1
|
Zhang D, Tian C, Mai W. Exogenous Sodium and Calcium Alleviate Drought Stress by Promoting the Succulence of Suaeda salsa. PLANTS (BASEL, SWITZERLAND) 2024; 13:721. [PMID: 38475566 DOI: 10.3390/plants13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl-, and SO42-) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl-, and SO42-. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Leverett A, Borland AM, Inge EJ, Hartzell S. Low internal air space in plants with crassulacean acid metabolism may be an anatomical spandrel. ANNALS OF BOTANY 2023; 132:811-817. [PMID: 37622678 PMCID: PMC10799988 DOI: 10.1093/aob/mcad109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Crassulacean acid metabolism (CAM) is a photosynthetic adaptation found in at least 38 plant families. Typically, the anatomy of CAM plants is characterized by large photosynthetic cells and a low percentage of leaf volume consisting of internal air space (% IAS). It has been suggested that reduced mesophyll conductance (gm) arising from low % IAS benefits CAM plants by preventing the movement of CO2 out of cells and ultimately minimizing leakage of CO2 from leaves into the atmosphere during day-time decarboxylation. Here, we propose that low % IAS does not provide any adaptive benefit to CAM plants, because stomatal closure during phase III of CAM will result in internal concentrations of CO2 becoming saturated, meaning low gm will not have any meaningful impact on the flux of gases within leaves. We suggest that low % IAS is more likely an indirect consequence of maximizing the cellular volume within a leaf, to provide space for the overnight storage of malic acid during the CAM cycle.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Emma J Inge
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, 1930 SW 124 Ave., Portland, OR, USA
| |
Collapse
|
3
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
4
|
Wang Y, Smith JAC, Zhu XG, Long SP. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana. THE NEW PHYTOLOGIST 2023; 239:2180-2196. [PMID: 37537720 DOI: 10.1111/nph.19128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.
Collapse
Affiliation(s)
- Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Xin-Guang Zhu
- Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular, Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Jardim AMDRF, de Morais JEF, de Souza LSB, de Souza CAA, Araújo Júnior GDN, Alves CP, da Silva GÍN, Leite RMC, de Moura MSB, de Lima JLMP, da Silva TGF. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2562. [PMID: 37447125 PMCID: PMC10346497 DOI: 10.3390/plants12132562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The in-situ quantification of turbulent flux and evapotranspiration (ET) is necessary to monitor crop performance in stressful environments. Although cacti can withstand stressful conditions, plant responses and plant-environment interactions remain unclear. Hence, the objective of our study was to investigate the interannual and seasonal behaviour of components of the surface energy balance, environmental conditions, morphophysiological parameters, biomass yield and water relations in a crop of Nopalea cochenillifera in the semi-arid region of Brazil. The data were collected from a micrometeorological tower between 2015 and 2017. The results demonstrate that net radiation was significantly higher during the wet season. Latent heat flux was not significant between the wet season and dry season. During the dry-wet transition season in particular, sensible heat flux was higher than during the other seasons. We observed a large decline in soil heat flux during the wet season. There was no difference in ET during the wet or dry seasons; however, there was a 40% reduction during the dry-wet transition. The wet seasons and wet-dry transition showed the lowest Evaporative Stress Index. The plants showed high cladode water content and biomass during the evaluation period. In conclusion, these findings indicate high rates of growth, high biomass and a high cladode water content and explain the response of the cactus regarding energy partitioning and ET.
Collapse
Affiliation(s)
- Alexandre Maniçoba da Rosa Ferraz Jardim
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Department of Biodiversity, Institute of Bioscience, São Paulo State University—UNESP, Av. 24A, 1515, Rio Claro 13506-900, São Paulo, Brazil
| | - José Edson Florentino de Morais
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Luciana Sandra Bastos de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Carlos André Alves de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - George do Nascimento Araújo Júnior
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Cléber Pereira Alves
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Gabriel Ítalo Novaes da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Renan Matheus Cordeiro Leite
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | | | - João L. M. P. de Lima
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Department of Civil Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-788 Coimbra, Portugal;
| | - Thieres George Freire da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| |
Collapse
|
6
|
Leverett A, Hartzell S, Winter K, Garcia M, Aranda J, Virgo A, Smith A, Focht P, Rasmussen-Arda A, Willats WGT, Cowan-Turner D, Borland AM. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves. PLANT, CELL & ENVIRONMENT 2023; 46:1472-1488. [PMID: 36624682 DOI: 10.1111/pce.14539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Milton Garcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Abigail Smith
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Paulina Focht
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Adam Rasmussen-Arda
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
7
|
Fradera-Soler M, Leverett A, Mravec J, Jørgensen B, Borland AM, Grace OM. Are cell wall traits a component of the succulent syndrome? FRONTIERS IN PLANT SCIENCE 2022; 13:1043429. [PMID: 36507451 PMCID: PMC9732111 DOI: 10.3389/fpls.2022.1043429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Succulence is an adaptation to low water availability characterised by the presence of water-storage tissues that alleviate water stress under low water availability. The succulent syndrome has evolved convergently in over 80 plant families and is associated with anatomical, physiological and biochemical traits. Despite the alleged importance of cell wall traits in drought responses, their significance in the succulent syndrome has long been overlooked. Here, by analyzing published pressure-volume curves, we show that elastic adjustment, whereby plants change cell wall elasticity, is uniquely beneficial to succulents for avoiding turgor loss. In addition, we used comprehensive microarray polymer profiling (CoMPP) to assess the biochemical composition of cell walls in leaves. Across phylogenetically diverse species, we uncover several differences in cell wall biochemistry between succulent and non-succulent leaves, pointing to the existence of a 'succulent glycome'. We also highlight the glycomic diversity among succulent plants, with some glycomic features being restricted to certain succulent lineages. In conclusion, we suggest that cell wall biomechanics and biochemistry should be considered among the characteristic traits that make up the succulent syndrome.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne M. Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Olwen M. Grace
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
8
|
Heyduk K. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. PLANT PHYSIOLOGY 2022; 190:19-30. [PMID: 35748752 PMCID: PMC9434201 DOI: 10.1093/plphys/kiac303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success. This review focuses on CAM plant responses to abiotic stressors likely to dominate in our changing climate: increasing CO2 levels, increasing temperatures, and greater variability in drought. Empirical studies that have assessed CAM responses are reviewed, though notably these are concentrated in relatively few CAM lineages. Other aspects of CAM biology, including the effects of abiotic stress on the light reactions and the role of leaf succulence, are also considered in the context of climate change. Finally, more recent studies using genomic techniques are discussed to link physiological changes in CAM plants with the underlying molecular mechanism. Together, the body of work reviewed suggests that CAM plants will continue to thrive in certain environments under elevated CO2. However, how CO2 interacts with other environmental factors, how those interactions affect CAM plants, and whether all CAM plants will be equally affected remain outstanding questions regarding the evolution of CAM on a changing planet.
Collapse
|