1
|
Álvarez HA, Ruano F. Phenotypic plasticity of a winter-diapause mechanism copes with the effects of summer global warming in an ectothermic predator. Biol Lett 2024; 20:20230481. [PMID: 38229555 PMCID: PMC10792392 DOI: 10.1098/rsbl.2023.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
To adapt to changes in temperature, animals tend to invest more energy in thermal tolerance to enhance survival, which can have simultaneous costs on plastic traits. Would a decrease in genetic variability, due to global warming, affect the ability of populations with existing metabolic regulatory mechanisms to cope with extreme temperatures? To address this question, we conducted a series of experiments based on the A1B scenario of global warming, assessing within-population genetic variance in (a) morphological traits, (b) metabolic rate allometries, and (c) survival of a winter-diapausing predator ectotherm. Our study focused on the lacewing species Chrysoperla pallida, using both exogamic and endogamic artificial genetic lines. We discovered that both lines use their winter-diapausing phenotype to adapt to summer extreme temperatures caused by extreme heating conditions, but the exogamic line is prone to express phenotypic plasticity in metabolic scaling, with a trade-off between body size and mandible size, i.e. larger individuals tended to develop smaller mandibles to better survive. These findings highlight the significance of substantial phenotypic plasticity and pre-existing metabolic regulatory mechanisms in enabling ectotherms to cope with potential extreme heating occurring in global warming.
Collapse
Affiliation(s)
- Hugo Alejandro Álvarez
- Department of Biogeography and Global Change, CSIC – National Museum of Natural Sciences, Madrid, Comunidad de Madrid, Spain
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| | - Francisca Ruano
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| |
Collapse
|
2
|
Briscoe NJ, Morris SD, Mathewson PD, Buckley LB, Jusup M, Levy O, Maclean IMD, Pincebourde S, Riddell EA, Roberts JA, Schouten R, Sears MW, Kearney MR. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. GLOBAL CHANGE BIOLOGY 2023; 29:1451-1470. [PMID: 36515542 DOI: 10.1111/gcb.16557] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/20/2023]
Abstract
A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.
Collapse
Affiliation(s)
- Natalie J Briscoe
- School of Ecosystem and Forest Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shane D Morris
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D Mathewson
- Department of Zoology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Marko Jusup
- Fisheries Resources Research Institute, Fisheries Research Agency, Yokohama, Japan
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya M D Maclean
- School of Biosciences, Centre for Ecology and Conservation, Cornwall, UK
| | | | - Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Jessica A Roberts
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rafael Schouten
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Sears
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Michael Ray Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Rebaudo F, Soulard T, Condori B, Quispe‐Tarqui R, Calatayud P, Chavez Vino S, Tonnang HEZ, Bessière L. A low‐cost
IoT
network to monitor microclimate variables in ecosystems. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Bruno Condori
- IICA‐Bolivia La Paz Bolivia
- Universidad Pública de El Alto, UPEA La Paz Bolivia
| | | | | | | | | | | |
Collapse
|
4
|
Feng X, Zhong L, Tian Q, Zhao W. Leaf water potential-dependent leaflet closure contributes to legume leaves cool down and drought avoidance under diurnal drought stress. TREE PHYSIOLOGY 2022; 42:2239-2251. [PMID: 35939343 DOI: 10.1093/treephys/tpac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Efficient thermoregulation under diurnal drought stress protects leaves from photosystem damage and water supply-demand imbalance, yet the cool effect and drought avoidance by leaflet closure have not been well understood. We investigated the cool effect and the drought avoidance of leaflet closure in legume species that survived in the semi-arid region facing seasonal and diurnal drought stress. The results showed that leaflet closure effectively cooled down legume leaves through a reduction of projected leaflet area and the cosine of the angle of incidence (cos i). The leaflet closure was strongly dependent on leaf water potential (Ψleaf). In addition, by characterizing the sequence of key leaf drought response traits, we found leaflet closure occurred after stomatal closure and reduced transpiration rate but before hydraulic failure and turgor loss point (Ψtlp). The meta-analysis also showed that the leaflet closure and cos i decreased after the stomatal conductance declined but before midday. These results imply that Ψleaf-dependent leaflet closure as an alternative to transpiration for leaflet cooling down and as a protective drought avoidance strategy assisting sessile legume plants survival under drought stress.
Collapse
Affiliation(s)
- Xiangyan Feng
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100029, China
| | - Lingfei Zhong
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| | - Quanyan Tian
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenzhi Zhao
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Woods HA, Legault G, Kingsolver JG, Pincebourde S, Shah AA, Larkin BG. Climate‐driven thermal opportunities and risks for leaf miners in aspen canopies. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Geoffrey Legault
- Department of Biology University of North Carolina Chapel Hill NC USA
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS ‐ Université de Tours, 37200 Tours France
| | - Alisha A. Shah
- Division of Biological Sciences University of Montana Missoula MT USA
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University Hickory Corners MI USA
| | - Beau G. Larkin
- MPG Operations, LLC, 1001 South Higgins Ave, Suite 3A Missoula MT USA
| |
Collapse
|
6
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Pincebourde S, Dillon ME, Woods HA. Body size determines the thermal coupling between insects and plant surfaces. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS ‐ Université de Tours Tours France
| | - Michael E. Dillon
- Department of Zoology & Physiology and Program in Ecology University of Wyoming Laramie WY USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
8
|
When insect pests build their own thermal niche: The hot nest of the pine processionary moth. J Therm Biol 2021; 98:102947. [PMID: 34016364 DOI: 10.1016/j.jtherbio.2021.102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
Temperature strongly drives physiological and ecological processes in ectotherms. While many species rely on behavioural thermoregulation to avoid thermal extremes, others build structures (nests) that confer a shelter against climate variability and extremes. However, the microclimate inside nests remains unknown for most insects. We investigated the thermal environment inside the nest of a temperate winter-developing insect species, the pine processionary moth (PPM), Thaumetopoea pityocampa. Gregarious larvae collectively build a silken nest at the beginning of the cold season. We tested the hypothesis that it provides a warmer microenvironment to larvae. First, we monitored temperature inside different types of nests varying in the number of larvae inside. Overall, nest temperature was positively correlated to global radiation and air temperature. At noon, when global radiation was maximal, nest temperature exceeded air temperature by up to 11.2-16.5 °C depending on nest type. In addition, thermal gradients of amplitude from 6.85 to 15.5 °C were observed within nests, the upper part being the warmest. Second, we developed a biophysical model to predict temperature inside PPM nests based on heat transfer equations and to explain this important temperature excess. A simple model version accurately predicted experimental measurements, confirming that nest temperature is driven mainly by radiation load. Finally, the model showed that nest temperature increases at the same rate as air temperature change. We conclude that some pest insects already live in warm microclimates by building their own sheltering nest. This effect should be considered when studying the impact of climate change on phenology and distribution.
Collapse
|
9
|
Ma CS, Ma G, Pincebourde S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:163-184. [PMID: 32870704 DOI: 10.1146/annurev-ento-041520-074454] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Global change includes a substantial increase in the frequency and intensity of extreme high temperatures (EHTs), which influence insects at almost all levels. The number of studies showing the ecological importance of EHTs has risen in recent years, but the knowledge is rather dispersed in the contemporary literature. In this article, we review the biological and ecological effects of EHTs actually experienced in the field, i.e., when coupled to fluctuating thermal regimes. First, we characterize EHTs in the field. Then, we summarize the impacts of EHTs on insects at various levels and the processes allowing insects to buffer EHTs. Finally, we argue that the mechanisms leading to positive or negative impacts of EHTs on insects can only be resolved from integrative approaches considering natural thermal regimes. Thermal extremes, perhaps more than the gradual increase in mean temperature, drive insect responses to climate change, with crucial impacts on pest management and biodiversity conservation.
Collapse
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France;
| |
Collapse
|
10
|
Pincebourde S, Woods HA. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. CURRENT OPINION IN INSECT SCIENCE 2020; 41:63-70. [PMID: 32777713 DOI: 10.1016/j.cois.2020.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 05/17/2023]
Abstract
Climate warming impacts biological systems profoundly. Climatologists deliver predictions about warming amplitude at coarse scales. Nevertheless, insects are small, and it remains unclear how much of the warming at coarse scales appears in the microclimates where they live. We propose a simple method for determining the pertinent spatial scale of insect microclimates. Recent studies have quantified the ability of forest understory to buffer thermal extremes, but these microclimates typically are characterized at spatial scales much larger than those determined by our method. Indeed, recent evidence supports the idea that insects can be thermally adapted even to fine scale microclimatic patterns, which can be highly variable. Finally, we discuss how microhabitat surfaces may buffer or magnify the amplitude of climate warming.
Collapse
Affiliation(s)
- Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, 37200 Tours, France.
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Vialet-Chabrand S, Lawson T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2839-2855. [PMID: 30793211 PMCID: PMC6506762 DOI: 10.1093/jxb/erz068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In spite of the significant progress made in recent years, the use of thermography to derive biologically relevant traits remains a challenge under fluctuating conditions. The aim of this study was to rethink the current method to process thermograms and derive temporal responses of stomatal conductance (gsw) using dynamic energy balance equations. Time-series thermograms provided the basis for a spatial and temporal characterization of gsw responses in wheat (Triticum aestivum). A leaf replica with a known conductance was used to validate the approach and to test the ability of our model to be used with any material and under any environmental conditions. The results highlighted the importance of the co-ordinated stomatal responses that run parallel to the leaf blade despite their patchy distribution. The diversity and asymmetry of the temporal response of gsw observed after a step increase and step decrease in light intensity can be interpreted as a strategy to maximize photosynthesis per unit of water loss and avoid heat stress in response to light flecks in a natural environment. This study removes a major bottleneck for plant phenotyping platforms and will pave the way to further developments in our understanding of stomatal behaviour.
Collapse
Affiliation(s)
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
12
|
Abstract
The thermal limits of terrestrial ectotherms vary more locally than globally. Local microclimatic variations can explain this pattern, but the underlying mechanisms remain unclear. We show that cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in a community of arthropod herbivores living on the same host plant. Herbivores triggering an increase in transpiration, thereby cooling the leaf, had a lower thermal limit than those decreasing leaf transpiration and causing the leaf to warm up. These subtle mechanisms have major consequences for the safety margin of these herbivores during thermal extremes. Our findings suggest that temperate species may be more vulnerable to heat waves than previously thought. The thermal limit of ectotherms provides an estimate of vulnerability to climate change. It differs between contrasting microhabitats, consistent with thermal ecology predictions that a species’ temperature sensitivity matches the microclimate it experiences. However, observed thermal limits may differ between ectotherms from the same environment, challenging this theory. We resolved this apparent paradox by showing that ectotherm activity generates microclimatic deviations large enough to account for differences in thermal limits between species from the same microhabitat. We studied upper lethal temperature, effect of feeding mode on plant gas exchange, and temperature of attacked leaves in a community of six arthropod species feeding on apple leaves. Thermal limits differed by up to 8 °C among the species. Species that caused an increase in leaf transpiration (+182%), thus cooling the leaf, had a lower thermal limit than those that decreased leaf transpiration (−75%), causing the leaf to warm up. Therefore, cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in this community of herbivores. We investigated the consequences of these changes in plant transpiration induced by plant–insect feedbacks for species vulnerability to thermal extremes. Warming tolerance was similar between species, at ±2 °C, providing little margin for resisting increasingly frequent and intense heat waves. The thermal safety margin (the difference between thermal limit and temperature) was greatly overestimated when air temperature or intact leaf temperature was erroneously used. We conclude that feedback processes define the vulnerability of species in the phyllosphere, and beyond, to thermal extremes.
Collapse
|
13
|
Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40823-018-0034-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Yin WD, Hoffmann AA, Gu XB, Ma CS. Behavioral thermoregulation in a small herbivore avoids direct UVB damage. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:276-283. [PMID: 29247655 DOI: 10.1016/j.jinsphys.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Direct damage of increased solar ultraviolet-B (UVB) on organism fitness has attracted attention due to stratospheric ozone depletion. Although most ectotherms are not capable of detecting and avoiding solar UVB, they may avoid direct exposure to solar UVB via thermoregulation behavior. However, it is still not clear whether organisms are harmed by ambient UVB radiation before escaping to shaded microhabitats. In this study we used the English grain aphid, Sitobion avenae (Hemiptera: Aphididae), to test whether sunlight-avoidance behavior was caused by heat stress rather than UVB, and whether behavioral thermoregulation in shaded microhabitats contributes to avoidance or reduction of direct UVB damage. Our results showed that S. avenae tended to inhabit exposed adaxial leaf surfaces in mid-May in Mongolia, but inhabited shaded leaf surfaces in mid-June, thereby avoiding strong sunlight. Heat exposure rather than solar UVB was the primary reason for such avoidance behavior. The average and extreme temperatures of shaded leaf surfaces were several degrees lower than sunlight-exposed surfaces at midday, suggesting that movement to shaded leaf surfaces represents a form of behavioral thermoregulation. Such responses occurred before UVB radiation reached harmful levels, and contributed to avoiding direct UVB damage. As future climate warming is expected to lead to harmful UVB radiation as well as increasing temperatures, this may represent a case where responses to one stressor inadvertently protect against the harmful effects of a different stressor.
Collapse
Affiliation(s)
- Wan-Dong Yin
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, CN-100193 Beijing, PR China
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, the University of Melbourne, 30 Flemington Road, Melbourne, Vic. 3010, Australia
| | - Xin-Bo Gu
- Meteorological Service Center, Inner Mongolia Regional Meteorological Bureau, Hohhot, Inner Mongolia, PR China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, CN-100193 Beijing, PR China.
| |
Collapse
|
15
|
Woods HA, Saudreau M, Pincebourde S. Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecol Evol 2018; 8:5206-5218. [PMID: 29876095 PMCID: PMC5980536 DOI: 10.1002/ece3.4046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/23/2022] Open
Abstract
Estimating leaf temperature distributions (LTDs) in canopies is crucial in forest ecology. Leaf temperature affects the exchange of heat, water, and gases, and it alters the performance of leaf-dwelling species such as arthropods, including pests and invaders. LTDs provide spatial variation that may allow arthropods to thermoregulate in the face of long-term changes in mean temperature or incidence of extreme temperatures. Yet, recording LTDs for entire canopies remains challenging. Here, we use an energy-exchange model (RATP) to examine the relative roles of climatic, structural, and physiological factors in influencing three-dimensional LTDs in tree canopies. A Morris sensitivity analysis of 13 parameters showed, not surprisingly, that climatic factors had the greatest overall effect on LTDs. In addition, however, structural parameters had greater effects on LTDs than did leaf physiological parameters. Our results suggest that it is possible to infer forest canopy LTDs from the LTDs measured or simulated just at the surface of the canopy cover over a reasonable range of parameter values. This conclusion suggests that remote sensing data can be used to estimate 3D patterns of temperature variation from 2D images of vegetation surface temperatures. Synthesis and applications. Estimating the effects of LTDs on natural plant-insect communities will require extending canopy models beyond their current focus on individual species or crops. These models, however, contain many parameters, and applying the models to new species or to mixed natural canopies depends on identifying the parameters that matter most. Our results suggest that canopy structural parameters are more important determinants of LTDs than are the physiological parameters that tend to receive the most empirical attention.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)CNRS UMR 7261Faculté des Sciences et TechniquesUniversité François RabelaisToursFrance
| |
Collapse
|
16
|
Abstract
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.
Collapse
|