1
|
Gregory LM, Scott KF, Sharpe LA, Roze LV, Schmiege SC, Hammer JM, Way DA, Walker BJ. Rubisco activity and activation state dictate photorespiratory plasticity in Betula papyrifera acclimated to future climate conditions. Sci Rep 2024; 14:26340. [PMID: 39487181 PMCID: PMC11530445 DOI: 10.1038/s41598-024-77049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Plant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be explained through symmorphosis, which would quantitatively match enzymatic capacity to pathway influx. Alternatively, plants could maintain excess enzymatic capacity to manage unpredictable pathway influx. In this study, we use photorespiration as a case study to investigate these two hypotheses in Betula papyrifera. This involves altering photorespiratory influx by manipulating the growth environment, via changes in CO2 concentration and temperature, to determine how photorespiratory capacity acclimates to environmental treatments. Surprisingly, the results from these measurements indicate that there is no plasticity in photorespiratory capacity in B. papyrifera, and that a fixed capacity is maintained under each growth condition. The fixed capacity is likely due to the existence of reserve capacity in the pathway that manages unpredictable photorespiratory influx in dynamic environments. Additionally, we found that B. papyrifera had a constant net carbon assimilation under each growth condition due to an adjustment of functional rubisco activity driven by changes in activation state. These results provide insight into the acclimation ability and limitations of B. papyrifera to future climate scenarios currently predicted in the next century.
Collapse
Affiliation(s)
- Luke M Gregory
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kate F Scott
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luke A Sharpe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ludmila V Roze
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephanie C Schmiege
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Julia M Hammer
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Vega-Mas I, Marino D, De la Peña M, Fuertes-Mendizábal T, González-Murua C, Estavillo JM, González-Moro MB. Enhanced photorespiratory and TCA pathways by elevated CO 2 to manage ammonium nutrition in tomato leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109216. [PMID: 39486222 DOI: 10.1016/j.plaphy.2024.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Plants grown under exclusive ammonium (NH4+) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO3-) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO2) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (Solanum lycopersicum L.) plants were grown under ammonium or nitrate nutrition in conditions of ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 800 ppm) atmosphere. Elevated CO2 increased photosynthesis rate and tomato shoot growth regardless of the N source. In the case of NH4+-fed leaves the positive effect of elevated CO2 occurred despite of the high tissue NH4+ accumulation. Under eCO2 ammonium nutrition triggered, among others, the modulation of genes related to C provision pathways (including carbonic anhydrase and glyoxylate cycle), antioxidant response and cell membranes protection. The enhanced photosynthate production at eCO2 facilitated C skeleton provision through the TCA cycle and anaplerotic pathways to promote amino acid synthesis. Moreover, photorespiratory activity was stimulated by eCO2 and contributed to yield serine as additional sink for NH4+ excess. Overall, these changes denote a connection between the respiratory and the photorespiratory pathways linked to ammonium nutrition. This metabolic strategy may allow crops to grow efficiently using ammonium as fertilizer in a future climate change scenario, while mitigating N losses.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | |
Collapse
|
3
|
Shen L, Li Z, Huang X, Zhang P, Zhang L, Zhao W, Wen Y, Liu H. Effects of polystyrene microplastic composite with florfenicol on photosynthetic carbon assimilation of rice (Oryza sativa L.) seedlings: Light reactions, carbon reactions, and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135470. [PMID: 39128152 DOI: 10.1016/j.jhazmat.2024.135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The effects of co-exposure to antibiotics and microplastics in agricultural systems are still unclear. This study investigated the effects of florfenicol (FF) and polystyrene microplastics (PS-MPs) on photosynthetic carbon assimilation in rice seedlings. Both FF and PS-MPs inhibited photosynthesis, while PS-MPs can alleviate the toxicity of FF. Chlorophyll synthesis genes (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) were down-regulated, whereas electron transport chain genes (PGR5, PGRL1A, PGRL1B, petH, and ndhH) were up-regulated. FF inhibited linear electron transfer (LET) and activated cyclic electron transfer (CET), which was consistent with the results of the chlorophyll fluorescence parameters. The photosynthetic carbon assimilation pathway was altered, the C3 pathway enzyme Ribulose1,5-bisphosphatecarboxylase/oxygenase (RuBisCO) was affected, C4 enzyme ((phosphoenolpyruvate carboxykinase (PEPCK), pyruvate orthophosphate dikinase (PPDK), malate dehydrogenase (MDH), and phosphoenolpyruvate carboxylase (PEPC))) and related genes were significantly up-regulated, suggesting that the C3 pathway is converted to C4 pathway for self-protection. The key enzymes involved in photorespiration, glycolate oxidase (GO) and catalase (CAT), responded positively, photosynthetic phosphorylation was inhibited, and ATP content and H+-ATPase activity were suppressed, nutrient content (K, P, N, Ca, Mg, Fe, Cu, Zn, Mn, and Ni) significantly affected. Transcriptomic analysis showed that FF and PS-MPs severely affected the photosynthetic capacity of rice seedlings, including photosystem I, photosystem II, non-photochemical quenching coefficients, and photosynthetic electron transport.
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
4
|
Basu D, Butler C, Rollins MB, South P. Identification and Functional Characterization of cis-Regulatory Elements of Key Photorespiratory Genes in Response to Short-Term Abiotic Stress Conditions. Methods Mol Biol 2024; 2792:251-264. [PMID: 38861093 DOI: 10.1007/978-1-0716-3802-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The cis-regulatory elements (CREs) are the short stretches of noncoding DNA upstream of a gene, which play a critical role in fine-tuning gene expression. Photorespiration is a multi-organellar, energy-expensive biochemical process that remains intricately linked to photosynthesis and is conserved in plants. Recently, much focus has been devoted in generating plants with engineered alternative photorespiratory bypasses to enhance photosynthetic efficiency without compromising the beneficial aspect of photorespiration. Varied constitutive or inducible promoters for generating transgenic plants harboring multiple transgenes have been introduced over years; however, most of them suffer from unintended effects. Consequently, a demand for synthetic tunable promoters based on canonical CRE signatures derived from native genes is on the rise. Here, in this chapter, we have provided a detailed method for in silico identification and characterization of CREs associated with photorespiration. In addition to the detailed protocol, we have presented an example of a typical result and explained the significance of the result. Specifically, the method covers how to identify and generate tunable synthetic promoters based on native CREs using three key photorespiratory genes from Arabidopsis and two web-based tools, namely, PlantPAN3.0 and AthaMap. Finally, we have also furnished a protocol on how to test the efficacies of the synthetic promoters harboring predicted CREs using transient tobacco expression coupled with luciferase-based promoter assay in response to ambient conditions and under short-term abiotic stress conditions.
Collapse
Affiliation(s)
| | - Casey Butler
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Mary Beth Rollins
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Paul South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Decker D, Aubert J, Wilczynska M, Kleczkowski LA. Exploring Redox Modulation of Plant UDP-Glucose Pyrophosphorylase. Int J Mol Sci 2023; 24:ijms24108914. [PMID: 37240260 DOI: 10.3390/ijms24108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity. The oxidized enzyme had increased Km values with substrates, especially pyrophosphate. The increased Km values were also observed, regardless of redox status, for UGPase cysteine mutants (Cys102Ser and Cys99Ser for sugarcane and barley UGPases, respectively). However, activities and substrate affinities (Kms) of sugarcane Cys102Ser mutant, but not barley Cys99Ser, were still prone to redox modulation. The data suggest that plant UGPase is subject to redox control primarily via changes in the redox status of a single cysteine. Other cysteines may also, to some extent, contribute to UGPase redox status, as seen for sugarcane enzymes. The results are discussed with respect to earlier reported details of redox modulation of eukaryotic UGPases and regarding the structure/function properties of these proteins.
Collapse
Affiliation(s)
- Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Juliette Aubert
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | | | - Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
6
|
García-Calderón M, Vignane T, Filipovic MR, Ruiz MT, Romero LC, Márquez AJ, Gotor C, Aroca A. Persulfidation protects from oxidative stress under nonphotorespiratory conditions in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1431-1445. [PMID: 36840421 DOI: 10.1111/nph.18838] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide is a signaling molecule in plants that regulates essential biological processes through protein persulfidation. However, little is known about sulfide-mediated regulation in relation to photorespiration. Here, we performed label-free quantitative proteomic analysis and observed a high impact on protein persulfidation levels when plants grown under nonphotorespiratory conditions were transferred to air, with 98.7% of the identified proteins being more persulfidated under suppressed photorespiration. Interestingly, a higher level of reactive oxygen species (ROS) was detected under nonphotorespiratory conditions. Analysis of the effect of sulfide on aspects associated with non- or photorespiratory growth conditions has demonstrated that it protects plants grown under suppressed photorespiration. Thus, sulfide amends the imbalance of carbon/nitrogen and restores ATP levels to concentrations like those of air-grown plants; balances the high level of ROS in plants under nonphotorespiratory conditions to reach a cellular redox state similar to that in air-grown plants; and regulates stomatal closure, to decrease the high guard cell ROS levels and induce stomatal aperture. In this way, sulfide signals the CO2 -dependent stomata movement, in the opposite direction of the established abscisic acid-dependent movement. Our findings suggest that the high persulfidation level under suppressed photorespiration reveals an essential role of sulfide signaling under these conditions.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - M Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Angeles Aroca
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
7
|
Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153950. [PMID: 36889102 DOI: 10.1016/j.jplph.2023.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Daimu Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan; Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaru Kono
- Graduate School of Science, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
8
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Yao Z, Rao Z, Hou S, Tian C, Liu CY, Yang X, Zhu G. The appropriate expression and coordination of glycolate oxidase and catalase are vital to the successful construction of the photorespiratory metabolic pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:999757. [PMID: 36388585 PMCID: PMC9647076 DOI: 10.3389/fpls.2022.999757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Photorespiration has emerged as a hotspot in the evolution of photosynthesis owing to the energy loss during the process. To ensure the physiological functions of photorespiration such as light protection, H2O2 signaling, and stress resistance, separate the photorespiration glycolic acid flow, and minimize photorespiration loss, a balance must be maintained during the construction of photorespiratory metabolic branch. In this study, glycolate oxidase (GLO) and catalase (CAT) were introduced into potato (Solanum tuberosum) chloroplasts through the expression of fusion protein. Through the examination of phenotypic characteristics, photosynthesis, anatomical structure, and enzyme activity, the efficiency of the photorespiration pathway was demonstrated. The results showed that certain transgenic lines plants had shorter plant height and deformed leaves and tubers in addition to the favorable photosynthetic phenotypes of thicker leaves and larger and denser mesophyll cells. By Diaminobenzidine (DAB) staining analysis of the leaves, the intermediate H2O2 could not be decomposed in time to cause biomass decline and malformation, and the excessive glycolate shunt formed by the overexpression of the fusion protein affected other important physiological activities. Hence, the appropriate and coordinated expression of glycolate oxidase and catalase is essential for the establishment of photorespiration pathways in chloroplasts.
Collapse
Affiliation(s)
- Zhen Yao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Zelai Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- School of Finance and Economics, Jimei University, Xiamen, China
| | - ShuWang Hou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Changwei Tian
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Chun-Yan Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiulan Yang
- Department of Medicine, Yangtze University, Jingzhou, China
| | - Guicai Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Shi M, Zhao L, Wang Y. Identification and Characterization of Genes Encoding the Hydroxypyruvate Reductases in Chlamydomonas Reveal Their Distinct Roles in Photorespiration. FRONTIERS IN PLANT SCIENCE 2021; 12:690296. [PMID: 34249060 PMCID: PMC8264790 DOI: 10.3389/fpls.2021.690296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Photorespiration plays an important role in maintaining normal physiological metabolism in higher plants and other oxygenic organisms, such as algae. The unicellular eukaryotic organism Chlamydomonas is reported to have a photorespiration system different from that in higher plants, and only two out of nine genes encoding photorespiratory enzymes have been experimentally characterized. Hydroxypyruvate reductase (HPR), which is responsible for the conversion of hydroxypyruvate into glycerate, is poorly understood and not yet explored in Chlamydomonas. To identify the candidate genes encoding hydroxypyruvate reductases in Chlamydomonas (CrHPR) and uncover their elusive functions, we performed sequence comparison, enzyme activity measurement, subcellular localization, and analysis of knockout/knockdown strains. Together, we identify five proteins to be good candidates for CrHPRs, all of which are detected with the activity of hydroxypyruvate reductase. CrHPR1, a nicotinamide adenine dinucleotide (NADH)-dependent enzyme in mitochondria, may function as the major component of photorespiration. Its deletion causes severe photorespiratory defects. CrHPR2 takes part in the cytosolic bypass of photorespiration as the compensatory pathway of CrHPR1 for the reduction of hydroxypyruvate. CrHPR4, with NADH as the cofactor, may participate in photorespiration by acting as the chloroplastidial glyoxylate reductase in glycolate-quinone oxidoreductase system. Therefore, the results reveal that CrHPRs are far more complex than previously recognized and provide a greatly expanded knowledge base for studies to understand how CrHPRs perform their functions in photorespiration. These will facilitate both modification of photorespiration and genetic engineering for crop improvement by synthetic biology.
Collapse
Affiliation(s)
- Menglin Shi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yong Wang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Modeling the oxygen inhibition in microalgae: An experimental approach based on photorespirometry. N Biotechnol 2020; 59:26-32. [PMID: 32683047 DOI: 10.1016/j.nbt.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Microalgae cultivation has been the object of relevant interest for many industrial applications. Where high purity of the biomass/product is required, closed photobioreactors (PBRs) appear to be the best technological solution. However, as well as cost, the major drawback of closed systems is oxygen accumulation, which is well known to be responsible for growth inhibition. Only a few quantitative approaches have attempted to describe and model oxygen inhibition, which is the result of different biological mechanisms. Here, we have applied a photorespirometric protocol to assess and quantify the effect of high oxygen concentration on photosynthetic production rate. In particular, the effects of light intensity and biomass concentration were assessed, resulting in different maximum inhibitory oxygen concentrations. Literature models available were found not to fully represent experimental data as a function of concentration and light. Accordingly, a new formulation was proposed and validated to describe the photosynthetic rate as a function of external oxygen concentration.
Collapse
|
14
|
Wanichthanarak K, Boonchai C, Kojonna T, Chadchawan S, Sangwongchai W, Thitisaksakul M. Deciphering rice metabolic flux reprograming under salinity stress via in silico metabolic modeling. Comput Struct Biotechnol J 2020; 18:3555-3566. [PMID: 33304454 PMCID: PMC7708941 DOI: 10.1016/j.csbj.2020.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Rice is one of the most economically important commodities globally. However, rice plants are salt susceptible species in which high salinity can significantly constrain its productivity. Several physiological parameters in adaptation to salt stress have been observed, though changes in metabolic aspects remain to be elucidated. In this study, rice metabolic activities of salt-stressed flag leaf were systematically characterized. Transcriptomics and metabolomics data were combined to identify disturbed pathways, altered metabolites and metabolic hotspots within the rice metabolic network under salt stress condition. Besides, the feasible flux solutions in different context-specific metabolic networks were estimated and compared. Our findings highlighted metabolic reprogramming in primary metabolic pathways, cellular respiration, antioxidant biosynthetic pathways, and phytohormone biosynthetic pathways. Photosynthesis and hexose utilization were among the major disturbed pathways in the stressed flag leaf. Notably, the increased flux distribution of the photorespiratory pathway could contribute to cellular redox control. Predicted flux statuses in several pathways were consistent with the results from transcriptomics, end-point metabolomics, and physiological studies. Our study illustrated that the contextualized genome-scale model together with multi-omics analysis is a powerful approach to unravel the metabolic responses of rice to salinity stress.
Collapse
Key Words
- 3-PGA, 3-Phosphoglycerate
- ADH, Arogenate dehydrogenase
- ASA, Ascorbate
- CGS, Cystathionine γ-synthase
- CINV, Cytosolic invertase
- Ci, Intercellular CO2 concentration
- E, Transpiration rate
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GC-TOF-MS, Gas chromatography time-of-flight mass spectrometry
- GEM, Genome-scale metabolic model
- GLYK, 3-Phosphoglycerate kinase
- GMD, Golm Metabolome Database
- GSH, Glutathione
- GSSG, Glutathione disulfide
- IAA, Indole-3-acetic acid
- IPA, Indolepyruvate
- MAPK, Mitogen-activated protein kinase
- MDH, Malate dehydrogenase
- Metabolic flux analysis
- Metabolic modeling
- Metabolomics
- Multi-omics analysis
- PFK, Phosphofructokinase
- PGK, Phosphoglycerate kinase
- PLS-DA, Partial-Least Squares Discriminant Analysis
- Pn, Net photosynthesis rate
- Rice (Oryza sativa L.)
- SOD, Superoxide dismutase
- Salinity stress
- Systems biology
- TAT, Tyrosine aminotransferase
- Transcriptomics
- gs, Stomatal conductance
- iMAT, Integrative Metabolic Analysis Tool
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chuthamas Boonchai
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Future Innovation and Research in Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammaporn Kojonna
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichian Sangwongchai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maysaya Thitisaksakul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
15
|
Timm S, Hagemann M. Photorespiration-how is it regulated and how does it regulate overall plant metabolism? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3955-3965. [PMID: 32274517 DOI: 10.1093/jxb/eraa183] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Under the current atmospheric conditions, oxygenic photosynthesis requires photorespiration to operate. In the presence of low CO2/O2 ratios, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs an oxygenase side reaction, leading to the formation of high amounts of 2-phosphoglycolate during illumination. Given that 2-phosphoglycolate is a potent inhibitor of photosynthetic carbon fixation, it must be immediately removed through photorespiration. The core photorespiratory cycle is orchestrated across three interacting subcellular compartments, namely chloroplasts, peroxisomes, and mitochondria, and thus cross-talks with a multitude of other cellular processes. Over the past years, the metabolic interaction of photorespiration and photosynthetic CO2 fixation has attracted major interest because research has demonstrated the enhancement of C3 photosynthesis and growth through the genetic manipulation of photorespiration. However, to optimize future engineering approaches, it is also essential to improve our current understanding of the regulatory mechanisms of photorespiration. Here, we summarize recent progress regarding the steps that control carbon flux in photorespiration, eventually involving regulatory proteins and metabolites. In this regard, both genetic engineering and the identification of various layers of regulation point to glycine decarboxylase as the key enzyme to regulate and adjust the photorespiratory carbon flow. Potential implications of the regulation of photorespiration for acclimation to environmental changes along with open questions are also discussed.
Collapse
Affiliation(s)
- Stefan Timm
- University of Rostock, Plant Physiology Department, Rostock, Germany
| | - Martin Hagemann
- University of Rostock, Plant Physiology Department, Rostock, Germany
| |
Collapse
|
16
|
Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem Soc Trans 2020; 47:1805-1813. [PMID: 31754693 DOI: 10.1042/bst20190322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Current crop yields will not be enough to sustain today's diets for a growing global population. As plant photosynthetic efficiency has not reached its theoretical maximum, optimizing photosynthesis is a promising strategy to enhance plant productivity. The low productivity of C3 plants is caused in part by the substantial energetic investments necessary to maintain a high flux through the photorespiratory pathway. Accordingly, lowering the energetic costs of photorespiration to enhance the productivity of C3 crops has been a goal of synthetic plant biology for decades. The use of synthetic bypasses to photorespiration in different plants showed an improvement of photosynthetic performance and growth under laboratory and field conditions, even though in silico predictions suggest that the tested synthetic pathways should confer a minimal or even negative energetic advantage over the wild type photorespiratory pathway. Current strategies increasingly utilize theoretical modeling and new molecular techniques to develop synthetic biochemical pathways that bypass photorespiration, representing a highly promising approach to enhance future plant productivity.
Collapse
|
17
|
Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:2627-2644. [PMID: 31222760 DOI: 10.1111/pce.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Kentaro Kaneko
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| |
Collapse
|
18
|
Réthoré E, d'Andrea S, Benamar A, Cukier C, Tolleter D, Limami AM, Avelange-Macherel MH, Macherel D. Arabidopsis seedlings display a remarkable resilience under severe mineral starvation using their metabolic plasticity to remain self-sufficient for weeks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:302-315. [PMID: 30900791 DOI: 10.1111/tpj.14325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
During the life cycle of plants, seedlings are considered vulnerable because they are at the interface between the highly stress tolerant seed embryos and the established plant, and must develop rapidly, often in a challenging environment, with limited access to nutrients and light. Using a simple experimental system, whereby the seedling stage of Arabidopsis is considerably prolonged by nutrient starvation, we analysed the physiology and metabolism of seedlings maintained in such conditions up to 4 weeks. Although development was arrested at the cotyledon stage, there was no sign of senescence and seedlings remained viable for weeks, yielding normal plants after transplantation. Photosynthetic activity compensated for respiratory carbon losses, and energy dissipation by photorespiration and alternative oxidase appeared important. Photosynthates were essentially stored as organic acids, while the pool of free amino acids remained stable. Seedlings lost the capacity to store lipids in cytosolic lipid droplets, but developed large plastoglobuli. Arabidopsis seedlings arrested in their development because of mineral starvation displayed therefore a remarkable resilience, using their metabolic and physiological plasticity to maintain a steady state for weeks, allowing resumption of development when favourable conditions ensue.
Collapse
Affiliation(s)
- Elise Réthoré
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| | - Sabine d'Andrea
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - Abdelilah Benamar
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| | - Caroline Cukier
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| | - Dimitri Tolleter
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| | - Anis M Limami
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| | | | - David Macherel
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 Quasav, 42 rue Georges Morel, 49071, Beaucouzé, France
| |
Collapse
|
19
|
Wang T, Li S, Chen D, Xi Y, Xu X, Ye N, Zhang J, Peng X, Zhu G. Impairment of FtsHi5 Function Affects Cellular Redox Balance and Photorespiratory Metabolism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:2526-2535. [PMID: 30137570 DOI: 10.1093/pcp/pcy174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/18/2018] [Indexed: 05/20/2023]
Abstract
Photorespiration is an essential process for plant photosynthesis, development and growth in aerobic conditions. Recent studies have shown that photorespiration is an open system integrated with the plant primary metabolism network and intracellular redox systems, though the mechanisms of regulating photorespiration are far from clear. Through a forward genetic method, we identified a photorespiratory mutant pr1 (photorespiratory related 1), which produced a chlorotic and smaller photorespiratory growth phenotype with decreased chlorophyll content and accumulation of glycine and serine in ambient air. Morphological and physiological defects in pr1 plants can be largely abolished under elevated CO2 conditions. Genetic mapping and complementation confirmed that PR1 encodes an FtsH (Filamentation temperature-sensitive H)-like protein, FtsHi5. Reduced FtsHi5 expression in DEX-induced RNAi transgenic plants produced a similar growth phenotype with pr1 (ftsHi5-1). Transcriptome analysis suggested a changed expression pattern of redox-related genes and an increased expression of senescence-related genes in DEX: RNAi-FtsHi5 seedlings. Together with the observation that decreased accumulation of D1 and D2 proteins of photosystem II (PSII) and over-accumulation of reactive oxygen species (ROS) in ftsHi5 mutants, we hypothesize that FtsHi5 functions in maintaining the cellular redox balance and thus regulates photorespiratory metabolism.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Sihui Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Dan Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Xi
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Jianhua Zhang
- Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xinxiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|
21
|
Igamberdiev AU, Bykova NV. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 2018; 122:74-85. [PMID: 29355740 DOI: 10.1016/j.freeradbiomed.2018.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
Organic acids play a crucial role in numerous metabolic processes accompanied by transfer of electrons and protons and linked to the reduction/oxidation of major redox couples in plant cells, such as NAD, NADP, glutathione, and ascorbate. Fluxes through the pathways metabolizing organic acids modulate redox states in cell compartments, contribute to generation of reactive oxygen and nitrogen species, and mediate signal transduction processes. Organic acid metabolism not only functions to equilibrate the redox potential in plant cells but also to transfer redox equivalents between cell compartments supporting various metabolic processes. The most important role in this transfer belongs to different forms of malate dehydrogenase interconverting malate and oxaloacetate or forming pyruvate (malic enzymes). During photosynthesis malate serves as a major form of transfer of redox equivalents from chloroplasts to the cytosol and other compartments via the malate valve. On the other hand, mitochondria, via alterations of their redox potential, become a source of citrate that can be transported to the cytosol and support biosynthesis of amino acids. Citrate is also an important retrograde signalling compound that regulates transcription of several genes including those encoding the alternative oxidase. The alternative oxidase, which is activated by increased redox potential and by pyruvate, is, in turn, important for the maintenance of redox potential in mitochondria. The roles of organic acids in establishing redox equilibrium, supporting ionic gradients on membranes, acidification of the extracellular medium, and regulation of production of reactive oxygen and nitrogen species are discussed.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | - Natalia V Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada R6M 1Y5
| |
Collapse
|
22
|
Zannini F, Couturier J, Keech O, Rouhier N. In Vitro Alkylation Methods for Assessing the Protein Redox State. Methods Mol Biol 2017; 1653:51-64. [PMID: 28822125 DOI: 10.1007/978-1-4939-7225-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cysteines are important residues for protein structure, function, and regulation. Owing to their modified reactivity, some cysteines can undergo very diverse redox posttranslational modifications, including the reversible formation of disulfide bonds, a widespread protein regulatory process as well exemplified in plant chloroplasts for Calvin-Benson cycle enzymes. Both core- and peripheral-photorespiratory enzymes possess conserved cysteines, some of which have been identified as being subject to oxidative modifications. This is not surprising considering their presence in subcellular compartments where the production of reactive species can be important. However, in most cases, the types of modifications and their biochemical effect on protein activity have not been validated, meaning that the possible impact of these modifications in a complex physiological context, such as photorespiration, remains obscure.We here describe a detailed set of protocols for alkylation methods that have been used so far to (1) study the protein cysteine redox state either in vitro by submitting purified recombinant proteins to reducing/oxidation treatments or in vivo by western blots on protein extracts from plants subject to environmental constraints, and its dependency on the two major reducing systems in the cell, i.e., the thioredoxin and glutathione/glutaredoxin systems, and (2) determine two key redox parameters, i.e., the cysteine pK a and the redox midpoint potential.
Collapse
Affiliation(s)
- Flavien Zannini
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France
| | - Jérémy Couturier
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Nicolas Rouhier
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
23
|
Gardeström P, Igamberdiev AU. The origin of cytosolic ATP in photosynthetic cells. PHYSIOLOGIA PLANTARUM 2016; 157:367-79. [PMID: 27087668 DOI: 10.1111/ppl.12455] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 05/02/2023]
Abstract
In photosynthetically active cells, both chloroplasts and mitochondria have the capacity to produce ATP via photophosphorylation and oxidative phosphorylation, respectively. Thus, theoretically, both organelles could provide ATP for the cytosol, but the extent, to which they actually do this, and how the process is regulated, both remain unclear. Most of the evidence discussed comes from experiments with rapid fractionation of isolated protoplasts subjected to different treatments in combination with application of specific inhibitors. The results obtained indicate that, under conditions where ATP demand for photosynthetic CO2 fixation is sufficiently high, the mitochondria supply the bulk of ATP for the cytosol. In contrast, under stress conditions where CO2 fixation is severely limited, ATP will build up in chloroplasts and it can then be exported to the cytosol, by metabolite shuttle mechanisms. Thus, depending on the conditions, either mitochondria or chloroplasts can supply the bulk of ATP for the cytosol. This supply of ATP is discussed in relation to the idea that mitochondrial functions may be tuned to provide an optimal environment for the chloroplast. By balancing cellular redox states, mitochondria can contribute to an optimal photosynthetic capacity.
Collapse
Affiliation(s)
- Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
24
|
Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MAJ, Sage R, Timm S, Walker B, Weber APM. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2977-88. [PMID: 26951371 DOI: 10.1093/jxb/erw076] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.
Collapse
Affiliation(s)
- Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, 41012 Sevilla, Spain
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Florian A Busch
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Myles Levey
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Donald R Ort
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Berkley Walker
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK, Weber APM. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3015-26. [PMID: 27053720 DOI: 10.1093/jxb/erw145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Michael Hodges
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Younès Dellero
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, 141012 Sevilla, Spain
| | - Agepati S Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Xin-Guang Zhu
- CAS-MPG Partner Institutes for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|