1
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
2
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
3
|
Tan X, Long W, Ma N, Sang S, Cai S. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 2024; 25:704. [PMID: 39030492 PMCID: PMC11264961 DOI: 10.1186/s12864-024-10624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Weihua Long
- School of Rural Revitalization, Jiangsu Open University, Nanjing, China.
| | - Ni Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oilcrops Research Institute of the Chinese Academy of Agricultural, Wuhan, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shanya Cai
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
4
|
Wang Y, Jiang C, Zhang X, Yan H, Yin Z, Sun X, Gao F, Zhao Y, Liu W, Han S, Zhang J, Zhang Y, Zhang Z, Zhang H, Li J, Xie X, Zhao Q, Wang X, Ye G, Li J, Ming R, Li Z. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:662-677. [PMID: 37909415 PMCID: PMC10893945 DOI: 10.1111/pbi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Collapse
Affiliation(s)
- Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhigang Yin
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Fenghua Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shichen Han
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yage Zhang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xianzhi Xie
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoning Wang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Guoyou Ye
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
- Institution International Rice Research InstituteLos BañosLagunaPhilippines
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
5
|
Cui Y, Cao Q, Li Y, He M, Liu X. Advances in cis-element- and natural variation-mediated transcriptional regulation and applications in gene editing of major crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5441-5457. [PMID: 37402253 DOI: 10.1093/jxb/erad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.
Collapse
Affiliation(s)
- Yue Cui
- College of Teacher Education, Molecular and Cellular Postdoctoral Research Station, Hebei Normal University, Shijiazhuang 050024, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiao Cao
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
6
|
Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:155-174. [PMID: 37025008 DOI: 10.1111/tpj.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, The Industrial Crop Institute, Fenyang, 032200, China
| | - Yuxin Cao
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Ruomeng Zhu
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Xinqi Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wuying Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuanglu Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Han
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chongyu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiahong He
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
7
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Lu S, Chen Y, Wang S, Han B, Zhao C, Xue P, Zhang Y, Fang H, Wang B, Cao Y. Combined metabolomic and transcriptomic analysis reveals key components of OsCIPK17 overexpression improves drought tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1043757. [PMID: 36699859 PMCID: PMC9868928 DOI: 10.3389/fpls.2022.1043757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Oryza Sativa is one of the most important food crops in China, which is easily affected by drought during its growth and development. As a member of the calcium signaling pathway, CBL-interacting protein kinase (CIPK) plays an important role in plant growth and development as well as environmental stress. However, there is no report on the function and mechanism of OsCIPK17 in rice drought resistance. We combined transcriptional and metabonomic analysis to clarify the specific mechanism of OsCIPK17 in response to rice drought tolerance. The results showed that OsCIPK17 improved drought resistance of rice by regulating deep roots under drought stress; Response to drought by regulating the energy metabolism pathway and controlling the accumulation of citric acid in the tricarboxylic acid (TCA) cycle; Our exogenous experiments also proved that OsCIPK17 responds to citric acid, and this process involves the auxin metabolism pathway; Exogenous citric acid can improve the drought resistance of overexpression plants. Our research reveals that OsCIPK17 positively regulates rice drought resistance and participates in the accumulation of citric acid in the TCA cycle, providing new insights for rice drought resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baohua Wang
- *Correspondence: Baohua Wang, ; Yunying Cao,
| | - Yunying Cao
- *Correspondence: Baohua Wang, ; Yunying Cao,
| |
Collapse
|
9
|
Zhang Y, Li Z, Liu J, Zhang Y, Ye L, Peng Y, Wang H, Diao H, Ma Y, Wang M, Xie Y, Tang T, Zhuang Y, Teng W, Tong Y, Zhang W, Lang Z, Xue Y, Zhang Y. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat Commun 2022; 13:6940. [PMID: 36376315 PMCID: PMC9663577 DOI: 10.1038/s41467-022-34290-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The success of common wheat as a global staple crop was largely attributed to its genomic diversity and redundancy due to the merge of different genomes, giving rise to the major question how subgenome-divergent and -convergent transcription is mediated and harmonized in a single cell. Here, we create a catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble a common wheat regulatory network on an unprecedented scale. A significant proportion of subgenome-divergent TFBSs are derived from differential expansions of particular transposable elements (TEs) in diploid progenitors, which contribute to subgenome-divergent transcription. Whereas subgenome-convergent transcription is associated with balanced TF binding at loci derived from TE expansions before diploid divergence. These TFBSs have retained in parallel during evolution of each diploid, despite extensive unbalanced turnover of the flanking TEs. Thus, the differential evolutionary selection of paleo- and neo-TEs contribute to subgenome-convergent and -divergent regulation in common wheat, highlighting the influence of TE repertory plasticity on transcriptional plasticity in polyploid.
Collapse
Affiliation(s)
- Yuyun Zhang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zijuan Li
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jinyi Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu’e Zhang
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Luhuan Ye
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuan Peng
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Haoyu Wang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Huishan Diao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yu Ma
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Meiyue Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yilin Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Tengfei Tang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Yili Zhuang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Teng
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yiping Tong
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenli Zhang
- grid.27871.3b0000 0000 9750 7019State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 China
| | - Zhaobo Lang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.263817.90000 0004 1773 1790Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yongbiao Xue
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences, and National Centre for Bioinformation, Beijing, 100101 China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Yijing Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
10
|
Klein SP, Anderson SN. The evolution and function of transposons in epigenetic regulation in response to the environment. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102277. [PMID: 35961279 DOI: 10.1016/j.pbi.2022.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) make up a major proportion of plant genomes. Despite their prevalence genome-wide, TEs are often tossed aside as "junk DNA" since they rarely cause phenotypes, and epigenetic mechanisms silence TEs to prevent them from causing deleterious mutations through movement. While this bleak picture of TEs in genomes is true on average, a growing number of examples across many plant species point to TEs as drivers of phenotypic diversity and novel stress responses. Examples of TE-influenced phenotypes illustrate the many ways that novel transposition events can alter local gene expression and how this relates to potential variation in plant responses to environmental stress. Since TE families and insertions at the locus level lack evolutionary conservation, advancements in the field will require TE experts across diverse species to identify and utilize TE variation in their own systems as a means of crop improvement.
Collapse
Affiliation(s)
- Stephanie P Klein
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah N Anderson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Zhao J, Jiang L, Bai H, Dai Y, Li K, Li S, Wang X, Wu L, Fu Q, Yang Y, Dong Q, Yu S, Wang M, Liu H, Peng Z, Zhu H, Zhang X, He X, Lei Y, Liang Y, Guo L, Zhang H, Yu D, Liu Y, Huang H, Liu C, Peng S, Du Y. Characteristics of members of IGT family genes in controlling rice root system architecture and tiller development. FRONTIERS IN PLANT SCIENCE 2022; 13:961658. [PMID: 36147240 PMCID: PMC9487910 DOI: 10.3389/fpls.2022.961658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani's terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.
Collapse
Affiliation(s)
- Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hanrui Bai
- Division of Life Sciences and Medicine, College of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Yuliang Dai
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Saijie Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoran Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yanfen Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qian Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Si Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Meixian Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Haiyan Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ziai Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xie He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Lei
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Liang
- Yuguopu District Agricultural Comprehensive Service Center, Mengzi, China
| | - Liwei Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hongji Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Decai Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Sheng Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
13
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Wang D, Zhang Z, Yang L, Tian S, Liu Y. ARPI, β-AS, and UGE regulate glycyrrhizin biosynthesis in Glycyrrhiza uralensis hairy roots. PLANT CELL REPORTS 2021; 40:1285-1296. [PMID: 34002270 DOI: 10.1007/s00299-021-02712-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
ARPI, β-AS, and UGE were cloned from G. uralensis and their regulatory effects on glycyrrhizin biosynthesis were investigated. β-AS and UGE but not ARPI positively regulate the biosynthesis of glycyrrhizin. Glycyrrhiza uralensis Fisch. has been used to treat respiratory, gastric, and liver diseases since ancient China. The most important and widely studied active component in G. uralensis is glycyrrhizin (GC). Our pervious RNA-Seq study shows that GC biosynthesis is regulated by multiple biosynthetic pathways. In this study, three target genes, ARPI, β-AS, and UGE from different pathways were selected and their regulatory effects on GC biosynthesis were investigated using G. uralensis hairy roots. Our data show that hairy roots knocking out ARPI or UGE died soon after induction, indicating that the genes are essential for the growth of G. uralensis hairy roots. Hairy roots with β-AS knocked out grew healthily. However, they failed to produce GC, suggesting that β-AS is required for triterpenoid skeleton formation. Conversely, overexpression of UGE or β-AS significantly increased the GC content, whereas overexpression of ARPI had no obvious effects on GC accumulation in G. uralensis hairy roots. Our findings demonstrate that β-AS and UGE positively regulate the biosynthesis of GC.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
15
|
|