagliarani
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Federica Roman
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Francesca Cardinale
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Simone D Castellarin
- The University of British Columbia Wine Research Centre, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Andrea Schubert
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| |
Collapse
|
31
|
Diagnosis of Phytoplasmas by Real-Time PCR Using Locked Nucleic Acid (LNA) Probes. Methods Mol Biol 2016; 1302:113-22. [PMID: 25981250 DOI: 10.1007/978-1-4939-2620-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytoplasma infections are regularly reported worldwide, and concerns about their threats on agricultural production, especially in relation to global climate change, are increasing. Sensitive and reliable detection methods are important to ensure that propagation material is free of phytoplasma infection and for epidemiological studies that may provide information to limit the extent of phytoplasma diseases and to prevent large-scale crop losses. The detection method described here uses LNA chemistry in real-time PCR. It has been developed and validated for use on potatoes, and its sensitivity and specificity make it suitable for use in postentry potato quarantine and initiation of potato nuclear stocks to ensure that material is phytoplasma-free.
Collapse
|
32
|
Fan K, Fan D, Ding Z, Su Y, Wang X. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:350-360. [PMID: 26520678 DOI: 10.1016/j.plaphy.2015.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The nitrogen source affects the growth of tea plants and regulates the accumulation of catechins in the leaves. In this report, we assessed the influences of NH4(+) and NO3(-) on plant growth, catechins accumulation and associated gene expression. Compared with the preferential nitrogen source NH4(+), when NO3(-) was supplied as the sole nitrogen source, tea plants showed similar symptoms with the nitrogen-free treatments and showed lower nitrogen, free amino acid accumulation, chlorophyll content and biomass gain, indicating NO3(-) was not efficiently used by these plants. However, the total shoot catechins content was significantly higher for NO3(-) treatments than that for NH4(+) treatment or combined NH4(+)+NO3(-) treatment, suggesting that, in addition to its influence on plant growth, the nitrogen form regulated the accumulation of catechins in tea. The expression of catechins biosynthesis-related genes was associated with the regulation of catechins accumulation and composition changes mediated by nitrogen form. PAL, CHS, CHI, and DFR genes exhibited higher expression levels in plants supplied with NO3(-), in which the transcript level of DFR in the shoots was significantly correlated with the catechins content. In the end, we identified a new function for the Cs-miR156, which was drastically induced through NH4(+). Moreover, a potential mechanism of the Cs-miR156 pathway in regulating catechins biosynthesis in tea plants has been suggested, with particular respect to nitrogen forms. Cs-miR156 might repress the expression of the target gene SPL to regulate the DFR gene, which plays a vital role in catechins biosynthesis.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Dongmei Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zhaotang Ding
- Institute of Tea Science, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xiaochang Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
33
|
Cao X, Fan G, Zhao Z, Deng M, Dong Y. Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches' broom through AFLP and MSAP. PLoS One 2014; 9:e112533. [PMID: 25427154 PMCID: PMC4245194 DOI: 10.1371/journal.pone.0112533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Paulownia witches' broom (PaWB) caused by phytoplasma might result in devastating damage to the growth and wood production of Paulownia. To study the effect of phytoplasma on DNA sequence and to discover the genes related to PaWB occurrence, DNA polymorphisms and DNA methylation levels and patterns in PaWB seedlings, the ones treated with various concentration of methyl methane sulfonate (MMS) and healthy seedlings were investigated with amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP). Our results indicated that PaWB seedlings recovered a normal morphology, similar to healthy seedlings, after treatment with more than 20 mg·L−1 MMS; Phytoplasma infection did not change the Paulownia genomic DNA sequence at AFLP level, but changed the global DNA methylation levels and patterns; Genes related to PaWB were discovered through MSAP and validated using quantitative real-time PCR (qRT-PCR). These results implied that changes of DNA methylation levels and patterns were closely related to the morphological changes of seedlings infected with phytoplasmas.
Collapse
Affiliation(s)
- Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- * E-mail:
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| |
Collapse
|