1
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Kolbert Z, Barroso JB, Boscari A, Corpas FJ, Gupta KJ, Hancock JT, Lindermayr C, Palma JM, Petřivalský M, Wendehenne D, Loake GJ. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. THE NEW PHYTOLOGIST 2024; 244:786-797. [PMID: 39223868 DOI: 10.1111/nph.20085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Hungary
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, E-23071, Jaén, Spain
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS 7254, 400 route des Chappes, BP 167, 06903, Sophia Antipolis, France
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Christian Lindermayr
- Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | - José Manuel Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, INRAE, Institut Agro Dijon, Univiversité de Bourgogne, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
3
|
Bigatton ED, Verdenelli RA, Haro RJ, Ayoub I, Barbero FM, Martín MP, Dubini LE, Jorrín Novo JV, Lucini EI, Castillejo MÁ. Metagenomic Analysis to Assess the Impact of Plant Growth-Promoting Rhizobacteria on Peanut ( Arachis hypogaea L.) Crop Production and Soil Enzymes and Microbial Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22385-22397. [PMID: 39324627 PMCID: PMC11468012 DOI: 10.1021/acs.jafc.4c05687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.
Collapse
Affiliation(s)
- Ezequiel D. Bigatton
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ciudad de Valparaíso
S/N, Córdoba X5016, Argentina
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| | - Romina A. Verdenelli
- Instituto
Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos
(FCEFyN-UNC), Av. Vélez
Sarsfield 1666, Córdoba X5016, Argentina
| | - Ricardo J. Haro
- Estación
Experimental Agropecuaria INTA Manfredi, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional N°9 Km 636, Manfredi, Córdoba X5988, Argentina
| | - Ibrahim Ayoub
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ciudad de Valparaíso
S/N, Córdoba X5016, Argentina
| | - Florencia M. Barbero
- Instituto
Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos
(FCEFyN-UNC), Av. Vélez
Sarsfield 1666, Córdoba X5016, Argentina
| | - Maria Paula Martín
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - Lucas E. Dubini
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - Jesús V. Jorrín Novo
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| | - Enrique I. Lucini
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - María Ángeles Castillejo
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| |
Collapse
|
4
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
5
|
Vitorino LC, da Silva EJ, Oliveira MS, Silva IDO, Santos LDS, Mendonça MAC, Oliveira TCS, Bessa LA. Effect of a Bacillus velezensis and Lysinibacillus fusiformis-based biofertilizer on phosphorus acquisition and grain yield of soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1433828. [PMID: 39246810 PMCID: PMC11378753 DOI: 10.3389/fpls.2024.1433828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Introduction Phosphate-solubilizing bacteria that function through acidification (organic acid synthesis) or mineralization (production of enzymes such as phytase and phosphatases) have been explored as a biotechnological alternative to enhance plant access to phosphorus (P) retained in organic and inorganic forms in agricultural soils. This study tested the hypothesis that applying a biofertilizer composed of a recognized phosphate-solubilizing bacterium (Bacillus velezensis - endophytic strain BVPS01) and an underexplored plant growth-promoting bacterium (Lysinibacillus fusiformis - endophytic strain BVPS02) would improve the growth and grain yield of Glycine max L. plants. Methods Initial in vitro tests assessed the functional traits of these bacteria, and a mix of strains BVPS01 and BVPS02 was produced and tested under field conditions to evaluate its agronomic efficiency. Results The results confirmed the hypothesis that the tested biofertilizer enhances the agronomic performance of G. max plants in the field. The B. velezensis strain (BVPS01) was found to be more effective than the L. fusiformis strain (BVPS02) in solubilizing phosphates via the phosphatase enzyme production pathway, indicated by the expression of the phoC and phoD genes. In contrast, L. fusiformis was more effective in solubilizing phosphates through organic acid and phytase-related pathways, in addition to synthesizing indole-3-acetic acid and increasing the mitotic index in the root meristem of G. max plants. These strains exhibited biological compatibility, and the formulated product based on these rhizobacteria enhanced root development and increased the number of nodules and flowers, positively affecting 1000-grain weight, grain yield, and grain P content. Discussion Thus, the tested biofertilizer demonstrated potential to improve root growth and increase both the yield and quality of soybean crops, making it a sustainable and low-cost strategy.
Collapse
Affiliation(s)
- Luciana Cristina Vitorino
- Laboratory of Agricultural Microbiology, Federal Institute Goiano, Rio Verde, GO, Brazil
- Simple Verde Bio-Industry, Simple Agro Corporation, Rio Verde, GO, Brazil
| | | | | | | | | | | | | | - Layara Alexandre Bessa
- Simple Verde Bio-Industry, Simple Agro Corporation, Rio Verde, GO, Brazil
- Laboratory of Metabolism and Genetics of Biodiversity, Federal Institute Goiano, Rio Verde, GO, Brazil
| |
Collapse
|
6
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
7
|
Hu L, Gao X, Li Y, Lyu J, Xiao X, Zhang G, Yu J. Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture. Int J Mol Sci 2023; 24:ijms24087271. [PMID: 37108434 PMCID: PMC10138312 DOI: 10.3390/ijms24087271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3-) mitigated the adverse effect caused by low-light stress, although the mechanism behind this alleviation is unclear. The hypothesis that the synthesis of nitric oxide (NO) induced by moderate NH4+:NO3- (10:90) involved in regulating photosynthesis and root architecture of Brassica pekinesis subjected to low-light intensity was proposed. To prove the hypothesis, a number of hydroponic experiments were conducted. The results showed that in plants exposed to low-light intensity, the exogenous donors NO (SNP) and NH4+:NO3- (N, 10:90) treatments significantly increased leaf area, growth range, and root fresh weight compared with nitrate treatment. However, the application of hemoglobin (Hb, NO scavenger), N-nitro-l-arginine methyl ester (L-NAME, NOS inhibitor), and sodium azide (NaN3, NR inhibitor) in N solution remarkably decreased the leaf area, canopy spread, the biomass of shoot and root, the surface area, and volume and tips of the root. The application of N solution and exogenous SNP significantly enhanced Pn (Net photosynthetic rate) and rETR (relative electron transport rates) compared with solo nitrate. While all these effects of N and SNP on photosynthesis, such as Pn, Fv/Fm (maximum quantum yield of PSII), Y(II) (actual photosynthetic efficiency), qP (photochemical quenching), and rETR were reversed when the application of Hb, L-NAME, and NaN3 in N solution. The results also showed that the N and SNP treatments were more conducive to maintaining cell morphology, chloroplast structure, and a higher degree of grana stacking of low-light treated plants. Moreover, the application of N significantly increased the NOS and NR activities, and the NO levels in the leaves and roots of mini Chinese cabbage seedlings treated with N were significantly higher than those in nitrate-treated plants. In conclusion, the results of this study showed that NO synthesis induced by the appropriate ammonia-nitrate ratio (NH4+:NO3- = 10:90) was involved in the regulation of photosynthesis and root structure of Brassica pekinesis under low-light stress, effectively alleviating low-light stress and contributing to the growth of mini Chinese cabbage under low-light stress.
Collapse
Affiliation(s)
- Linli Hu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Yang S, Lee H. Salinity-Triggered Responses in Plant Apical Meristems for Developmental Plasticity. Int J Mol Sci 2023; 24:ijms24076647. [PMID: 37047619 PMCID: PMC10095309 DOI: 10.3390/ijms24076647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Salt stress severely affects plant growth and development. The plant growth and development of a sessile organism are continuously regulated and reformed in response to surrounding environmental stress stimuli, including salinity. In plants, postembryonic development is derived mainly from primary apical meristems of shoots and roots. Therefore, to understand plant tolerance and adaptation under salt stress conditions, it is essential to determine the stress response mechanisms related to growth and development based on the primary apical meristems. This paper reports that the biological roles of microRNAs, redox status, reactive oxygen species (ROS), nitric oxide (NO), and phytohormones, such as auxin and cytokinin, are important for salt tolerance, and are associated with growth and development in apical meristems. Moreover, the mutual relationship between the salt stress response and signaling associated with stem cell homeostasis in meristems is also considered.
Collapse
Affiliation(s)
- Soeun Yang
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| |
Collapse
|
9
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
10
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Kang A, Zhang N, Xun W, Dong X, Xiao M, Liu Z, Xu Z, Feng H, Zou J, Shen Q, Zhang R. Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide. PLANT PHYSIOLOGY 2022; 188:1129-1140. [PMID: 34865137 PMCID: PMC8825324 DOI: 10.1093/plphys/kiab555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/03/2021] [Indexed: 06/01/2023]
Abstract
Chemical nitrogen (N) fertilization is customary for increasing N inputs in agroecosystems. The nutritional effects of N fertilization on plants and soil microbes have been well studied. However, the signaling effects of N fertilization on rhizosphere plant-microbe interactions and the following feedback to plant performance remain unknown. Here, we investigated the effect of different N fertilizations on the behavior of the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis SQR9 in the cucumber (Cucumis sativus L.) rhizosphere. Moderate N fertilization promoted higher rhizosphere colonization of strain SQR9 than insufficient or excessive N input. Nitric oxide (NO) produced through the denitrification process under N fertilization was identified as the signaling molecule that dominates the root colonization of PGPR, and this effect could be neutralized by the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide. Gene expression analysis demonstrated that NO regulated the biofilm formation of strain SQR9 by affecting the synthesis of extracellular matrix γ-polyglutamic acid, consequently impacting its root colonization. Finally, we demonstrated that moderate N fertilization-modulated enhanced PGPR root colonization can significantly promote plant growth and nitrogen use efficiency. This study provides insights into our understanding of the beneficial rhizosphere plant-microbe interactions under N fertilization and suggests that rational fertilization is critical to promote beneficial rhizosphere interactions for sustainable agricultural production.
Collapse
Affiliation(s)
- An Kang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoyan Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Ming Xiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zihao Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianwen Zou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Wong A, Hu N, Tian X, Yang Y, Gehring C. Nitric oxide sensing revisited. TRENDS IN PLANT SCIENCE 2021; 26:885-897. [PMID: 33867269 DOI: 10.1016/j.tplants.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China.
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, I-06121 Perugia, Italy
| |
Collapse
|
13
|
Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ. Hydrogen sulfide (H 2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:124907. [PMID: 34088169 DOI: 10.1016/j.jhazmat.2020.124907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticle-pollution has associated severe negative effects on crop productivity. Hence, methods are needed to alleviate nano-toxicity in crop plants. The present study aims to evaluate if the exogenous hydrogen sulfide (H2S) application in combination with silicon (Si) could palliate the harmful effects of copper oxide nanoparticles (CuO NPs). Fifteen day-old rice (Oryza sativa L.) seedlings were used as a model plant. The results indicate that simultaneous exogenous addition of 10 μM Si and 100 μM NaHS (as an H2S donor) provided tolerance and enhanced defence mechanism of the rice seedlings against 100 μM CuO NPs. Thus, it was observed in terms of their growth, photosynthetic pigments, antioxidant enzyme activities, the content of non-enzymatic components, chlorophyll fluorescence and up-regulation of antioxidant genes. Si and NaHS stimulated gene expression of silicon (Lsi1 and Lsi2) and auxin (PIN5 and PIN10) transporters. Taken together, data indicate that H2S underpins the beneficial Si effects in rice seedlings against the oxidative stress triggers by CuO NPs, and stimulation of enzymatic components of the ascorbate-glutathione cycle being the main factor for the beneficial effects triggered by the couple of Si and H2S. Therefore, it could be concluded that the simultaneous application of Si and H2S promote the resilience of the rice seedlings against the oxidative stress induced by CuO NPs.
Collapse
Affiliation(s)
- Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, UP, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, UP, India.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
14
|
Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. PLANT CELL REPORTS 2021; 40:1395-1414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops. Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmitter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regulatory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of current approaches used to characterise and detect the NO.
Collapse
Affiliation(s)
- Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China.
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Jin Shang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
15
|
Hu B, Flemetakis E, Rennenberg H. Pedospheric Microbial Nitric Oxide Production Challenges Root Symbioses. TRENDS IN PLANT SCIENCE 2021; 26:104-107. [PMID: 33257260 DOI: 10.1016/j.tplants.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Recent studies indicate that a multitude of microbial processes are involved in nitric oxide production and consumptions in the pedosphere. Due to its dual function as a toxic metabolite and signaling compound, we speculate that this pedospheric nitric oxide of microbial origin can significantly interact with mycorrhizal symbioses and symbiotic nitrogen fixation of legumes.
Collapse
Affiliation(s)
- Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China; Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|