1
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Kumar R, Mishra SK, Singh K, Al-Ashkar I, Iqbal MA, Muzamil MN, Habib ur Rahman M, El Sabagh A. Impact analysis of moisture stress on growth and yield of cotton using DSSAT-CROPGRO-cotton model under semi-arid climate. PeerJ 2023; 11:e16329. [PMID: 38025731 PMCID: PMC10640844 DOI: 10.7717/peerj.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/30/2023] [Indexed: 12/01/2023] Open
Abstract
Adequate soil moisture around the root zone of the crops is essential for optimal plant growth and productivity throughout the crop season, whereas excessive as well as deficient moisture is usually detrimental. A field experiment was conducted on cotton (Gossipium hirsuttum) with three water regimes (viz. well-watered (control); rainfed after one post-sowing irrigation (1-POSI) and rainfed after two post-sowing irrigations (2-POSI)) in main plots and application of eight osmoprotectants in sub plots of Split plot design to quantify the loss of seed cotton yield (SCY) under high and mild moisture stress. The DSSAT-CROPGRO-cotton model was calibrated to validate the response of cotton crop to water stress. Results elucidated that in comparison of well watered (control) crop, 1-POSI and 2-POSI reduced plant height by 13.5-28.4% and lower leaf area index (LAI) by 21.6-37.6%. Pooled analysis revealed that SCY under control was higher by 1,127 kg ha-1 over 1-POSI and 597 kg ha-1 than 2-POSI. The DSSAT-CROPGRO-cotton model fairly simulated the cotton yield as evidenced by good accuracy (d-stat ≥ 0.92) along with lower root mean square error (RMSE) of ≤183.2 kg ha-1; mean absolute percent error (MAPE) ≤6.5% under different irrigation levels. Similarly, simulated and observed biomass also exhibited good agreement with ≥0.98 d-stat; ≤533.7 kg ha-1 RMSE; and ≤4.6% MAPE. The model accurately simulated the periodical LAI, biomass and soil water dynamics as affected by varying water regimes in conformity with periodical observations. Both the experimental and the simulated results confirmed the decline of SCY with any degree of water stress. Thus, a well calibrated DSSAT-CROPGRO-cotton model may be successfully used for estimating the crop performance under varying hydro-climatic conditions.
Collapse
Affiliation(s)
- Rotash Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Sudhir Kumar Mishra
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Kulvir Singh
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Aamir Iqbal
- Department of Agronomy, Faculty of Agriculture, University of Poonch, Rawalakot, Pakistan
| | | | - Muhammad Habib ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Punjab, Pakistan
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
4
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Bryant C, Palma AC, Hoffmann L, Alam I, Carle HJ, Rowland L, Oliveira RS, Laurance SGW, Mencuccini M, Meir P. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. THE NEW PHYTOLOGIST 2023; 240:1405-1420. [PMID: 37705460 DOI: 10.1111/nph.19257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.
Collapse
Affiliation(s)
- Oliver Binks
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, 4883, Qld, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Ana C Palma
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Luke Hoffmann
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Hannah J Carle
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucy Rowland
- Geography, Faculty of Environment Science and Economy, University of Exeter, Laver Building, Exeter, EX4 4QE, UK
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
5
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
6
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
7
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Carle H, Bryant C, Dunn E, Oliveira R, Mencuccini M, Meir P. Forest system hydraulic conductance: partitioning tree and soil components. THE NEW PHYTOLOGIST 2022; 233:1667-1681. [PMID: 34861052 DOI: 10.1111/nph.17895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Soil-leaf hydraulic conductance determines canopy-atmosphere coupling in vegetation models, but it is typically derived from ex-situ measurements of stem segments and soil samples. Using a novel approach, we derive robust in-situ estimates for whole-tree conductance (ktree ), 'functional' soil conductance (ksoil ), and 'system' conductance (ksystem , water table to canopy), at two climatically different tropical rainforest sites. Hydraulic 'functional rooting depth', determined for each tree using profiles of soil water potential (Ψsoil ) and sap flux data, enabled a robust determination of ktree and ksoil . ktree was compared across species, size classes, seasons, height above nearest drainage (HAND), two field sites, and to alternative representations of ktree ; ksoil was analysed with respect to variations in site, season and HAND. ktree was lower and changed seasonally at the site with higher vapour pressure deficit (VPD) and rainfall; ktree differed little across species but scaled with tree circumference; rsoil (1/ksoil ) ranged from 0 in the wet season to 10× less than rtree (1/ktree ) in the dry season. VPD and not rainfall may influence plot-level k; leaf water potentials and sap flux can be used to determine ktree , ksoil and ksystem ; Ψsoil profiles can provide mechanistic insights into ecosystem-level water fluxes.
Collapse
Affiliation(s)
- Oliver Binks
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, Qld, 4883, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hannah Carle
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elliot Dunn
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rafael Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
8
|
Luo Y, Ho CL, Helliker BR, Katifori E. Leaf Water Storage and Robustness to Intermittent Drought: A Spatially Explicit Capacitive Model for Leaf Hydraulics. FRONTIERS IN PLANT SCIENCE 2021; 12:725995. [PMID: 34721457 PMCID: PMC8551678 DOI: 10.3389/fpls.2021.725995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 05/11/2023]
Abstract
Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.
Collapse
Affiliation(s)
- Yongtian Luo
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Yongtian Luo
| | - Che-Ling Ho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Eleni Katifori
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- Eleni Katifori
| |
Collapse
|