1
|
Li J, Zhang Y, Chen Y, Wang Y, Zhou Z, Tu J, Guo L, Yao X. The roles of cell wall polysaccharides in response to waterlogging stress in Brassica napus L. root. BMC Biol 2024; 22:191. [PMID: 39218874 PMCID: PMC11367843 DOI: 10.1186/s12915-024-01972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brassica napus L. (B. napus) is susceptible to waterlogging stress during different cultivation periods. Therefore, it is crucial to enhance the resistance to waterlogging stress to achieve a high and stable yield of B. napus. RESULTS Here we observed significant differences in the responses of two B. napus varieties in root under waterlogging stress. The sensitive variety (23651) exhibited a more pronounced and rapid reduction in cell wall thickness and root integrity compared with the tolerant variety (Santana) under waterlogging stress. By module clustering analysis based on transcriptome data, we identified that cell wall polysaccharide metabolism responded to waterlogging stress in root. It was found that pectin content was significantly reduced in the sensitive variety compared with the tolerant variety. Furthermore, transcriptome analysis revealed that the expression of two homologous genes encoding polygalacturonase-inhibiting protein 2 (PGIP2), involved in polysaccharide metabolic pathways, was highly upregulated in root of the tolerant variety under waterlogging stress. BnaPGIP2s probably confer waterlogging resistance by inhibiting the activity of polygalacturonases (PGs), which in turn reduces the degradation of the pectin backbone polygalacturonic acid. CONCLUSIONS Our findings demonstrate that cell wall polysaccharides in root plays a vital role in response to the waterlogging stress and provide a theoretical foundation for breeding waterlogging resistance in B. napus varieties.
Collapse
Affiliation(s)
- Jijun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yahui Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Chengde Academy of Agricultural and Forestry Sciences, Chengde, 067000, China
| | - Yijing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihua Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
2
|
Lu Y, Zhang S, Xiang P, Yin Y, Yu C, Hua J, Shi Q, Chen T, Zhou Z, Yu W, Creech DL, Lu Z. Integrated small RNA, transcriptome and physiological approaches provide insight into Taxodium hybrid 'Zhongshanshan' roots in acclimation to prolonged flooding. TREE PHYSIOLOGY 2024; 44:tpae031. [PMID: 38498333 DOI: 10.1093/treephys/tpae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Although Taxodium hybrid 'Zhongshanshan' 406 (Taxodium mucronatum Tenore × Taxodium distichum; Taxodium 406) is an extremely flooding-tolerant woody plant, the physiological and molecular mechanisms underlying acclimation of its roots to long-term flooding remain largely unknown. Thus, we exposed saplings of Taxodium 406 to either non-flooding (control) or flooding for 2 months. Flooding resulted in reduced root biomass, which is in line with lower concentrations of citrate, α-ketoglutaric acid, fumaric acid, malic acid and adenosine triphosphate (ATP) in Taxodium 406 roots. Flooding led to elevated activities of pyruvate decarboxylase, alcohol dehydrogenase and lactate dehydrogenase, which is consistent with higher lactate concentration in the roots of Taxodium 406. Flooding brought about stimulated activities of superoxide dismutase and catalase and elevated reduced glutathione (GSH) concentration and GSH/oxidized glutathione, which is in agreement with reduced concentrations of O2- and H2O2 in Taxodium 406 roots. The levels of starch, soluble protein, indole-3-acetic acid, gibberellin A4 and jasmonate were decreased, whereas the concentrations of glucose, total non-structural carbohydrates, most amino acids and 1-aminocyclopropane-1-carboxylate (ACC) were improved in the roots of flooding-treated Taxodium 406. Underlying these changes in growth and physiological characteristics, 12,420 mRNAs and 42 miRNAs were significantly differentially expressed, and 886 miRNA-mRNA pairs were identified in the roots of flooding-exposed Taxodium 406. For instance, 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8) was a target of Th-miR162-3p and 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4) was a target of Th-miR166i, and the downregulation of Th-miR162-3p and Th-miR166i results in the upregulation of ACS8 and ACO4, probably bringing about higher ACC content in flooding-treated roots. Overall, these results indicate that differentially expressed mRNA and miRNAs are involved in regulating tricarboxylic acid cycle, ATP production, fermentation, and metabolism of carbohydrates, amino acids and phytohormones, as well as reactive oxygen species detoxification of Taxodium 406 roots. These processes play pivotal roles in acclimation to flooding stress. These results will improve our understanding of the molecular and physiological bases underlying woody plant flooding acclimation and provide valuable insights into breeding-flooding tolerant trees.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Shuqing Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Peng Xiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Qin Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Tingting Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - David L Creech
- Department of Agriculture, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, 1936 North St, Nacogdoches, TX 75962-3000, USA
| | - Zhiguo Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| |
Collapse
|
3
|
Hasan MK, Xing QF, Zhou CY, Wang KX, Xu T, Yang P, Qi ZY, Shao SJ, Ahammed GJ, Zhou J. Melatonin mediates elevated carbon dioxide-induced photosynthesis and thermotolerance in tomato. J Pineal Res 2023; 74:e12858. [PMID: 36732033 DOI: 10.1111/jpi.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Increasing carbon dioxide (CO2 ) promotes photosynthesis and mitigates heat stress-induced deleterious effects on plants, but the regulatory mechanisms remain largely unknown. Here, we found that tomato (Solanum lycopersicum L.) plants treated with high atmospheric CO2 concentrations (600, 800, and 1000 µmol mol-1 ) accumulated increased levels of melatonin (N-acetyl-5-methoxy tryptamine) in their leaves and this response is conserved across many plant species, including Arabidopsis, rice, wheat, mustard, cucumber, watermelon, melon, and hot pepper. Elevated CO2 (eCO2 ; 800 µmol mol-1 ) caused a 6.8-fold increase in leaf melatonin content, and eCO2 -induced melatonin biosynthesis preferentially occurred through chloroplast biosynthetic pathways in tomato plants. Crucially, manipulation of endogenous melatonin levels by genetic means affected the eCO2 -induced accumulation of sugar and starch in tomato leaves. Furthermore, net photosynthetic rate, maximum photochemical efficiency of photosystem II, and transcript levels of chloroplast- and nuclear-encoded photosynthetic genes, such as rbcL, rbcS, rbcA, psaD, petB, and atpA, significantly increased in COMT1 overexpressing (COMT1-OE) tomato plants, but not in melatonin-deficient comt1 mutants at eCO2 conditions. While eCO2 enhanced plant tolerance to heat stress (42°C) in wild-type and COMT1-OE, melatonin deficiency compromised eCO2 -induced thermotolerance in comt1 plants. The expression of heat shock proteins genes increased in COMT1-OE but not in comt1 plants in response to eCO2 under heat stress. Further analysis revealed that eCO2 -induced thermotolerance was closely linked to the melatonin-dependent regulation of reactive oxygen species, redox homeostasis, cellular protein protection, and phytohormone metabolism. This study unveiled a crucial mechanism of elevated CO2 -induced thermotolerance in which melatonin acts as an essential endogenous signaling molecule in tomato plants.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Qu-Fan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Can-Yu Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kai-Xin Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Tong Xu
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Zhen-Yu Qi
- Hainan Institute, Zhejiang University, Sanya, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Shu-Jun Shao
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang, China
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
| |
Collapse
|
4
|
Liu S, Sun B, Cao B, Lv Y, Chen Z, Xu K. Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale). PROTOPLASMA 2023; 260:405-418. [PMID: 35726036 DOI: 10.1007/s00709-022-01783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy waterlogging and high temperatures occur frequently in North China, yet the effects of changing environments on photochemical reactions and carbon metabolism have not been described in ginger. To determine the impact of waterlogging and high temperature on ginger, in this study, treatment groups were established as follows: (a) well-watered at ambient temperature (28 °C/22 °C) (CK), (b) well-watered at moderate temperature (33 °C/27 °C) (MT), (c) well-watered at high temperature (38 °C/32 °C) (HT), (d) waterlogging at ambient temperature (CK-WL), (e) waterlogging at moderate temperature (MT-WL), and (f) waterlogging at high temperature (HT-WL) during the rhizome growth period. We analyzed the effect of different treatments on the photosynthetic performance of ginger. Here, our results showed that waterlogging and high temperature irreversibly decreased the photosynthetic pigment content, increased the ROS content of leaves, inhibited leaf carbon assimilation and limited PSII electron transport efficiency. In addition, waterlogging in isolation and high temperature in isolation affected photosynthesis to varying degrees. Taken together, photosynthesis was more sensitive to the combined stress than to the single stresses. The results of this research provide deep insights into the response mechanisms of crop photosynthesis to different water and temperature conditions and aid the development of scientific methods for mitigating plant damage over time.
Collapse
Affiliation(s)
- Shangjia Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Bingxin Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China.
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China.
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
5
|
Marathe D, Kumari K, Thawale P, Singh A, Raghunathan K. Growth performance of different forestry species irrigated with moderately saline wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1579-1595. [PMID: 36842966 DOI: 10.1080/15226514.2023.2176465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A seven month, pot study was conducted to evaluate the impact of moderately saline wastewater on the growth potential of six forestry plant species viz., Eucalyptus calmaldulensis, Dendrocalamus strictus, Casurina equisetfolia, Cassia fistula, Melia dubia, and Bambusa arundinacea under different drainage conditions namely, well-drained saline (WDS) condition and poor-drained saline condition (PDS) and the control with well-drained non-saline condition. WDS treatment resulted in no mortality whereas PDS treatment resulted in mortality in the range of 33-66%. The plant height and root dry biomass increased in the range of 145% to 221.6% and 4.3-37.1 g respectively in WDS treatment, however, 23.60% to 173.4% and 4.1-10.1 g in PDS treatment. Among all, Eucalyptus camaldulensis and Dendrocalamus strictus showed high Na+ accumulation in roots (2.16 ± 0.02% and 1.13 ± 0.01%), shoots (1.98 ± 0.01% and 0.74 ± 0.01%) and leaves (1.27 ± 0.02% and 0.86 ± 0.01%) in WDS treatment and in case of PDS treatment root (1.01 ± 0.01% and 0.23 ± 0.01%), shoot (1.12 ± 0.02% and 0.11 ± 0.01%), and leaf (0.07 ± 0.01% and 0.1 ± 0.02). The overall performance of both Eucalyptus camaldulensis and Dendrocalamus strictus was highest in WDS treatment. Therefore, it was concluded, that both plants had better performance than other plant species, a proper drainage system defines the overall productivity and treatment efficiency.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanchan Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Kolkata Zonal Centre, Kolkata, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Zhou R, Jiang F, Yu X, Abdelhakim L, Li X, Rosenqvist E, Ottosen CO, Wu Z. Dominant and Priming Role of Waterlogging in Tomato at e[CO2] by Multivariate Analysis. Int J Mol Sci 2022; 23:ijms232012121. [PMID: 36292978 PMCID: PMC9602540 DOI: 10.3390/ijms232012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The frequency of waterlogging episodes has increased due to unpredictable and intense rainfalls. However, less is known about waterlogging memory and its interaction with other climate change events, such as elevated CO2 concentration (e[CO2]). This study investigated the combined effects of e[CO2] and two rounds of waterlogging stress on the growth of cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). The aim is to elucidate the interaction between genotypes and environmental factors and thereby to improve crop resilience to climate change. We found that two rounds of treatments appeared to induce different acclimation strategies of the two tomato genotypes. S. pimpinellifolium responded more negatively to the first-time waterlogging than S. lycopersicum, as indicated by decreased photosynthesis and biomass loss. Nevertheless, the two genotypes respond similarly when waterlogging stress recurred, showing that they could maintain a higher leaf photosynthesis compared to single stress, especially for the wild genotype. This showed that waterlogging priming played a positive role in stress memory in both tomato genotypes. Multivariate analysis showed that waterlogging played a dominant role when combined with [CO2] for both the cultivated and wild tomato genotypes. This work will benefit agricultural production strategies by pinpointing the positive effects of e[CO2] and waterlogging memory.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Food Science, Aarhus University, DK-8200 Aarhus, Denmark
- Correspondence: (R.Z.); (Z.W.)
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lamis Abdelhakim
- Department of Food Science, Aarhus University, DK-8200 Aarhus, Denmark
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, DK-8200 Aarhus, Denmark
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (R.Z.); (Z.W.)
| |
Collapse
|
7
|
Frisk CA, Xistris-Songpanya G, Osborne M, Biswas Y, Melzer R, Yearsley JM. Phenotypic variation from waterlogging in multiple perennial ryegrass varieties under climate change conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:954478. [PMID: 35991411 PMCID: PMC9387306 DOI: 10.3389/fpls.2022.954478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Identifying how various components of climate change will influence ecosystems and vegetation subsistence will be fundamental to mitigate negative effects. Climate change-induced waterlogging is understudied in comparison to temperature and CO2. Grasslands are especially vulnerable through the connection with global food security, with perennial ryegrass dominating many flood-prone pasturelands in North-western Europe. We investigated the effect of long-term waterlogging on phenotypic responses of perennial ryegrass using four common varieties (one diploid and three tetraploid) grown in atmospherically controlled growth chambers during two months of peak growth. The climate treatments compare ambient climatological conditions in North-western Europe to the RCP8.5 climate change scenario in 2050 (+2°C and 550 ppm CO2). At the end of each month multiple phenotypic plant measurements were made, the plants were harvested and then allowed to grow back. Using image analysis and principal component analysis (PCA) methodologies, we assessed how multiple predictors (phenotypic, environmental, genotypic, and temporal) influenced overall plant performance, productivity and phenotypic responses. Long-term waterlogging was found to reduce leaf-color intensity, with younger plants having purple hues indicative of anthocyanins. Plant performance and yield was lower in waterlogged plants, with tetraploid varieties coping better than the diploid one. The climate change treatment was found to reduce color intensities further. Flooding was found to reduce plant productivity via reductions in color pigments and root proliferation. These effects will have negative consequences for global food security brought on by increased frequency of extreme weather events and flooding. Our imaging analysis approach to estimate effects of waterlogging can be incorporated into plant health diagnostics tools via remote sensing and drone-technology.
Collapse
Affiliation(s)
- Carl A. Frisk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Matthieu Osborne
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yastika Biswas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Jon M. Yearsley
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Pérez-Jiménez M, Pérez-Tornero O. Short-Term Waterlogging in Citrus Rootstocks. PLANTS (BASEL, SWITZERLAND) 2021; 10:2772. [PMID: 34961243 PMCID: PMC8704903 DOI: 10.3390/plants10122772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Changes in climate are provoking flooding events that cause waterlogging in the fields. Citrus are mainly cultivated in areas with a high susceptibility to climate change. Therefore, it is vital to explore their responses to these events to anticipate future challenges by means of genetic improvement of the commercial rootstocks. In this experiment, three popular commercial rootstocks, namely 'Cleopatra' (C. reshni Hort. Ex Tanaka), C. macrophylla, and 'Forner Alcaide no. 5' (Citrus reshni Hort. Ex Tanaka × Poncirus trifoliata), were evaluated after being submitted to short-term waterlogging and a period of recovery of 7 days in each case. Photosynthesis rate and stomatal conductance decreased in 'Cleopatra', while in the other two genotypes they were maintained (C. macrophylla) or restored after recovery ('Forner Alcaide no. 5''). Relative water content and chlorophylls also decreased in 'Cleopatra'. This indicates a deeper effect of flooding in 'Cleopatra', which suffered changes during flooding that were also sustained during the recovery phase. This did not occur in the other two rootstocks, since they showed signs of recovery for those parameters that decreased during waterlogging.
Collapse
Affiliation(s)
- Margarita Pérez-Jiménez
- Equipo de Mejora Genética de Cítricos, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain;
| | | |
Collapse
|
9
|
Zeng R, Chen T, Wang X, Cao J, Li X, Xu X, Chen L, Xia Q, Dong Y, Huang L, Wang L, Zhang J, Zhang L. Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:601771. [PMID: 34276712 PMCID: PMC8283264 DOI: 10.3389/fpls.2021.601771] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Waterlogging has negative effects on crop yield. Physiological and transcriptome data of two peanut cultivars [Zhongkaihua 1 (ZKH 1) and Huayu 39 (HY 39)] were studied under normal water supply and waterlogging stress for 5 or 10 days at the flowering stage. The results showed that the main stem height, the number of lateral branches, lateral branch length, and the stem diameter increased under waterlogging stress, followed by an increase in dry matter accumulation, which was correlated with the increase in the soil and plant analysis development (SPAD) and net photosynthetic rate (Pn) and the upregulation of genes related to porphyrin and chlorophyll metabolism and photosynthesis. However, the imbalance of the source-sink relationship under waterlogging was the main cause of yield loss, and waterlogging caused an increase in the sucrose and soluble sugar contents and a decrease in the starch content; it also decreased the activities of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS), which may be due to the changes in the expression of genes related to starch and sucrose metabolism. However, the imbalance of the source-sink relationship led to the accumulation of photosynthate in the stems and leaves, which resulted in the decrease of the ratio of pod dry weight to total dry weight (PDW/TDW) and yield. Compared with ZKH 1, the PDW of HY 39 decreased more probably because more photosynthate accumulated in the stem and leaves of HY 39 and could not be effectively transported to the pod.
Collapse
Affiliation(s)
- Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xi Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lei Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qing Xia
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yonglong Dong
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Luping Huang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Leidi Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Jialei Zhang
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Male and Female Plants of Salix viminalis Perform Similarly to Flooding in Morphology, Anatomy, and Physiology. FORESTS 2020. [DOI: 10.3390/f11030321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salix viminalis L., a dioecious species, is widely distributed in riparian zones, and flooding is one of the most common abiotic stresses that this species suffers. In this study, we investigated the morphological, anatomical, and physiological responses of male vs. female plants of S. viminalis to flooding. The results showed that the plant height and root collar diameter were stimulated by flooding treatment, which corresponded with higher dry weight of the stem and leaf. However, the dry weight of the underground part decreased, which might be due to the primary root having stopped growing. The little-influenced net photosynthesis rate (Pn) under flooding treatment could guarantee rapid growth of the aboveground part, while the unaffected leaf anatomical structure and photosynthetic pigment contents could ensure the normal operation of photosynthetic apparatus. Under a flooding environment, the production ratio of superoxide free radical (O2∙-) and malondialdehyde (MDA) contents increased, indicating that the cell membrane was damaged and oxidative stress was induced. At the same time, the antioxidant enzyme system, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and osmotic adjustment substances, involving proline (Pro) and solute protein (SP), began to play a positive role in resisting flooding stress. Different from our expectation, the male and female plants of S. viminalis performed similarly under flooding, and no significant differences were discovered. The results indicate that both male and female plants of S. viminalis are tolerant to flooding. Thus, both male and female plants of S. viminalis could be planted in frequent flooding zones.
Collapse
|
11
|
Jiménez S, Fattahi M, Bedis K, Nasrolahpour-moghadam S, Irigoyen JJ, Gogorcena Y. Interactional Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:43. [PMID: 32184791 PMCID: PMC7059187 DOI: 10.3389/fpls.2020.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
Environmental stress factors caused by climate change affect plant growth and crop production, and pose a growing threat to sustainable agriculture, especially for tree crops. In this context, we sought to investigate the responses to climate change of two Prunus rootstocks (GF677 and Adesoto) budded with Catherina peach cultivar. Plants were grown in 15 L pots in temperature gradient greenhouses for an 18 days acclimation period after which six treatments were applied: [CO2 levels (400 versus 700 µmol mol-1), temperature (ambient versus ambient + 4°C), and water availability (well irrigated versus drought)]. After 23 days, the effects of stress were evaluated as changes in physiological and biochemical traits, including expression of relevant genes. Stem water potential decreased under drought stress in plants grafted on GF677 and Adesoto rootstocks; however, elevated CO2 and temperature affected plant water content differently in both combinations. The photosynthetic rate of plants grafted on GF677 increased under high CO2, but decreased under high temperature and drought conditions. The photosynthetic rates of plants grafted onto Adesoto were only affected by drought treatment. Furthermore, in GF677-Catherina plants, elevated CO2 alleviated the effect of drought, whereas in those grafted onto Adesoto, the same condition produced acclimation in the rate. Stomatal conductance decreased under high CO2 and drought stress in both grafted rootstocks, and the combination of these conditions improved water-use efficiency. Changes in the sugar content in scion leaves and roots were significantly different under the stress conditions in both combinations. Meanwhile, the expression of most of the assessed genes was significantly affected by treatment. Regarding genotypes, GF677 rootstock showed more changes at the molecular and transcriptomic level than did Adesoto rootstock. A coordinated shift was found between the physiological status and the transcriptomic responses. This study revealed adaptive responses to climate change at the physiological, metabolic, and transcriptomic levels in two Prunus rootstocks budded with 'Catherina'. Overall, these results demonstrate the resilient capacity and plasticity of these contrasting genotypes, which can be further used to combat ongoing climate changes and support sustainable peach production.
Collapse
Affiliation(s)
- Sergio Jiménez
- Laboratory of Genomics, Genetics and Breeding of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Bayer AG, Crop Science Division, Research and Development, Environmental Science Field Solutions, Monheim, Germany
| | - Masoud Fattahi
- Laboratory of Genomics, Genetics and Breeding of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Department of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Khaoula Bedis
- Laboratory of Genomics, Genetics and Breeding of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Shirin Nasrolahpour-moghadam
- Laboratory of Genomics, Genetics and Breeding of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Department of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Juan José Irigoyen
- Departamento de Biología Ambiental, Grupo de Fisiología del Estrés en Plantas, Unidad Asociada al CSIC (EEAD, Zaragoza e ICVV, Logroño), Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Yolanda Gogorcena
- Laboratory of Genomics, Genetics and Breeding of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
12
|
Menezes‐Silva PE, Loram‐Lourenço L, Alves RDFB, Sousa LF, Almeida SEDS, Farnese FS. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol Evol 2019; 9:11979-11999. [PMID: 31695903 PMCID: PMC6822037 DOI: 10.1002/ece3.5663] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023] Open
Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho-anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.
Collapse
Affiliation(s)
| | - Lucas Loram‐Lourenço
- Laboratory of Plant EcophysiologyInstituto Federal Goiano – Campus Rio VerdeGoiásBrazil
| | | | | | | | | |
Collapse
|
13
|
Iacona C, Pistelli L, Cirilli M, Gatti L, Mancinelli R, Ripa MN, Muleo R. Day-Length Is Involved in Flooding Tolerance Response in Wild Type and Variant Genotypes of Rootstock Prunus cerasifera L. FRONTIERS IN PLANT SCIENCE 2019; 10:546. [PMID: 31130972 PMCID: PMC6509233 DOI: 10.3389/fpls.2019.00546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Current and predicted climate changes scenarios require crops with an improved adaptability to mutable environmental features, such as, hypoxia for the root system. In order to overcome the reduction of oxygen, plants activate coping mechanisms and strategies. Prunus spp. are hypoxia-sensitive woody species and although many information has been gathered over the last decades, many physiological mechanisms remain unclear. To verify whether anoxic plant responses are also regulated by photoperiod, plants of Mr.S.2/5-WT plum, and its variant genotypes S.4 tolerant (plus) and S.1 sensitive (minus) to flooding, were grown in a greenhouse and were submitted to natural photoperiod (NP) and to constant photoperiod (CP) from mid-July until the first 10 days of October. From mid-September plants from each genotype, grown under the two photoperiods, were divided into two groups, and one of them underwent long-term flooding. Gas exchange parameters, energetic and biochemical activities, leaf chlorophyll contents, and stress symptoms were measured at different times, whereas soluble sugars were quantified in leaves and roots 14 days after flooding, when stress symptoms in WT and S.1 became prominent. Seasonal changes in the photoperiod played a role in the adaptability to anoxia, although flooding stress response differed among the three genotypes. Anoxia affected leaf gas exchange and S.4 flooded-leaves retained higher ACO2 under conditions of NP and CP. Leaf soluble sugar concentration differed among genotypes. Regardless the photoperiod, S.4 anoxic-leaf sugar concentration was the lowest, except for sorbitol. S.4 anoxic-roots under CP accumulated the highest levels of sucrose and sorbitol. Influences of the photoperiod were observed in WT and S.1 anoxic-leaves, whereas S.1 anoxic roots accumulated the lowest concentration of sugars, regardless of photoperiod. Leaf and root respiratory activity in flooded-plants was highest in S.4, and ADH activity increased in all flooded plants under CP but the highest activity was observed only in S.1 under NP during flooding. Results are consistent with the hypothesis that the S.4 genotype has a plastic adaptability to flooding stress, escaping from the photoperiod regulatory cross-talk system, and can better cope with the new scenarios generated by climate changes.
Collapse
Affiliation(s)
- Calogero Iacona
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Lorenzo Gatti
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Roberto Mancinelli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Nicolina Ripa
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Tree and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Manik SMN, Pengilley G, Dean G, Field B, Shabala S, Zhou M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. FRONTIERS IN PLANT SCIENCE 2019; 10:140. [PMID: 30809241 PMCID: PMC6379354 DOI: 10.3389/fpls.2019.00140] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/28/2019] [Indexed: 05/25/2023]
Abstract
Waterlogging remains a significant constraint to cereal production across the globe in areas with high rainfall and/or poor drainage. Improving tolerance of plants to waterlogging is the most economical way of tackling the problem. However, under severe waterlogging combined agronomic, engineering and genetic solutions will be more effective. A wide range of agronomic and engineering solutions are currently being used by grain growers to reduce losses from waterlogging. In this scoping study, we reviewed the effects of waterlogging on plant growth, and advantages and disadvantages of various agronomic and engineering solutions which are used to mitigate waterlogging damage. Further research should be focused on: cost/benefit analyses of different drainage strategies; understanding the mechanisms of nutrient loss during waterlogging and quantifying the benefits of nutrient application; increasing soil profile de-watering through soil improvement and agronomic strategies; revealing specificity of the interaction between different management practices and environment as well as among management practices; and more importantly, combined genetic, agronomic and engineering strategies for varying environments.
Collapse
Affiliation(s)
| | - Georgina Pengilley
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Geoffrey Dean
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Brian Field
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
- Hubei Collaborative Innovation Center for Grain Industry/School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Dhankher OP, Foyer CH. Climate resilient crops for improving global food security and safety. PLANT, CELL & ENVIRONMENT 2018; 41:877-884. [PMID: 29663504 DOI: 10.1111/pce.13207] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties.
Collapse
Affiliation(s)
- Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst MA, Amherst, MA, 01003, USA
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Pérez-Jiménez M, Hernández-Munuera M, Piñero Zapata MC, López-Ortega G, Del Amor FM. Two minuses can make a plus: waterlogging and elevated CO 2 interactions in sweet cherry (Prunus avium) cultivars. PHYSIOLOGIA PLANTARUM 2017; 161:257-272. [PMID: 28568609 DOI: 10.1111/ppl.12590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
The increase in the ambient concentration of CO2 and other greenhouse gases is producing climate events that can compromise crop survival. However, high CO2 concentrations are sometimes able to mitigate certain stresses such as salinity or drought. In this experiment, the effects of waterlogging and CO2 are studied in combination to elucidate the eventual response in sweet cherry trees. For this purpose, four sweet cherry cultivars ('Burlat', 'Cashmere', 'Lapins and 'New Star') were grafted on a typically hypoxia-tolerant rootstock (Mariana 2624) and submitted to waterlogging for 7 days at either ambient CO2 concentration (400 µmol mol-1 ) or at elevated CO2 (800 µmol mol-1 ). Waterlogging affected plants drastically, by decreasing photosynthesis, stomatal conductance, transpiration, chlorophyll fluorescence and growth. It also brought about the accumulation of proline, chloride and sulfate. Nonetheless, raising the CO2 supply not only mitigated all these effects but also induced the accumulation of soluble sugars and starch in the leaf. Therefore, sweet cherry plants submitted to waterlogging were able to overcome this stress when grown in a CO2 -enriched environment.
Collapse
Affiliation(s)
- Margarita Pérez-Jiménez
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, 30150, Spain
| | - María Hernández-Munuera
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, 30150, Spain
| | - Maria Carmen Piñero Zapata
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, 30150, Spain
| | - Gregorio López-Ortega
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, 30150, Spain
| | - Francisco M Del Amor
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, 30150, Spain
| |
Collapse
|