1
|
Ali AM, Monaghan C, Muggeridge DJ, Easton C, Watson DG. LC/MS-based discrimination between plasma and urine metabolomic changes following exposure to ultraviolet radiation by using data modelling. Metabolomics 2023; 19:13. [PMID: 36781606 PMCID: PMC9925544 DOI: 10.1007/s11306-023-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION This study sought to compare between metabolomic changes of human urine and plasma to investigate which one can be used as best tool to identify metabolomic profiling and novel biomarkers associated to the potential effects of ultraviolet (UV) radiation. METHOD A pilot study of metabolomic patterns of human plasma and urine samples from four adult healthy individuals at before (S1) and after (S2) exposure (UV) and non-exposure (UC) were carried out by using liquid chromatography-mass spectrometry (LC-MS). RESULTS The best results which were obtained by normalizing the metabolites to their mean output underwent to principal components analysis (PCA) and Orthogonal Partial least squares-discriminant analysis (OPLS-DA) to separate pre-from post-of exposure and non-exposure of UV. This separation by data modeling was clear in urine samples unlike plasma samples. In addition to overview of the scores plots, the variance predicted-Q2 (Cum), variance explained-R2X (Cum) and p-value of the cross-validated ANOVA score of PCA and OPLS-DA models indicated to this clear separation. Q2 (Cum) and R2X (Cum) values of PCA model for urine samples were 0.908 and 0.982, respectively, and OPLS-DA model values were 1.0 and 0.914, respectively. While these values in plasma samples were Q2 = 0.429 and R2X = 0.660 for PCA model and Q2 = 0.983 and R2X = 0.944 for OPLS-DA model. LC-MS metabolomic analysis showed the changes in numerous metabolic pathways including: amino acid, lipids, peptides, xenobiotics biodegradation, carbohydrates, nucleotides, Co-factors and vitamins which may contribute to the evaluation of the effects associated with UV sunlight exposure. CONCLUSIONS The results of pilot study indicate that pre and post-exposure UV metabolomics screening of urine samples may be the best tool than plasma samples and a potential approach to predict the metabolomic changes due to UV exposure. Additional future work may shed light on the application of available metabolomic approaches to explore potential predictive markers to determine the impacts of UV sunlight.
Collapse
Affiliation(s)
- Ali Muhsen Ali
- College of Medicine, University of Kerbala, Karbala, Iraq.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Chris Monaghan
- Institute for Clinical Exercise and Health Science, University of theWest of Scotland, Almada Street, Hamilton, Blantyre, ML3 0JB, UK
| | | | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of theWest of Scotland, Almada Street, Hamilton, Blantyre, ML3 0JB, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
2
|
Palma CFF, Castro-Alves V, Rosenqvist E, Ottosen CO, Strid Å, Morales LO. Effects of UV radiation on transcript and metabolite accumulation are dependent on monochromatic light background in cucumber. PHYSIOLOGIA PLANTARUM 2021; 173:750-761. [PMID: 34510478 DOI: 10.1111/ppl.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves. The growth light backgrounds differentially regulated gene expression and metabolite accumulation. While HY5 and CHS2 transcripts were induced by blue and white light, LHCII was induced by white and red light. Furthermore, UV radiation antagonized the effects of blue, red, green, and white light on transcript accumulation in a gene-dependent manner. Plants grown under blue light with supplementary UV radiation increased phenylalanine, flavonol disaccharide I and caffeic acid contents compared to those exposed only to blue light. UV radiation also induced the accumulation of flavonol disaccharide I and II, ferulic acid hexose and coumaric acid hexose in plants grown under green light. Our findings provide a further understanding of plant responses to UV radiation in combination with different light spectra and contribute to the design of light recipes for horticultural practices that aim to modify plant metabolism and ultimately improve crop quality.
Collapse
Affiliation(s)
| | - Victor Castro-Alves
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Institute of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | | | - Åke Strid
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Luis Orlando Morales
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Rai N, Morales LO, Aphalo PJ. Perception of solar UV radiation by plants: photoreceptors and mechanisms. PLANT PHYSIOLOGY 2021; 186:1382-1396. [PMID: 33826733 PMCID: PMC8260113 DOI: 10.1093/plphys/kiab162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
About 95% of the ultraviolet (UV) photons reaching the Earth's surface are UV-A (315-400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280-315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and "UV-B photoreceptor" UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8's role as a UV-B/UV-Asw photoreceptor in sunlight.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Author for communication: . Present address: Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Luis Orlando Morales
- School of Science and Technology, The Life Science Center-Biology, Örebro University, SE-70182 Örebro, Sweden
| | - Pedro José Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Physiologic and Metabolic Changes in Crepidiastrum denticulatum According to Different Energy Levels of UV-B Radiation. Int J Mol Sci 2020; 21:ijms21197134. [PMID: 32992615 PMCID: PMC7582291 DOI: 10.3390/ijms21197134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Ultraviolet B (UV-B) light, as a physical elicitor, can promote the secondary metabolites biosynthesis in plants. We investigated effects of different energy levels of UV-B radiation on growth and bioactive compounds of Crepidiastrum denticulatum. Three-week-old seedlings were grown in a plant factory for 5 weeks. Plants were subjected to different levels of UV-B (0, 0.1, 0.25, 0.5, 1.0, and 1.25 W m−2), 6 h a day for 6 days. All UV-B treatments had no negative effect on the shoot dry weight; however, relatively high energy treatments (1.0 and 1.25 W m−2) inhibited the shoot fresh weight. UV-B light of 0.1, 0.25, and 0.5 W m−2 did not affect total chlorophyll and H2O2 contents; however, they increased total carotenoid content. On 4 days, 0.25 W m−2 treatment increased antioxidant capacity, total hydroxycinnamic acids (HCAs) content, and several sesquiterpenes. Treatments with 1.0 and 1.25 W m−2 increased total carotenoid, total HCAs, and H2O2 contents, and destroyed chlorophyll pigments, reducing maximum quantum yield of photosystem II and causing visible damage to leaves. Partial least squares discrimination analysis (PLS-DA) showed that secondary metabolites were distinguishably changed according to energy levels of UV-B. The potential of 0.25 W m−2 UV-B for the efficient production of bioactive compounds without growth inhibition in C. denticulatum was identified.
Collapse
|
5
|
Barrera A, Hereme R, Ruiz-Lara S, Larrondo LF, Gundel PE, Pollmann S, Molina-Montenegro MA, Ramos P. Fungal Endophytes Enhance the Photoprotective Mechanisms and Photochemical Efficiency in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to UV-B Radiation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
6
|
Rissel D, Peiter E. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Int J Mol Sci 2019; 20:E1638. [PMID: 30986964 PMCID: PMC6479469 DOI: 10.3390/ijms20071638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient post-translational protein modification that was described first in mammalian cells. Activated by the sensing of DNA strand breaks, poly(ADP-ribose)polymerase1 (PARP1) transfers ADP-ribose units onto itself and other target proteins using NAD⁺ as a substrate. Subsequently, DNA damage responses and other cellular responses are initiated. In plants, poly(ADP-ribose) polymerases (PARPs) have also been implicated in responses to DNA damage. The Arabidopsis genome contains three canonical PARP genes, the nomenclature of which has been uncoordinated in the past. Albeit assumptions concerning the function and roles of PARP proteins in planta have often been inferred from homology and structural conservation between plant PARPs and their mammalian counterparts, plant-specific roles have become apparent. In particular, PARPs have been linked to stress responses of plants. A negative role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants; in response to pathogen-associated molecular patterns, a positive role has been suggested. However, reports have been inconsistent, and the effects of PARP inhibitors appear to be more robust than the genetic abolition of PARP gene expression, indicating the presence of alternative targets of those drugs. Collectively, recent evidence suggests a conditionality of stress-related phenotypes of parp mutants and calls for a reconsideration of PARP inhibitor studies on plants. This review critically summarizes our current understanding of poly(ADP-ribosylation) and PARP proteins in plants, highlighting similarities and differences to human PARPs, areas of controversy, and requirements for future studies.
Collapse
Affiliation(s)
- Dagmar Rissel
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut (JKI), 38104 Braunschweig, Germany.
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
| |
Collapse
|
7
|
Czégény G, Kőrösi L, Strid Å, Hideg É. Multiple roles for Vitamin B 6 in plant acclimation to UV-B. Sci Rep 2019; 9:1259. [PMID: 30718682 PMCID: PMC6361899 DOI: 10.1038/s41598-018-38053-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023] Open
Abstract
Direct and indirect roles of vitamin B6 in leaf acclimation to supplementary UV-B radiation are shown in vitamin B6 deficient Arabidopsis thaliana mutant rsr4-1 and C24 wild type. Responses to 4 days of 3.9 kJ m-2 d-1 biologically effective UV-B dose were compared in terms of leaf photochemistry, vitamer content, and antioxidant enzyme activities; complemented with a comprehensive study of vitamer ROS scavenging capacities. Under UV-B, rsr4-1 leaves lost more (34%) photochemical yield than C24 plants (24%). In the absence of UV-B, rsr4-1 leaves contained markedly less pyridoxal-5'-phosphate (PLP) than C24 ones, but levels increased up to the C24 contents in response to UV-B. Activities of class-III ascorbate and glutathione peroxidases increased in C24 leaves upon the UV-B treatment but not in the rsr4-1 mutant. SOD activities remained the same in C24 but decreased by more than 50% in rsr4-1 under UV-B. Although PLP was shown to be an excellent antioxidant in vitro, our results suggest that the UV-B protective role of B6 vitamers is realized indirectly, via supporting peroxidase defence rather than by direct ROS scavenging. We hypothesize that the two defence pathways are linked through the PLP-dependent biosynthesis of cystein and heme, affecting peroxidases.
Collapse
Affiliation(s)
- Gyula Czégény
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, Örebro, Sweden
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
8
|
Liu H, Cao X, Liu X, Xin R, Wang J, Gao J, Wu B, Gao L, Xu C, Zhang B, Grierson D, Chen K. UV-B irradiation differentially regulates terpene synthases and terpene content of peach. PLANT, CELL & ENVIRONMENT 2017; 40:2261-2275. [PMID: 28722114 DOI: 10.1111/pce.13029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 05/06/2023]
Abstract
Plants generate protective molecules in response to ultraviolet (UV) light. In laboratory experiments, 48 h UV-B irradiation of peach fruits and leaves reduced the flavour-related monoterpene linalool by 60%. No isoprene was detected, but other terpenoids increased significantly, including a threefold accumulation of the sesquiterpene (E,E)-α-farnesene, which was also increased by jasmonic acid treatment. RNA sequencing revealed altered transcript levels for two terpene synthases (TPSs): PpTPS1, a TPS-g subfamily member, decreased by 86% and PpTPS2, a TPS-b subfamily member, increased 80-fold. Heterologous expression in Escherichia coli and transient overexpression in tobacco and peach fruits showed PpTPS1 was localized in plastids and associated with production of linalool, while PpTPS2 was responsible for (E,E)-α-farnesene biosynthesis in the cytoplasm. Candidate regulatory genes for these responses were identified. Commercial peach production in Asia involves fruit bagging to maintain marketable yield and quality. TPS gene expression and volatile terpenoid production in field experiments, using bags transmitting high UV-B radiation, showed similar effects on peach volatiles to those from laboratory experiments. Bags transmitting less UV-B light ameliorated the reduction in the flavour volatile linalool, indicating that flavour components of peach fruits can be modulated by selecting an appropriate source of environmental screening material.
Collapse
Affiliation(s)
- Hongru Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaohong Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Rui Xin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiaojiao Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jie Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Boping Wu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Liuxiao Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
9
|
Aphalo PJ, Jansen MAK, McLeod AR, Urban O. Ultraviolet radiation research: from the field to the laboratory and back. PLANT, CELL & ENVIRONMENT 2015; 38:853-5. [PMID: 25876767 DOI: 10.1111/pce.12537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Pedro J Aphalo
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|